
SpyWorksTM

Version 7
for Visual Studio

by

Desaware, Inc.

Rev 7.0.0 (02/02)

Information in this document is subject to change without notice and does not represent a commitment on
the part of Desaware, Inc. The software described in this document is furnished under a license
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission
of Desaware, Inc.

Copyright © 1994-2002 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return
the product and all accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed to you for your use only. If you, personally, have more than
one computer, you may install it on all of your computers as long as there is no possibility of
it being used concurrently at more than one location by separate individuals. You may (and
should) make archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software
and all other materials and retain no copies, and the recipient agrees to the terms of this
agreement.

You may not make copies of this software for other people. Companies or schools interested
in multiple copy licenses or site licenses should contact Desaware, Inc. directly at (408) 377-
4770.

Should your intent be to purchase this product for use in developing a compiled Visual Basic
program that you will distribute as an executable (.exe) file, review the listing of which files
(located below and in the File Description section of the product manual) can be distributed
and or modified. If Desaware files are included in your executable program, you must include
a valid copyright notice on all copies of the program. This can be either your own copyright
notice, or “Copyright © 2002 Desaware, Inc. All rights reserved.”.

You have a royalty-free right to incorporate any of the sample code provided into your own
applications with the stipulation that you agree that Desaware, Inc. has no warranty,
obligation or liability, real or implied, for its performance.

SpyWorks OCX: You may include with your program a copy of the files dwsbc??.ocx,
dwcbk??.ocx, dwshk??.ocx, dweasy??.ocx, dwspydll.dll, dwspy??.dll, dwaxextn.dll,
dwspy5.dll, dwsock.dll, dwsock6.dll, sockintf.dll, dwbkthrd.dll, dwsmtp.dll, dwsmtp5.dll,
dwcmndlg.dll, dwcmndg6.dll, dwtaskbr.ocx, dwtaskb6.ocx, dwspyvb.dll, and dwspyvb6.dll
(the runtime libraries, where ?? indicates 16, 32 or 36). You may distribute the
Desaware.SpyWorks.dwsbcNET.dll and Desaware.SpyWorks.dwshkNET.dll assembly files
or the SpyWorksWinHookMM.msm and SpyWorksSubclassMM.msm merge modules with
your .NET applications. You may also distribute DLL files created using the dwexutil.exe or
ExportWizard.exe utility programs . You may not modify the files listed above in any way.

SpyWorks VBX: You may include with your program a copy of the following files
sbc.vbx, cbk.vbx, sbckbd.vbx, sbchook.vbx, sbceasy.vbx, dwtimer.vbx and dwspydll.dll (the
runtime libraries). You may not modify the files sbc.vbx, cbk.vbx, sbckbd.vbx, sbchook.vbx,
sbceasy.vbx, dwtimer.vbx or dwspydll.dll in any way.

SpyWorks Source Files: Source code for portions of SpyWorks are included for
educational purposes only. You may use this source code in your own applications only if
they provide primary and significant functionality beyond that included in the SpyWorks
package. You may not use this source code to develop or distribute components and tools that
provide functionality similar to all or part of the functionality provided by any of the
components or tools included in the SpyWorks package.

Please consult the on-line Help file under the topic File Descriptions for additional
information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Visual Studio, Windows, Windows 95, Windows 98, Windows ME,
Windows NT, Windows 2000, and Windows XP are trademarks of Microsoft Corporation.
SpyWorks, NT Service Toolkit, StateCoder, VersionStamper, StorageTools, Event Log Toolkit, ActiveX Gallimaufry, Custom Control Factory,
and SpyNotes #2, The Common Dialog Toolkit are trademarks of Desaware, Inc.

Limited Warranty

Desaware, Inc. warrants the physical CD and physical documentation enclosed herein to be
free of defects in materials and workmanship for a period of sixty days from the date of
purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be
limited to replacement of defective CD(s) or documentation and shall not include or extend to
any claim for or right to recover any other damages, including but not limited to, loss of
profit, data or use of the software, or special, incidental or consequential damages or other
similar claims, even if Desaware, Inc. has been specifically advised of the possibility of such
damages. In no event will Desaware, Inc.'s liability for any damages to you or any other
person ever exceed the suggested list price or actual price paid for the license to use the
software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Specifically, Desaware, Inc. makes no representation or warranty that the software is fit for
any particular purpose and any implied warranty of merchantability is limited to the sixty-day
duration of the Limited Warranty covering the physical CD and documentation only (not the
software) and is otherwise expressly and specifically disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from
state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws
of the State of California, and any action hereunder shall be brought only in California. If any
provision is found void, invalid or unenforceable it will not affect the validity of the balance
of this License and Limited Warranty, which shall remain valid and enforceable according to
its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Desaware, Inc., 1100 East Hamilton Avenue, Suite 4, Campbell,
California 95008.

Page 1

Table of Contents
TABLE OF CONTENTS ... 1

WHAT MAKES A GOOD MANUAL? ... 7

INTRODUCTION... 9

THE VERSIONS OF SPYWORKS..9
WHY DO WE HAVE TWO EDITIONS OF SPYWORKS?...9
A NOTE ON FILES..11

INSTALLATION...12

COMPATIBILITY ISSUES...12

SPYWORKS PHILOSOPHY...14

KNOWLEDGE, SAFETY AND EASE OF USE..17
USING SPYWORKS (PLEASE READ!)..18
NEW FEATURES..19
CUSTOMER SUPPORT ..22
REGISTER! REGISTER! REGISTER!..23

SPYWORKS CONCEPTS: SUBCLASSING..24

INTRODUCTION TO SUBCLASSING...24
HOW MIGHT YOU USE SUBCLASSING? ..30

CAUTIONS ON USING SUBCLASSING..32

DELAYED EVENTS - POSTING AN EVENT TO YOURSELF..33

32 BIT VS. 16 BIT SUBCLASSING...34

USING DWSBC.OCX...35

SUBCLASSING MULTIPLE WINDOWS WITH DWSBC.OCX ...36
USING DWSBC.OCX IN A CONTROL ARRAY..37
CROSSTASK ISSUES...37

Process Spaces...38
THE DW SUBCLASS OBJECT (DWSPYVB.DLL) ..38
IMPORTANT TIPS..39

Recreating Windows...39
Frozen Messages ...39

Page 2

SUBCLASSING EXAMPLES...39
FOR ADDITIONAL INFORMATION ON SUBCLASSING...41

SPYWORKS CONCEPTS: WINDOWS HOOKS ...42

TYPES OF HOOKS...45
SHOULD YOU USE HOOKS OR SUBCLASSING? ..46
USING DWSHK.OCX FOR KEYBOARD HOOKS ...47
SETTING UP DWSHK.OCX FOR KEYBOARD HOOKS..48
KEY VALUE FORMAT ...49
DISCARDING KEYSTROKES ..49
USING DWSHK.OCX FOR WINDOWS HOOKS ...49
SETTING UP DWSHK.OCX FOR WINDOWS HOOKS ..50
DWSHK.OCX - USE OF THE NODEF PARAMETER..51
THE DW GENERICHOOK OBJECT ..52
THE DW PRETRANSLATE OBJECT ...54
HOOK EXAMPLES...54
FOR FURTHER INFORMATION ON HOOKS...59

SPYWORKS CONCEPTS: PRIVATE WINDOWS ...60

THE DW PRIVATEWINDOW OBJECT ...60

SPYWORKS CONCEPTS: DWEASY - A MULTIFUNCTION CONTROL....................62

PLACING THE DWEASY.OCX CONTROL...62
DWEASY.OCX - MOUSE TRACKING ...63
DWEASY.OCX - DETERMINING UPDATE AREA DURING PAINT ...64
DWEASY.OCX - TINY CAPTIONS AND ROLLUP WINDOWS...65

Notes on working with Tiny Captions and Rollups...65
DWEASY.OCX - ADDING SCROLLBARS TO FORMS AND CONTROLS..66
DWEASY.OCX - OTHER FUNCTIONS...67

System Menu Support ...67
DWEASY.OCX - W INDOWS EXPLORER/FILE MANAGER DRAG- DROP COMMANDS.................67
DWSHELLLINK - SHELL LINK SUPPORT ...68

Obtaining a dwShellLink Object ...68
Notes on Working with Shell Links..69

DWEASY EXAMPLES:...69

SPYWORKS CONCEPTS: DWSPY3X.DLL FUNCTION LIBRARY................................72

DATA AND MEMORY ACCESS..72
USER DEFINED TYPE (UDT) PACKING FUNCTIONS...74
MISCELLANEOUS FUNCTIONS..75
INDIRECT PROPERTY ACCESS...76
VISUAL BASIC API FUNCTIONS ..77

Page 3

DWSPY3X EXAMPLES..78

SPYWORKS CONCEPTS: EXPORTING FUNCTIONS ...79

WHAT ARE EXPORTED FUNCTIONS?...79
HOW DYNAMIC EXPORT TECHNOLOGY WORKS..81
THE DW EXPORTER CLASS (FOR VB 5 AND 6)...83

GetFunctionCount...84
GetModuleHandle...84
GetFunctionInfo...84

THE DESAWARE EXPORT UTILITY (FOR VB 5 AND 6) ...86
WHAT ARE RESOURCES? (FOR VB 5 AND 6)...87
ADDING RESOURCES TO THE ALIAS DLL (FOR VB 5 AND 6)...88
THE DW EXUTIL MAIN FORM (FOR VB 5 AND 6)..89
THE EXPORTS CLASS (FOR VISUAL STUDIO .NET) ..91
THE EXPORT WIZARD (FOR VISUAL STUDIO .NET)...92
TESTING EXPORTED FUNCTIONS...92
DISTRIBUTING YOUR COMPONENT ..93

Distributing the Alias DLL for VB 5 and 6 ...93
Distributing the Alias DLL for .NET ..93

WARNING! EXPORTING FUNCTIONS IS DANGEROUS! ..94
CONTROL PANEL APPLETS AND MULTITHREADING CLIENTS IN VISUAL BASIC 5 AND 694

Writing Control Panel Applets with SpyWorks Standard ..95
Writing Control Panel Applets with SpyWorks Professional ..96

SPYWORKS CONCEPTS: INTERFACE EXTENSIONS AND HOOKS97

UPGRADING FROM DW AXEXT .DLL TO DW AXEXTN.DLL ..97
INTRODUCTION TO INTERFACES..98
OVERRIDING INTERFACES... 100
REFERENCING NON-AUTOMATION COMPATIBLE INTERFACES... 100
HOW TO AVOID CORRUPTING YOUR SYSTEM REGISTRY .. 101
IMPLEMENTING STANDARD AND NON-AUTOMATION COMPATIBLE INTERFACES...................... 102
DECLARING AND INITIALIZING THE DW AXEXTN.DLL COMPONENT .. 102

INSIDE THE SPYWORKS INTERFACE EXTENSIONS ...105

THE COM CONTRACT ... 105
THE TWO SIDES OF COM.. 107
HACKING FURTHER.. 108
IMPLEMENTING IOBJECT SAFETY – THE EASY WAY .. 110
IMPLEMENTING IOBJECT SAFETY – THE EASIER WAY ... 113
CALLING GENERIC INTERFACES... 114

SPYWORKS CONCEPTS: WINSOCK - INTERNET/INTRANET PROGRAMMING117

Page 4

HOW TO APPROACH THE WINSOCK PACKAGE... 117
IMPORTANT NOTE REGARDING SUPPORT FOR THIS COMPONENT ... 118
LEARNING WINSOCK ... 118

IP Addressing...119
Ports...119
UDP and TCP ..120

DWSOCK ARCHITECTURE.. 121
Dependencies:..122

SMTP ... 123
USING THE WINSOCK PACKAGE... 123
WINSOCK UTILITY FUNCTIONS.. 123

Obtaining Winsock Version Information...123
Obtaining Your Host Name..123
Determine the Standard Port Number of a Service...124
Perform an Asynchronous Name Resolution..124

HTTP EXAMPLE:.. 125

SPYWORKS CONCEPTS: COMPONENTS AND CLASS LIBRARIES126

DESAWARE WINDOWS UTILITIES AND SUBCLASSER.. 126
NT SERVICE TOOLKIT (LIGHT EDITION) .. 127
SPYNOTES.. 128

SPYWORKS CONCEPTS: BACKGROUND THREADS ..129

DWBACKTHREAD - QUICK START ... 129
DWBACKTHREAD - METHODS AND PROPERTIES... 131

LaunchObject(ObjectName As String) As Object ..131
BackgroundExecute() ...131
BackgroundExecuteDelayed() ..132
BackgroundObject...132

DWBACKTHREAD - SUMMARY OF RULES... 132

SPYWORKS CONCEPTS: TOOLS AND UTILITIES..134

SPYMSG... 134
SPYWIN ... 135
SPYMEM6 FOR WINDOWS... 135
SPYMENU .. 136
SWINIEDT .. 136

SPYWORKS CONCEPTS: CALLBACKS ..137

DWCBK.OCX.. 140
SELECTING COMPATIBLE CALLBACK EVENTS... 140
USING DWCBK.OCX.. 141

Page 5

DWCBK EXAMPLES:.. 141

DISTRIBUTION AND LICENSING...144

ABOUT OUR SOFTWARE LICENSE... 144
LICENSING DWAXEXTN.DLL, DWBKTHRD.DLL, DWSPYVB.DLL, DWSPYVB6.DLL,
DWCMNDLG.DLL, DWCMNDG6.DLL, DWSOCK.DLL AND DWSOCK6.DLL....................................... 145
USING THE LICENSE KEY WITH DWSPYVB.DLL AND DWSPYVB6.DLL... 146
USING THE LICENSE KEY WITH DWSOCK.DLL AND DWSOCK6.DLL... 146
USING THE LICENSE KEY WITH DWCMNDLG.DLL AND DWCMNDG6.DLL 147
USING THE LICENSE KEY WITH DWAXEXTN.DLL ... 147
USING THE LICENSE KEY WITH DWBKTHRD.DLL .. 148
CREATING A LICENSE KEY ... 149
FINAL NOTES ON LICENSING DLLS... 149
LICENSING DWSBC36.OCX, DWSHK36.OCX AND DWEASY36.OCX FOR USE AS CONSTITUENT
CONTROLS ... 149
FILE DESCRIPTIONS AND REDISTRIBUTION TERMS... 150

SPYWORKS AND VISUAL STUDIO .NET..157

INSTALLING THE SPYWORKS .NET FILES... 158
MIGRATING TO .NET FROM VISUAL BASIC 6.0... 158

Learning .NET..158
Migrating Visual Basic 6.0 projects...158
Migrating SpyWorks Subclass and WinHook ATL based ActiveX controls..........................158

.NET FEATURES ... 159
Function Export...159
Primary InterOp Assemblies..160
Merge Modules..160

.NET SAMPLES ... 160
Differences Between C# and Visual Basic .NET Sample Projects..161

ADDITIONAL TOPICS ..162

SPYWORKS.INI - CONFIGURATION AND INITIALIZATION FILE.. 162
APPLICATION SETUPS.. 162
MESSAGE INTERPRETATION.. 163
STYLE INTERPRETATION ... 163
MESSAGE GROUPING ... 164

TECHNICAL SUPPORT..165

OTHER SOURCES OF INFORMATION...166

Regular Expressions with .NET ..166
Visual Basic.NET or C# ... Which to Choose? ...166

Page 6

Introduction to NT/2000 Security Programming with Visual Basic.......................................166
Moving to VB.Net:Strategies, Concepts and Code..167
Dan Appleman's Visual Basic Programmer's Guide To The Win32 API...............................167
Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to
the Perplexed ...167
Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers168
How Computer Programming Works..168
The Desaware Visual Basic Bulletin..168
PC Magazine's Visual Basic Programmer's Guide To The Windows API169
Msdn.microsoft.com..169

INDEX...170

DESAWARE PRODUCT DESCRIPTIONS..178

Page 7

What Makes a Good Manual?
A note from Daniel Appleman, President of Desaware Inc.

When I decided that it was time to revise the SpyWorks printed
manual a while back, I faced a serious dilemma. SpyWorks has
evolved considerably since its release, growing far beyond the simple
subclassing and hook capabilities provided by the earlier versions. Just
covering the functionality of the package itself would take a
substantial book. Trying to teach the underlying concepts and possible
applications of all of the components of this package would take an
encyclopedia, for the functionality offered by SpyWorks spans the
entire gamut of Windows technology. Indeed, both Desaware's staff
and our customers are constantly discovering new applications.

So what really needs to be in the printed documentation?

Let's ignore, for the moment, the increasing trend among software
companies to not include printed documentation at all. I personally
like printed books, and have not yet become accustomed to reading
extensive documentation on-line.

Yet, at the same time, there are certain types of documentation that I
am quite satisfied, even prefer to read on-line. Specifically - the details
of individual functions; their parameters and operation is often easier
to access on-line. This is especially true considering the ability of
controls to link directly to help files, and their build-in search and
index capabilities.

So I started with the following two premises:

1. That the on-line Help file should be comprehensive and include
all of the printed documentation as well.

2. That no matter what I choose to do, I won't please everyone. In
fact, I probably won't even please most people.

Page 8

So I drew inspiration from the old song, if you can't please everyone,
you might as well please yourself. Most of the detailed reference
material, including lists of properties and events, is only available in
the on-line Help file. This is the kind of information that you will
generally look up as needed anyway, and I've found that it is much
easier to look up this information on-line. The printed manual is
designed to place all of the components and features into some sort of
context. It contains overview information and feature descriptions to
help familiarize you with both SpyWorks and the underlying Windows
technology that SpyWorks exposes to Visual Basic programmers. It is
intended to be the kind of manual that you can sit down and read and
learn something, without distracting you with the nitty gritty details
that you are unlikely to memorize in any case.

This is, to the best of my ability, the manual that I would like to read if
I purchased a product of this kind. It draws on some of the material
from the previous editions, re-organizes it, and adds new material,
portions of which were written by me, with additional contributions by
Desaware's staff.

I hope you find it satisfactory.

Daniel Appleman

Page 9

Introduction
SpyWorks is probably the most unusual add-on product available for
Visual Basic. As such, it is very important that you review this
introduction. It will help you to understand both the features and the
limitations of this product.

The Versions of SpyWorks
This edition of the SpyWorks Help file consolidates two different 32
bit editions of the SpyWorks product, the Professional Edition and the
Standard Edition. The most important result is as follows:

If you have purchased the Standard Edition of SpyWorks, there will
be components and product features described in this manual that
are not included in your version of the software.

You can identify these features by the notation (Professional Edition
Only) in the documentation and Help file.

 Why Do We Have Two Editions of SpyWorks?
If you are a serious professional developer, or even a dedicated
hobbyist, one fact has probably become very apparent to you within
the past year:

Things are changing very quickly in our industry.

Even as we begin to adjust to the enormous changes brought about by
one version of Windows and Visual Studio .NET , people are already
wondering about the next versions, which often appear before you
have even begun to deploy the previous one. Keeping up to date with
the technology is becoming more and more challenging, as is keeping
a stable development platform.

Those of you who have worked with SpyWorks since it first appeared
may remember how the product evolved to meet the needs of
customers and address issues that arose as we (and our customers)
attempted to perform new tasks with the product. One of the first
things that we realized during the transition to 32 bit software was that
things are changing too quickly for us to anticipate all of the
applications and features that SpyWorks would need for any
significant duration.

Page 10

In an ideal world, we would be able to take a year or so to develop the
product after the platforms were stable (that's how long it took to do
the original product), but obviously that is unacceptable - too many
people depend on and require this functionality, and if we did take this
time, we would never ship anything - for the new platform would
arrive before we shipped the previous edition.

This tradeoff - the need to meet customer requirements in addition to
the lack of information of what this product ultimately needs to be,
lead to a shift in our approach.

We decided to take the same approach that Microsoft took with their
MSDN product - to turn SpyWorks into a subscription based product
that is designed not only to provide you with great tools, but with
information, application notes, top notch support - all of the things that
you will need to take full advantage of the latest versions of both
Visual Basic and Windows, and to stay current with the latest
technology.

Our top priority for any SpyWorks release is simple: to provide
current and new customers with the core controls that they will need to
work in 32 bit Visual Basic, Visual Basic for Applications, and .NET.
After all, missing a debugging tool may be inconvenient, but it won’t
stop you from shipping product. Our focus has been to make the
controls as stable as possible. Don’t hesitate to call us with questions
or if you run into problems. Several times each year, we ship out an
update. (There is no fixed schedule because we can't predict
Microsoft's release schedules or how long it will take before we have
enough new material for a release.) We try to increase the number of
sample programs during each new release, incorporating new features
and demonstrations inspired largely by customer requests. The
possibilities for using these controls are endless and we have only
begun to explore all of the possibilities ourselves.

The Standard Edition of SpyWorks includes only the ActiveX controls
and components, a truncated version of the Desaware API Class
Library and sample code. It is intended for those on a tight budget who
do not need all of the latest features and information. It also does not
include support for .NET, the WinSock components, background
threads, NT Services, Common Dialog Toolkit, advanced class
libraries and application notes, or the SpyWorks 2.1 VBX controls.

Page 11

And the next release? That’s where you come in. We want to hear
your questions and suggestions for features. Let us know what you are
doing. Let us know where you get stuck. Your suggestions will go a
long way to determining the features of each new release

A Note on Files
There are three sets of ActiveX files in SpyWorks: two sets for Win32
applications, and a set for Win16 applications. The sets of files can be
differentiated by the digits in the last two characters of the file names:
files for Win16 will have a '16' as the last two characters of the file
name, and files for Win32 will have a '32' or '36' as the last two
characters of the file names. Files referenced in this documentation, to
maintain generality, are named without these two trailing characters.
For example, the mention of dweasy.ocx in this documentation will
actually refer to three files: dweasy16.ocx, dweasy32.ocx, and
dweasy36.ocx. This release of SpyWorks includes the files for Win16
& Win32.

The dwsbc36.ocx, dwshk36.ocx, dweasy36.ocx, dwspy36.dll differ
from their '32' version counterparts as follows:

• Available only to Professional Edition subscribers of version 5.2
and later, or in Standard Edition version 6.0 or later.

• ATL based controls do not require distribution of MFC
components.

• Improved thread safety including correct cross-thread processing
in multithreaded VB applications and components.

• Apartment model multithreading allows use in VB multithreaded
controls.

• New licensing scheme for use as constituent components in VB
controls.

• Overall improvements in efficiency and performance.

Some of the newer components, especially those written in Visual
Basic, are released only in 32 bit editions, and thus do not require a
suffix of this type. Some of these components may differ by the last
character ending with a ‘6’ to indicate that they were compiled using
VB 6 (instead of VB 5). For example, dwspyvb.dll is a 32 bit only
component compiled in VB 5, dwspyvb6.dll is the same (but not
compatible) component compiled in VB 6.

Page 12

Installation
You must have Visual Basic already installed on your system before
running this program.

1. Place your SpyWorks CD in your CD ROM drive.

2. The setup program should automatically start if your computer’s
autorun mode is on. Otherwise, use the Start Button’s Run...
command in Windows to run d:\setup.exe or e:\setup.exe
(depending on the drive letter assigned to your CD ROM drive).
You can also use Windows Explorer or File Manager to run this
program.

3. The setup program will prompt you for a destination directory for
the SpyWorks files. The SpyWorks custom controls and dynamic
link libraries will be installed and registered in the appropriate
System directory.

4. Installation programs are tricky - and we have found that
occasionally a system is configured in such a way that the
installation program fails. Please refer to the readme file for the
latest information on these situations, and for instructions for
manual installation.

5. The directory containing the SpyWorks sample files may contain
files readme.txt or readme.wri. These files, if present, will
contain recent information that could not be incorporated into the
manual at time of printing. Use the Windows WordPad program
to view readme.txt, or the Windows WordPad program to view
readme.wri.

Compatibility Issues
SpyWorks extensions use standard Windows techniques for
subclassing windows. They do not violate any of the rules or
requirements of Windows programming and thus should remain
compatible with future versions of 32 bit Windows. SpyWorks 6.0
and later are based upon ActiveX technology and are not compatible
with the versions of Visual Basic earlier than Visual Basic 4.0. Some
of the new features in SpyWorks 7 are applicable only in Visual Basic
5.0 or later, or Visual Studio .NET or later.

Page 13

SpyWorks 7 controls have been tested with Visual Basic versions 4
through 6 and Visual Studio .NET, under Windows NT, Windows
2000, Windows XP, Windows 95, Windows 98, and Windows ME.
The sample code and utilities provided are distributed in Visual Basic
4, 5, 6, Visual Basic .NET (where applicable) and C# (where
applicable) formats.

We obviously cannot guarantee that this product will remain
compatible with future versions of Visual Studio, however any
changes that would invalidate the use of the SpyWorks controls would
likely break any program that uses Windows API functions, and since
API functions are used by many Visual Basic programmers and
Microsoft's own Visual Studio sample programs, the odds are good
that applications that use SpyWorks will continue to work for future
versions of Visual Studio.

Please Refer to the On-line Help file for the latest information on
migrating SpyWorks controls from Visual Basic 4, 5, 6 or Visual
Studio .NET .

Please refer to the on-line Help file for the latest information on
compatibility when migrating from SpyWorks 2.1 to the current
versions of SpyWorks with Windows NT/2000/XP, and Windows
95/98/ME.

Page 14

SpyWorks Philosophy
One of the great advantages of Visual Basic over any other Windows
development language is that it is extremely "safe" to use. In theory, it
is impossible for a Visual Basic programmer to crash the system or to
cause a General Protection Fault, Exception or other system error from
within Visual Basic. This makes programming extremely efficient -
you can quickly experiment and modify your code, examining
intermediate values in the immediate window as needed. This differs
markedly from other development systems where bugs frequently
cause memory corruption, use of invalid pointers, and other errors that
require sophisticated debuggers and many reboot/restart cycles.

Visual Basic protects you from your mistakes, but there is a price to
pay for this safety. Visual Basic only implements a subset of the
features that are available under Windows. As a result, there are many
tasks that are difficult or impossible to do with Visual Basic directly.
There are currently two methods for extending Visual Basic. You can
directly access Windows API functions from VB, or you can write
dynamic link libraries or VB custom controls using C or C++ and
traditional Windows programming techniques.

SpyWorks provides a third approach to extending Visual Basic. It
consists of a number of tools and programs to support extending the
capabilities of Visual Basic from within the VB environment. No C or
C++ language or other tools are required. These tools take two forms:
Extension tools and Debugging tools.

The major extension tools include the following ActiveX components,
classes and dynamic link libraries.

• Dwsbc.ocx is a powerful custom control that allows you to
intercept and manipulate the underlying Windows message stream
for any Visual Basic form or control (including most ActiveX
controls). SpyWorks 7 includes a .NET Primary InterOp
Assembly for the dwsbc subclass control (Professional Edition
Only).

Page 15

• Dwshk.ocx contains a task or system keyboard event detector
which allows you to intercept keyboard entries before they are
received by Visual Basic or another application. Dwshk.ocx also
supports Windows "hooks" and is ideal for intercepting Windows
messages on a global basis. SpyWorks 7 includes a .NET Primary
InterOp Assembly for the dwshk winhook control (Professional
Edition Only).

• Dweasy.ocx implements common subclassing tasks including
Mouse tracking, scrolling and virtual forms, file drag-drop, tiny
captions and rollup windows.

• Dwspydll.dll for the 16 bit environment and dwspy32.dll or
dwspy36.dll for the 32 bit environment contains a set of functions
that help you take advantage of advanced API techniques and
work with the various controls. It is also used by the controls
themselves to perform their tasks. SpyWorks 7 includes a .NET
class wrapper for some of the functions of dwspy36.dll
(Professional Edition Only).

• Exported Functions - SpyWorks contains Dynamic Export
Technology which allows you to export functions from your VB
created ActiveX DLL's. And it does it without modifying your
compiled DLL! Now you can use Visual Basic to create export
function libraries, Control Panel Applet/Extensions, and ISAPI
filters. This technology has been extended to allow you to export
functions from your Visual Basic .NET or C# assemblies
(Professional Edition Only).

• DwSpyvb.dll - SpyWorks includes a VB 5.0 and 6.0 authored
DLL for subclassing, hooks, and management of custom
windows. It uses the same paranoid approach of our full features
controls - to help it coexist safely with other controls that subclass
and to provide effective clean-up. It is also designed for high
performance with low level message filtering, shared subclass
routines, and maximum use of early binding. And it includes
complete VB source code.

Page 16

• ActiveX Extensions - ActiveX is about interfaces, and SpyWorks
has the ability to let you override the behavior of interfaces that
are part of your Visual Basic 5.0 or 6.0 components. For example:
you can customize the behavior of the VB property window for
controls that you create. You can add new standard interfaces to
your components (especially standard interfaces that are not VB
compatible), such as IObjectSafety that gives you total control
over the safety marking of your ActiveX controls.

• Winsock Library (Professional Edition Only) - Like most people,
we've been fascinated by the Internet. We wondered whether it
might be feasible to access the underlying Winsock API directly
from Visual Basic without the overhead of ActiveX controls. It is,
and this component comes with the source code that demonstrates
how it is done. Includes classes for FTP and HTTP support as
well.

• NT Services (Professional Edition Only) - Desaware's SpyWorks
includes a light edition of Desaware’s NT Service Toolkit that
provides the ability to create true NT services in Visual Basic 6.0.

• Creating Background Threads (Professional Edition Only) –
SpyWorks includes the dwBackThread component which allows
you to create objects in independent threads and to make
asynchronous method calls on those objects in Visual Basic 6.0.

• Dwcbk.ocx is a custom control that contains a pool of function
addresses that can be used as "callback" functions for Windows
API functions. With these two controls and access to the
Windows API functions, you can do virtually anything in Visual
Basic that you could do using a dynamic link library. Note that
this control is not necessary for implementing most types of
callbacks with Visual Basic 5 and later.

• DwTaskbr.ocx (Professional Edition Only) – is a VB 5.0 and 6.0
authored ActiveX control that is similar to the Windows
95/98/ME or NT 4.0/2000 task bar. This control is designed for
MDI applications and allows you to switch between MDI childs.
This control is also included in Desaware's ActiveX Gallimaufry
and includes complete VB source code.

Page 17

• DwCmndlg.dll (Professional Edition Only) – is a VB 5.0 and 6.0
authored ActiveX component that is similar to the Common
Dialog ActiveX control. This component exposes the full
capability of the Common Dialog library and includes additional
functionality beyond the Common Dialog ActiveX control. This
component is also included in Desaware 's ActiveX Gallimaufry
and includes complete VB source code.

 SpyWorks includes many more components, utilities and examples -
this list just reflects those that we believe are the most important. The
remainder of this manual groups the components by features.

 There is a price to pay for the power provided by the SpyWorks
components. SpyWorks is one of the few products you will ever buy
that proudly and clearly claims to make it much easier to crash your
program. This tradeoff is common in the programming world: with
power and flexibility comes a reduction in the level of protection
provided by the environment. SpyWorks, by intercepting the
Windows message stream and improving access to the Windows API
makes it very easy to crash not only the application that uses it, but
other applications as well.

 Knowledge, Safety and Ease of Use
 As Visual Basic becomes more and more powerful, the degree of
knowledge necessary to take full advantage of its capabilities increases
dramatically. We feel that a key aspect of the SpyWorks package is
educational. Not only should our tools and components allow you to
use advanced techniques, they should teach you those techniques as
well. Mostly, we do this by providing copious amounts of Visual
Basic source code.

 But you will also find that there are certain techniques that appear in
the general press that we do not use or advocate. This has become
more common as Visual Basic has become more sophisticated. The
truth is, there are some techniques that are now possible that we
believe should not be part of any professional software product.
Rewriting virtual table entries on the fly is one of those techniques.
Changing the type library declarations of standard system interfaces is
another. Even subclassing, a technique that we do support and
advocate, is a good example. We believe that in most cases,
subclassing is best handled at the component level rather than within
an application (even if the component may now be written in Visual
Basic instead of C++).

Page 18

 So even as SpyWorks demonstrates some of the most advanced
techniques available to VB programmers, the techniques are based on
our view of what is appropriate for a stable and supportable
application or component. In other words - just because something can
be done in Visual Basic doesn't always mean that it should be done in
Visual Basic.

 Using SpyWorks (Please Read!)
 SpyWorks is designed for the intermediate to advanced Visual Basic
programmer who has a knowledge of how to use the Windows
Application Programmer's Interface (API). Some components of the
package are useful to anyone (most of the features in the dweasy.ocx
control are, in fact, very easy to use). However, a good understanding
of Windows is required to really use this package successfully.

 If you already know Windows well, you will find SpyWorks
extremely easy to use. Simply consider the task you wish to perform
and how you would do it in C or C++, then write it in Visual Basic.
Any code that you would normally write in a Windows procedure in
response to a Windows message, you can place in an event in an
appropriately configured dwsbc.ocx ActiveX control. Any time you
need to export a function from a VB DLL, look at the dwExport
functionality provided by SpyWorks. Any time you need to implement
or call an interface that is not directly supported by VB, you can do so
using the dwAxExtn.dll component. Where you would use Windows
hooks, use dwshk.ocx.

 If you have never programmed in Windows, you must learn about it in
order to use this package effectively. The professional version of
Visual Basic comes with the help file for the Windows API - this can
be used as a reference for all available Windows API functions and
Windows messages.

 We also recommend "Dan Appleman's Visual Basic Programmer 's
Guide to the Win32 API" as a supplementary text for working with
SpyWorks. This book was written by the author of SpyWorks, and in
fact includes a demonstration edition of the SpyWorks controls. You
may also find the book “Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the Perplexed” to be
helpful. You may purchase these books at a 20% discount directly
from Desaware. Please contact Desaware for more information.

Page 19

 SpyWorks is a tool. Most add-on programs have a clearly defined set
of operations that they can perform. Their documentation can, and
often does, include extensive examples to show the capabilities of the
product. A dozen books and manuals could not begin to do this with
SpyWorks, because it has no clearly defined set of operations. It is a
can-opener that enables you to tap the full power of Windows from
within Visual Basic. This manual includes a number of examples of
how the extension controls can be used, but we cannot even begin to
guess at the potential of what can be accomplished.

 New Features
The following is a summary of the major changes from SpyWorks 6.0
to SpyWorks Professional 7.0:

• Visual Studio .NET support.

• Windows ME/2000/XP support.

• Inclusion of Desaware’s NT Service Toolkit (Light Edition).

• New background thread component.

• New SMTP component.

The following is a summary of the major changes from SpyWorks
version 5.2 to 6.0:

• New VB 6 compiled versions of dwspyvb, dwsock, dwcmndlg, and
dwtaskbr.

• Windows 98 support.

• Visual Basic 6.0 support.

The following is a summary of the major changes from SpyWorks
version 5.1 to 5.2:

• New dwshk36.ocx, dwsbc36.ocx, dweasy36.ocx ATL based
controls offer new features, improved performance,
multithreading, constituent licensing and eliminate the need to
distribute MFC runtimes.

• New indirect method/property access examples.

• New support for sub-objects (IPersistPropertyBag,
IPersistStreamInit support).

Page 20

 The following is a summary of the major changes from SpyWorks
version 5.0 to 5.1:

• New Winsock library with TCP/UDP support, plus HTTP and FTP
classes.

• Improved ActiveX extension library now supports generic
interface calls.

• Improvements to the Dynamic Exporting Technology.

• MDI Taskbar ActiveX control (from the Desaware ActiveX
Gallimaufry).

• Common Dialog component (from the Desaware ActiveX
Gallimaufry).

• SpyMem95 and SpyMemNT with VB source code.

• New security class sample.

• Improved control panel and NT service examples that take
advantages of VB 5.0 Service Pack #2.

• New Process Managing Classes.

• New ISAPI Filter example.

• Improved Help file.

 The following is a summary of the major changes from SpyWorks
version 2.0 (16 bit) to 4.0 and above:

• Dwsbc.ocx: Enhanced handling of return values eliminates the
need to call DefWindowProc. Improved handling of post-default
message processing. CtlName control selection via drop down
menu. Cross task subclassing enabled under Windows 95/98/ME
and Windows NT/2000/XP. Style change capability.

• Dwshk.ocx windows features: Handles WH_CBT ,
WH_JOURNALRECORD, WH_JOURNALPLAYBACK,
WH_SHELL, and WH_CALLWNDPROCRET hooks.
Compatible with Windows 95/98/ME and Windows NT/2000/XP.

Page 21

• Dwshk.ocx keyboard features: Separate KeyUp and KeyDown
events are easier to use. Improved handling of peekmessage
eliminates duplicate keystrokes in many cases. Improved handling
of the CapsLock key. Compatible with Windows 95/98/ME and
Windows NT/2000/XP. More flexible keyboard filtering.

• Dweasy.ocx: 3D caption buttons implemented. Windows 95
caption look supported. Easy MDI menu selection added. New
properties to extend mouse tracking. Mouse tracking support for
graphical controls. Support for file drag-drop. Support for
IShellLink to create and de-reference shortcuts.

• Dwspy36.dll, Dwspy32.dll and Dwspydll.dll: Owner draw
subclassing support for Visual Basic 4.0, 5.0, and 6.0. Ability to
access memory in other applications.

• Exported Functions: SpyWorks pioneered Dynamic Export
TechnologyTM which allows you to export functions from your
VB 5.0 (and later) created ActiveX DLL's. And it does it without
modifying your compiled DLL. VB 5.0 (and later) specific.

• DwSpyVB.DLL: SpyWorks 7 includes a VB 5.0 and 6.0 authored
DLL for subclassing, hooks, and management of custom
windows. Includes full VB source code.

• ActiveX Extensions: SpyWorks 7 has the ability to let you
override the behavior of interfaces that are part of your
components. VB 5.0 and 6.0 specific.

• NT Services: SpyWorks 7 allows you to create true NT Services
in Visual Basic 6.0.

• Background threads: SpyWorks 7 includes a background thread
component which allows you to create objects to run in
independent threads and to make asynchronous method calls on
those objects.

• Winsock Library: SpyWorks 7 includes a winsock component
which allows you to access the WinSock API directly from Visual
Basic wrapped classes. Includes classes for SMTP, TCP, UDP,
FTP and HTTP support as well.

• DWSBC.OCX - Generic Subclass Control

• DWCBK.OCX - Generic Callback Control

Page 22

• DWSHK.OCX - Keyboard Hook Control Section

• DWSHK.OCX - Windows Hooks Control Section

• DWEASY.OCX - Windows Hooks Control

• DWSPY3x.DLL - Function Library

• SpyMem6.exe - Process And Memory Viewer for Windows
9x/NT/2000/XP

• SpyMem95.exe - Process And Memory Viewer for Windows 95

• SpyMemNT.exe - Process And Memory Viewer For
Windows NT

• SpyMnu32.exe

• SpyMsg32

• SpyWin.exe

• Journal

• SwIniEdt

• SpyNotes

• Desaware API Class Library

 Customer Support
 SpyWorks requires an understanding of the Windows API. We at
Desaware will gladly and enthusiastically fix any bugs in our software
that pass through our screening process. However, due to the nature of
this product, we cannot possibly resolve all issues that relate to use of
the Windows API and possible incompatibilities between the
Windows API functions and Visual Basic.

 What we can do is this: If you want to do something and think you
have an approach, or have a problem and would like some direction,
feel free to drop us a line by fax or email (contact information is
located in the Register! and Technical Support sections of this
manual). If it appears to be a bug in our software, we will drop
everything to fix it and send you updated software. Otherwise, if it is
something we can answer quickly, we'll fax or email an answer to you
as quickly as possible. If it is something that is a more extensive
problem, we may propose to solve it on a consulting basis.

Page 23

 If you have purchased this software directly from Desaware and have
read this introduction and you feel that SpyWorks is not for you,
please feel free to return it for a full refund (if you purchased it
elsewhere you will need to contact your dealer for return or refund
information). Your satisfaction is important to us, and we are well
aware that this is a very unusual product and not appropriate for
everyone.

 Register! Register! Register!
 We've found that the person who ends up using a software package is
frequently not the person who bought it. Therefore we really need
your registration card. This will allow us to send you information
about upgrades (or send you upgrades if you have the Subscription
Edition). It will also allow us to send you information about
SpyWorks add-ons and other Desaware products.

 But we can't send this information to you without knowing who you
are!

 Desaware, Inc.
1100 East Hamilton Avenue, Suite 4
Campbell, CA 95008
USA
Phone: 408/377-4770, Fax: 408/371-3530
Email: support@desaware.com

 We also invite you to subscribe to our email listserver by sending a
message to listserve@desaware.com and including the word
"Subscribe" in the subject line. We promise we won't send you email
unless we have something really important to share.

Page 24

 SpyWorks Concepts: Subclassing
 Subclassing refers to the process of intercepting Windows messages
that are normally processed behind the scenes. More information on
this technology will be discussed shortly.

 There are a number of approaches to subclassing. As of Visual Basic
5.0, it became possible to do subclassing within an application using
Visual Basic alone. Unfortunately, the limited documentation included
with Visual Basic demonstrated perhaps the worst possible way to
subclass a window. It did not discuss limitations relating to
subclassing of windows in other processes. It did not address the
dangers of subclassing, and the fact that simple subclassing techniques
can not only interfere with the normal Visual Basic debugging
process, but the Visual Basic environment itself. It did not discuss how
subclassing should be done in order to minimize interference with
other controls that use subclassing. It did not discuss how to relate
windows with objects.

 To handle the entire spectrum of subclassing requirements, SpyWorks
includes two completely different approaches to subclassing. The
dwsbc.ocx control is a high end control written in C++ that supports
advanced subclassing features including subclassing of windows
across applications (cross-process subclassing). The dwspyvb.dll
component is an ActiveX automation component (not a control) which
is in many ways more efficient than a control and is written almost
entirely in Visual Basic. This component includes source code. If you
prefer not to use a subclassing component, you can perform your
design and testing using the component, then add the necessary classes
directly to your application for final release.

 These two components will be discussed shortly in detail. First, let's
take a look at the process of subclassing itself.

 Introduction to Subclassing
 Under Microsoft Windows, every window has a special function
called a window function. This function has four parameters as
follows:

Page 25

 Long WndProc(window handle, message number, wParam
parameter, lParam parameter)

 In a 16 bit environment, the window handle, message number and
wParam parameter are 16 bit integer values. All parameters are 32 bit
under Win32. The term "sending a message" to a window means that
the window function has been called for that window. Each possible
message has a message number, and a message can have up to two
parameters. The lParam parameter is frequently used to pass a pointer
to a larger data structure, so it is possible to include a great deal of
information in a message.

 Windows defines many standard message numbers. Message numbers
above &H400 are called user-defined, which means that they depend
on the type of window. It is also possible to define a type of message
called a "registered" message. A registered message is identified by a
name (or text string). Windows allocates a registered message number
for each unique registered message.

 Messages are called from several sources. The windows environment
sends messages indicating that system events have occurred. For
example: when a window needs to receive information on mouse
movement or if a key has been pressed when a window has the focus,
Windows will send the appropriate mouse or keyboard messages to the
window. Windows also sends messages to a window to instruct it to
perform certain tasks such as erasing its background or painting its
client area.

 Windows programmers frequently send messages to windows to
instruct them to perform tasks as well. For example: adding and
deleting text in an edit control or list box is accomplished by sending
messages to the control. You can send messages to windows using the
Windows API SendMessage and PostMessage functions.

 When you use the SendMessage function to send a message, the
windows function for the window is called immediately. The result of
the SendMessage function is set to the value returned by the windows
function. When you post a message to a window, the message is
added to a system message queue. The windows function for the
window will be called in due course when the message is processed by
Windows. Obviously in this case it is impossible for the windows
function to return a value, since the application that posted the
message has long since past the point where it posted the message. In
other words, when you use SendMessage, your program does not

Page 26

continue to run until the message has been completely processed.
When you use PostMessage, your program continues to run
immediately - the message will be processed later.

 There are dozens (if not hundreds) of possible messages. It would be
terrible if each window function had to implement all of the code
necessary to process each message. Fortunately, Windows provides
default processing for most messages. Each window function
processes only those messages that it needs to.

 Under traditional Windows development, you can subclass any
window by forcing Windows to call a function you define before it
calls the true window function for that window. You then have the
opportunity in your function to process any messages yourself. You
can then either return directly to Windows, or allow the original
window function to execute.

Page 27

 Figure 1
Windows Functions

 The SpyWorks subclassing components support several types of
subclassing. The most common involves detection before default
processing occurs (pre-default processing). This means that the
component gets message information before the window function for
the form or control does. This is shown in Figure 2.

Windows

Window
Function

Page 28

 Figure 2
Subclassing before default processing

 As you can see, the component gives you the option as to whether or
not the original (default) windows function should be called. In other
words, you can, if you wish, completely replace the default processing
for any windows message for any window, form or control.

 This technique is especially powerful when you consider that you can
subclass windows in other applications than your own (dwsbc.ocx
only).

 The SpyWorks subclassing components also allow you to specify that
messages should be intercepted after the default windows function has
been called (post-default processing) as shown in Figure 3.

Windows

Subclasser

Window
Function

Page 29

 Figure 3
 Subclassing after default processing

 You can also indicate that specific messages should be posted to the
dwsbc.ocx control (posted message processing). This is common
when you need notification that a message was received, but do not
need to perform any processing immediately. This is the safest type of
subclassing

 This technique is especially powerful when you consider that you can
subclass windows in other applications than your own (dwsbc.ocx
only)..

Windows

Window
Function

Subclasser

Page 30

 How Might You Use Subclassing?
 There are a number of common approaches to using subclassing.

 Detecting Events:

 In this case "events" refer to things that occur in the system that Visual
Basic does not allow you to detect directly. For example: your
application's main window will receive a message whenever certain
system setting changes occur. You can use subclassing to detect these
changes. For example: The WM_SETTINGCHANGE message
indicates that a system parameter was changed by some application
using the SystemParametersInfo API function. In most cases, you will
use Posted detecting for this type of subclassing, because you're only
interested in detecting when the message arrives and have no need to
block or interfere with the normal processing of that message.

 Another detection example is when you use API commands to add
entries to your application's system menu and wish to detect when the
user selects your new menu commands. Visual Basic does not itself
allow you to intercept the WM_SYSCOMMAND message. You might
also use this to detect when menu commands are invoked in other
applications, but you'll need to use the dwsbc.ocx control in this case,
as dwspyvb.dll will only subclass windows within your own
application.

 Overriding Message Behavior:

 You may want to actually change the response of a window to a
certain message. This is an extremely powerful technique, as almost
all of the behavior of a window is determined by its response to
windows messages. If you intercept a message, you can write in your
own behavior for the message and actually prevent the message from
being forwarded to the window. An example of this is when you wish
to create your own context menu for a control (the popup menu that
appears when you right click on the control). You can intercept the
WM_CONTEXTMENU message before it arrives at the window,
using pre-default subclassing. If you block the message, the existing
context menu will be disabled. You can bring up your own popup
menu during the message processing to effectively create your own
context menus.

 You can also turn standard controls in some cases to owner draw
controls, where you keep the full capability of the standard control
while completely overriding the appearance of the control.

Page 31

 Monitoring Messages and their Results:

 Sometimes you will want to intercept a message, allow default
processing to occur, but check the result returned by the default
message processing before allowing the message function to return.
An example of this might be intercepting the WM_NCHITTEST. The
default message processing returns a code that indicates what type of
window element the mouse is over. For example: is it over the caption,
client area, minimize box, etc. By using Post-default detection, you
can look at the result of this message, then override the return value,
tricking a window into thinking the mouse is over the window caption
even though it is actually over the client area. This provides a quick
way to allow you to reposition a window by dragging the client
(instead of the caption).

 As you will note, choosing the type of subclassing is a critical
decision. You should always use Posted detection if possible. But
since it does not allow you to return values or modify the message or
its parameters, there are many cases where you will need to use pre-
default or post-default processing.

 The type of subclassing can be set using the Type property on the
dwsbc.ocx control or the SubclassType property of the dwSubClass
object.

 Remember that you can subclass a window multiple times using the
SpyWorks components. It is not uncommon to use all three types of
message detection on the same window simultaneously to accomplish
different tasks. For efficiency sake, the SpyWorks subclassers will
actually subclass the window only once in these cases, automatically
dispatching events to the appropriate control or object events as
needed.

Page 32

 Cautions on Using Subclassing
 When you are subclassing a message, and you are using pre-default or
post-default processing (not posted), the component raises an event
immediately - while the underlying windows message is being
processed. The underlying Windows operating system may be
expecting the application to both take and avoid certain actions during
message processing, depending on the message. Code that you execute
at this time poses the greatest risk to your application and the system.
For this reason, you should attempt to minimize the code that runs
during the event. Also avoid complex tasks such as loading or
unloading forms or controls, launching other applications, and so on.

 NEVER use the DoEvents function during a non-posted
message. Also, you should never use a Message Box
during a non-posted message.

 Use Debug.Print to obtain a debug trace instead of using message
boxes or setting a break point. These limitations do not apply when
events are triggered by posted messages.

 Specific messages may have additional restrictions. Refer to your
Windows API reference for further information.

Page 33

 Delayed Events - Posting an Event to Yourself
 Sometimes you'll find that there is a need to post a message to your
own application. For example: you may have broken up a long
operation into small pieces and you want to trigger an event that will
occur during normal Windows processing without setting a timer
control. Another example is when you are subclassing a window
using pre-default or post-default message processing, and wish to
perform an operation (such as closing the application) that is not safe
during the subclassed event itself.

 In both these cases, it would be nice if you can post an event to
yourself - simply specify that an event will occur later during normal
Windows processing. We call this posting a delayed event.

 The SpyWorks components make it easy to accomplish this task. The
dwsbc.ocx control uses the PostEvent property to accomplish this.
Simply assign the property a value, and a DelayedEvent event will be
raised as soon as the message is processed by the system. The
dwspyvb.dll component has a similar PostEvent and DelayedEvent
property as part of its dwPrivateWindow class.

Page 34

32 Bit vs. 16 Bit Subclassing
 Though it may be shocking to admit in an advanced package such as
SpyWorks, it is a fact that many applications are still being written in
16 bit environments. For this reason, Desaware continues to market
and support our 16 bit edition of SpyWorks, SpyWorks 2.1.

 SpyWorks also includes a 16 bit subclasser, dwsbc16.ocx. We
recommend this control for use with 16 bit VB 4.0 applications that
are designed to be compiled in both 16 and 32 bit versions using
conditional compilation. If you are using VB 3.0 or only creating 16
bit applications using 16 bit VB 4.0, we actually encourage you to use
the 16 bit VBX controls instead of the OCX controls. We feel that 16
bit OCX controls were a transition technology developed by Microsoft
to bridge the 16 and 32 bit worlds, and that it was never developed to
the degree of stability and reliability that the VBX technology reached.
The VBX controls and on-line documentation are included in
SpyWorks Professional.

 The most important issues to consider regarding 16 bit components are
as follows:

• dwspyvb.dll, and dwspyvb6.dll, being written in VB, are 32 bit
only.

• The 16 bit components generally cannot safely subclass 32 bit
applications, especially under Windows NT. 32 bit applications
can subclass 16 bit windows safely.

• Messages, window handles, and the wParam message parameters
are 16 bits (Integer data type) in 16 bit applications.

• Under Windows NT, 16 bit applications can only subclass other
16 bit applications if they are running under the same virtual
machine (and thus in the same process space).

Page 35

Using DWSBC.OCX
Subclassing using the dwsbc.ocx control is a very simple process.

1. Select the messages to detect.

Dwsbc.ocx only detects messages that you specify. This helps keep
the overhead in subclassing to an absolute minimum. Use the
Messages and RegMessage properties to specify the messages to
detect. The RegMessage properties allow you to specify a registered
message by the name of the message instead of the number. These
properties can be used at design time or at runtime. If you do not
specify any messages, the control will detect all messages going to the
subclassed window.

2. Choose the window, control or form to subclass.

You can use the CtlParam or HwndParam properties to specify
which window, form or control to subclass. You can also add windows
or controls to a built-in subclassing array which allows a single
dwsbc.ocx control to subclass many windows or controls.

3. Choose the type of subclassing.

The Type property is used to specify whether you want messages
detected before the default window function, after the default window
function, or simply posted to the dwsbc.ocx control.

Once you have performed these steps, the dwsbc.ocx control will
receive messages based on the property settings. Messages sent from
Windows will trigger the WndMessage event or the WndMessageX
event.

For example: the WndMessage event looks like this under the 32 bit
dwsbc36.ocx control in VB 4, 5 or 6:

WndMessage(hwnd As Long, msg As Long, wp As Long, lp As
Long, retval As Long, nodef As Integer)

The window handle is in the hwnd parameter. The message number
can be found in the msg parameter. wp and lp are the standard
windows wParam and lParam parameters, and their values depend on
the individual message. If you are doing a posted message detection,
these are the only parameters that you will use.

Page 36

If you are using pre-default subclassing, you can actually change the
values of these parameters and change the message before it is sent to
the default message function. If you set the nodef parameter to True,
you can block the default message processing from taking place and
specify your own return value by setting the retval parameter.

If you are using post-default processing, the retval parameter will
already be set to the return value provided by the default window
message processing.

Subclassing Multiple Windows with DWSBC.OCX
The dwsbc.ocx control has the ability to subclass multiple windows or
controls with a single dwsbc.ocx control. In order to ensure
compatibility with the previous versions of the control, this capability
was added by incorporating a subclassing array into the dwsbc.ocx
controls. This is an array that can be loaded at runtime. It works
completely independently from the standard HwndParam and
CtlParam properties . You can use either or both techniques for
specifying windows to subclass. The biggest advantage to the
CtlParam property is that it is possible to set the property at design
time.

The AddHwnd property is used at runtime to add windows to the
subclassing array. The RemoveHwnd property can be used to remove
windows from the subclassing array. The HwndArray and
HookCount properties can be used to determine which windows are
currently being subclassed.

It is important to recognize that the non-subclassing array properties
and the subclassing arrays implement two completely different
subclassing subsystems. It is very possible for the same window to be
specified using both techniques and thus to be subclassed twice (in
which case each message will be triggered twice).

The other dwsbc.ocx properties that specify messages, detection type,
etc. apply to all windows or controls being subclassed by the control.

Page 37

Using DWSBC.OCX in a Control Array
Generally speaking, when you create a new control in a control array,
that control inherits all of the properties from the original control.
While you can create control arrays with the dwsbc.ocx control, you
will need to select the window or control to subclass for each new
dwsbc.ocx control. The list of messages to detect is not copied to the
new control. You can easily copy the list of messages from one
dwsbc.ocx control to another using the MessageArray,
MessageCount and Messages properties. Registered messages are
copied with the control.

Please refer to the on-line Help file for more detailed information on
these properties.

 CrossTask Issues
Subclassing other applications under Win32 is much more complex
than it was under Win16. This is largely due to the fact that Win32
operating systems are multitasking. When you subclass a different
application, every time a message arrives in the application that you
want to see, the other application must be suspended and control
passed to your application. (Note: message filtering takes place in the
context of the subclassed application, which limits time consuming
task switches only to those messages for which you specifically
request.)

What happens if a message is detected in another application but your
application is tied up on a long operation such as a long loop? Under
Win16, this would never be a problem, as another application could
only run when your application was not within an event or was in a
DoEvents function. But under Win32, the other application becomes
suspended and must wait until your application is ready to process the
message. If your application is blocked or even crashed, the other
application might become permanently blocked. This can be even
more serious with the dwshk.ocx control, where all of the messages in
the system can become blocked while waiting for a single application.

For this reason, both the dwsbc.ocx and dwshk.ocx controls include a
CrossTaskTimeout property which allows you to limit the amount of
time that the other application will wait until your application is ready
to process the message.

Page 38

Process Spaces
Under Win32, each process has its own memory space. Let's say you
intercept a message going to another window which has as one of its
parameters a memory address. This memory address will be
meaningless to your application. In order to facilitate data transfer
between processes, SpyWorks includes a number of cross-task
memory function in the dwspy3x.dll library (more on this later).
However, the dwsbc.ocx control also includes the GetAnsiString and
GetUnicodeString methods to allow you to easily retrieve text
information from other process spaces.

 The dwSubClass Object (dwspyvb.dll)
The dwSubClass object in the dwspyvb.dll component is used to
perform subclassing of any window in your application (it does not
support cross-task subclassing). Use of this component requires Visual
Basic version 5.0 or 6.0. The steps for using this object are as follows:

1. Add a reference to the "Desaware SpyWorks x.0 VB Subclasser"
object dwspyvb.dll using the Project-References menu.

2. Dimension a dwSubClass object with events as follows:

Dim WithEvents myobject As dwSubClass

3. During form load or before using the object, create the object as
follows:

Set myobject = New dwSubClass

4. Select the messages that you wish to intercept using the
AddMessage property as follows:

myobject.AddMessage messagenumber

Where messagenumber is a message number to intercept. You
may add as many messages as you wish. NOTE: If no messages
are specified, the dwSubClass object will intercept all messages.

5. Select the window that you want to subclass as follows:

myobject.HwndParam = windowhandle

Page 39

6. Add code to the myobject_WndMessage event
myobject_WndMessage for the messages that you are
intercepting.

7. Delete the object during form unload or when finished using the
object as follows:

Set myobject = Nothing

Important Tips
Recreating Windows
Subclassing for a form or control stops automatically when the control
or form is unloaded (destroyed). It is theoretically possible for a
custom control to destroy and then recreate its window during normal
operation (this is done in some cases when there is the need to change
the style for a control). This will cause the subclassing link to that
control to end.

One way to handle this is to determine what condition causes this to
occur and simply reinstall the subclassing hook to the control.

Another way to accomplish this is to detect the WM_DESTROY
message to determine when the window is being destroyed, and post a
message to yourself using the PostEvent property so that you can later
recreate the hook.

A third way to accomplish this with the dwsbc.ocx control is to set the
Persist property to True; the subclass control will then automatically
attempt to recreate the hook if a subclassed window is destroyed and
recreated.

Frozen Messages
There are times when Visual Basic is not able to process messages.
The dwsbc.ocx control can detect this condition and queue messages
for later posting. Set the PostOnFreeze property to True to enable this
functionality, and the PostOnFreezeMax property to specify the
maximum size of the message queue.

 Subclassing Examples
Note that all examples are presented in 32 bit. 16 bit versions of these
examples are similar, most differ only by the Windows message
parameters. Please refer to your Windows API reference for details.

Page 40

• This example demonstrates how to detect when a ComboBox has
been closed (i.e. Drop Up). The ComboBox is named Combo1
and is located on a form named Form1.

1. Add the Desaware SpyWorks SubClassing Control component
to your project. Add a Subclass control to Form1.

2. Select the SubClass control's Messages property to display the
Select Messages form and Add the WM_COMMAND
message to the Selected Messages list. We highly recommend
"Dan Appleman's Visual Basic Programmer's Guide to the
Win32 API " as a reference guide to the Windows messages.

3. In Form_Load event of Form1, assign the HwndParam
property to Form1's window handle as follows:

SubClass1.HwndParam = Form1.hWnd

4. Attach the following VB code to the SubClass control's
WndMessage event.

Dim item As Integer, notification As Integer

'If you are detecting more than one Windows
'message, you want to compare the msg parameter
'here to determine which message you received.
'Since we are only detecting a single message, we
'can skip that step.

'Split the long into two integers.
dwDWORDto2Integers wp, item, notification

Select Case notification
 Case CBN_CLOSEUP: 'CBN_CLOSEUP is declared
as Public Const CBN_CLOSEUP& = 8

'The Combo box was closed, if you have
'more than one combo box on the Form,
'you will need to compare the lp parameter
'to each combo box's hWnd property to
'determine which one was closed.
Debug.Print "Combo Box Closed"

End Select

• This example demonstrates how to detect when a particular
window in another application has been closed. This example
assumes that the window already exists.

Page 41

1. Add the Desaware SpyWorks SubClassing Control component to
your project. Add a Subclass control to Form1.

2. Select the SubClass control’s Messages property to display the
Select Messages form and Add the WM_DESTROY message to
the Selected Messages list. We highly recommend "Dan
Appleman's Visual Basic Programmer's Guide to the Win32 API"
book as a reference guide to the Windows messages.

3. In Form_Load event of Form1 (or where appropriate), retrieve
the window handle (there are several methods you can use to
retrieve a window handle based on several criteria – one method
is to use the FindWindow API function, another is to use the
EnumWindows API function) of the window – for testing
purposes you can create a new Visual Basic application where the
main form sets its caption to the hWnd property value during the
Form_Load event. Assign the SubClass control’s HwndParam
property to the window handle as follows:

SubClass1.HwndParam = hWnd_of_another_application

4. Attach the following VB code to the SubClass control’s
WndMessageX event.

Debug.Print "Window was destroyed"

For Additional Information on Subclassing
Additional information on subclassing can be found in the book "Dan
Appleman's Visual Basic Programmer's Guide to the Win32 API".

Many SpyWorks examples demonstrate subclassing techniques.
Perhaps the best demonstrations can be found in the spydem32.vbp,
spy5demo.vbp or spy6demo.vbp projects.

Refer to the on-line reference for a complete list of properties and
events for the dwsbc.ocx controls (16 and 32 bit versions) and the
dwSubClass object of the dwspyvb.dll component. Also, refer to the
online reference “Subclass” keyword for additional samples
demonstrating subclassing.

Page 42

SpyWorks Concepts: Windows Hooks
Subclassing is based on the idea of intercepting message by changing
the function that is associated with a window, forcing messages going
to a window to run your code instead of the function originally
assigned to a window. You then have the option of calling the original
window function if you wish.

Subclassing suffers from two primary limitations:

1. You must explicitly subclass each window for which you want to
receive messages.

2. Subclassing always intercepts messages right before the window
function is about to be run.

Hence, Windows provides another mechanism for intercepting
messages called Windows hooks. There are a number of different
types of Windows hooks available. To see how they work, consider
for a moment how messages are generated. This is illustrated in Figure
4. Because messages are generated in many different ways, let's start
from the end when a message arrives at a window.

A message arrives at a window when the windows "window function"
is called. Subclassing is the process of replacing one window function
with another.

There are two ways for a window function to be called. One is through
the SendMessage API function. This function causes a window
function to be called immediately. The SendMessage API function
does not generally return until the window function has completed its
operation, and the SendMessage API returns the same value returned
by the window function.

A window function is also called by the system when an application
calls the GetMessage API function. This is done behind the scenes in
Visual Basic, so most VB programmers are not aware that every
application is constantly running an infinite loop called a "dispatch
loop" which does not exit until the application terminates. This loop
calls the GetMessage API to see if any messages are available in the
application's message queue. If a message is available, the system
determines the destination window and calls the window function with
the message.

Page 43

Figure 4
Message Flow and Hooks

Page 44

The SendMessage and GetMessage message paths are both shown at
the bottom of Figure 4. The figure illustrates two of the most
commonly used hooks. The WH_GETMESSAGE hook traps
messages whenever an application calls the GetMessage API function.
This provides a way for you to examine messages that have been
posted to an application's message queue before they are processed by
the application.

The WH_CALLWNDPROC hook traps every message that goes to a
window function, regardless of whether it comes in due to a call to the
GetMessage API or a SendMessage call.

But why would you want to use a hook instead of subclassing? Is
being able to tell the difference between sent messages and dispatched
messages a big enough difference?

Certainly not - you will rarely care where a message comes from.

No, the trick is this: both the WH_CALLWNDPROC and
WH_GETMESSAGE hooks allow you to intercept messages going to
every window for a particular thread with one operation. In fact, they
can allow you to intercept messages going to every window in the
system just as easily.

This is part of the power of hooks - their ability to tap into the flow of
messages before they are dispatched to individual windows.

Continuing with Figure 4, as you proceed up the page, you'll see that
each system thread has its own message queue which is fed from a
system queue. The system queue receives messages from a number of
different sources. The most common of these are keyboard messages,
mouse messages and miscellaneous system messages.

The WH_KEYBOARD and WH_MOUSE hooks allow you to trap
keystrokes and mouse events before they are actually placed into the
system queue. Here too, you have the ability to trap these messages on
a thread or system basis with one operation.

Page 45

SpyWorks provides two components for implementing system hooks.
The dwshk.ocx control is available in both 16 bit and 32 bit OCX
editions. The dwGenericHook and dwPretranslate objects of the
dwspyvb.dll component also provide Windows hook capabilities,
though they are not as advanced or flexible as those supported by the
dwshk control. SpyWorks 2.1 divides hooks into two controls,
sbchook.vbx and sbckbd.vbx, the latter of which is designed to support
keyboard hooks only.

Types of Hooks
The SpyWorks Windows hooks controls support most current types of
Windows hooks. Of these, the most likely ones that you will use are
the WH_GETMESSAGE, WH_MOUSE, WH_KEYBOARD and
WH_CALLWNDPROC hooks. Refer to the on-line component
reference and the HookType property of the dwshk control for details
on how to use these hook types. Note that the dwshk control raises
different events for different types of hooks. This is also covered in the
on-line documentation for the HookType property.

Setting Description

0 - WH_GETMESSAGE Implements a WH_GETMESSAGE hook. This
hook is triggered any time a Windows function
called GetMessage is called during the main
message handling loop of a Windows application.
It does not detect every message received by a
window function, but it is very efficient.

1 - WH_MOUSE Implements a WH_MOUSE hook. This hook is
triggered by mouse events.

2 - WH_MESSAGEFILTER Implements a WH_MSGFILTER hook. This
hook is triggered any time a non-system message
is sent to a dialog box, message box or menu.

3 - WH_SYSMESSAGEFILTER Implements a WH_SYSMSGFILTER hook. This
hook is triggered any time a system message is
sent to a dialog box, message box or menu.

Page 46

4 - WH_CALLWNDPROC Implements a WH_CALLWNDPROC hook. This
hook is triggered any time a message is sent to a
window function. This hook type does detect
every windows message. Even with the advanced
filtering used by SpyWorks, use of this hook can
impact system performance and should be
avoided if possible.

5 - WH_CBT Implements a WH_CBT hook. This hook is used
to implement computer based training
applications, providing information on a variety
of windows events.

6 - WH_JOURNALPLAYBACK Implements a WH_JOURNALPLAYBACK
hook. This hook is used to simulate keyboard and
mouse events to the system, typically after being
recorded using the JournalRecord hook.

7 - WH_JOURNALRECORD Implements a WH_JOURNALRECORD hook.
This hook is used to record keyboard and mouse
events on the system, typically to implement a
macro recorder.

8 - WH_SHELL Implements a WH_SHELL hook. This hook is
triggered when the shell application is about to be
activated and when a top-level window is created
or destroyed.

9 - WH_CALLWNDPROCRET Implements a WH_CALLWNDPROCRET hook.
This hook is triggered any time a window
function returns from a message. This hook type
does detect every windows message. Even with
the advanced filtering used by SpyWorks, use of
this hook can impact system performance and
should be avoided if possible. This hook is not
supported under NT 3.51.

Should You Use Hooks or Subclassing?
We are often asked whether it is more appropriate to use hooks or
subclassing in a given application. While it is not possible for us to
make specific recommendations that are right for every application,
here are a few general rules that should prove helpful.

Page 47

You are only interested in messages going to one or two windows.

In most cases you will use subclassing in this situation. The one
exception is when messages are being blocked by other parts of the
system before they get to the window. For example: if you are creating
an ActiveX control and you want it to respond to arrow keys, you will
find that the arrow keystrokes are blocked by the container. The most
common way to intercept those keystrokes is by using a
WH_GETMESSAGE hook. This particular situation is handled nicely
by the dwPretranslate object in the dwspyvb.dll component which is
designed expressly for this purpose.

You are interested in monitoring messages to a large group of
windows, such as all of the controls on a form.

A hook may be most useful in this case, as it eliminates the need to
enumerate and subclass individual windows.

You are interested in responding to particular messages
regardless of which application is currently active.

A common application for this is implementation of system hotkeys,
or monitoring which application has the focus. In this case a Windows
hook is usually the best solution. Try to avoid using the
WH_CALLWNDPROC hook, however. It is the most invasive of the
hooks and can impact system performance and stability (especially if
you have any bugs in your hook code).

In general:

• Try to use subclassing before hooks.

• Try to use thread specific hooks before application wide hooks.

• Try to use application wide hooks before system hooks.

• Use WH_GETMESSAGE hooks before WH_KEYBOARD hooks
and WH_MOUSE hooks.

• Use any type of hook before WH_CALLWNDPROC hooks.

Using DWSHK.OCX for Keyboard Hooks
The dwshk.ocx control contains two separate subsystems, one for
keyboard hooks, the other subsystem for all other types of hooks. We
recommend that you only enable one of these subsystem per control.

Page 48

Dwshk.ocx is designed to hook into the Windows keyboard processing
system in order to detect keyboard events before they are processed by
an application.

Several types of keyboard hooks may be placed, depending on the
setting of the KeyboardHook property. One type intercepts only
keystrokes sent to the process which contains this custom control.
Another type intercepts all keystrokes in the system. A third type
intercepts keystrokes from a specified process, while a fourth type
intercepts keystrokes from a specified thread. Keyboard hooking can
also be disabled by the proper setting of the KeyboardHook property.

Keystrokes may be processed immediately by the application, or
posted for later use. The Keys property can be used to set up a filter
for keystroke processing. Only keys that are specified will be
detected. This significantly reduces the overhead in situations where
you are searching only for a few specific key combinations.

Dwshk.ocx uses a Windows keyboard hook to detect keyboard events.
As such, it detects the keys before they are seen by Visual Basic or
any other application. This means that you can detect unusual key
combinations such as enter, tab and control-break as well as other
characters. It also means that if you are not careful, it is possible to
completely lock out the keyboard.

Of course, if you wish to lock out the keyboard, go right ahead and do
so.

Setting up DWSHK.OCX for Keyboard Hooks
Receiving keyboard events using the dwshk.ocx control is a very
simple process.

1. Choose the scope of the hook.

The KeyboardHook property specifies the scope of the keyboard
hook.

2. Choose the type of notification.

The KeyboardNotify property determines when the KbdHook,
KeyDownHook , and KeyUpHook events will be triggered for a
keyboard event. You can trigger key events when the keyboard
activity takes place or have it posted for later use.

Page 49

3. Select the keys to intercept.

The default is for dwshk.ocx to detect all keystrokes. However, if
you are searching only for a specific set of key combinations, you
can use the Keys property to select the keystrokes to intercept.
Using a keys filter in this manner will improve performance.

4. Add event code.

Add your code to the KeyDownHook , KeyUpHook , or KbdHook
events. Use the KeyboardEvent property to determine whether
you will use the KeyDownHook and KeyUpHook combination,
or the KbdHook event.

 Key Value Format
A key value in dwshk.ocx is represented by a long value. The low 16
bits corresponds to the virtual key number (which is identical to the
KeyCode parameter in the VB KeyDown and KeyUp events).

The high 16 bits determine the requested state of the SHIFT,
CONTROL and ALT keys where bit 0 corresponds to the state of the
SHIFT key, bit 1 corresponds to the state of the CTRL key and bit 2
corresponds to the state of the ALT key. This matches the shift
parameter to the VB KeyDown and KeyUp events.

Discarding Keystrokes
The keyboard events have two parameters that are significant when it
comes to discarding keystrokes. Setting the Discard property prevents
subsequent hooks from seeing the keystroke. But you should also set
the keycode parameter to zero to make sure that the original keycode
is not forwarded to the application.

Naturally, the KeyboardNotify property must be set to detect the
keystrokes when hooked. You cannot remove keystrokes if the
notification is posted.

Using DWSHK.OCX for Windows Hooks
The dwshk.ocx control includes a separate subsystem for handling
non-keyboard hooks. The dwshk.ocx control provides limited ability
to modify or to discard messages. The limitations depend on the types
of hook, not the control itself. Unlike subclassing with the dwsbc.ocx
control, you cannot return a result to Windows.

Page 50

Because Windows hooks do not require a window handle, it is
possible for the dwshk.ocx control to detect the WM_NCCREATE
and WM_CREATE messages that occur when a window is created.
This makes it possible for the first time to change the style of a newly
loaded VB form or control during the creation process. Note that
during the WM_CREATE or WM_NCCREATE message, Visual
Basic events are frozen for the application. This means that you can
only detect these messages for your own application as posted (or you
can select the Notify’s property to “When Hooked” and set the
PostOnFreeze property to True).

Because of the technology involved in Windows hooks, dwshk.ocx is
not able to detect messages going to VB Graphical controls or to
detect internal Visual Basic messages.

The 16 bit version of dwshk.ocx is also able to hook 32 bit
applications under Windows 95/98/ME and Windows NT/2000/XP. In
fact, while on the surface the changes to this control from version 2.0
(the new hook types) seem minimal, a great deal of work has gone into
the control to help it work reliably under the current versions of
Windows.

By the way, the dwshk.ocx control includes the same Delayed event
mechanism implemented by the dwsbc.ocx control allowing you to
efficiently post messages to yourself.

Setting up DWSHK.OCX for Windows Hooks
Receiving windows hooks using dwshk.ocx is a very simple process.

1. Select the type of hook.

Use the Hook property to select the type of hook you wish to use.

2. Select the messages to hook.

Use the Messages property to bring up the messages dialog box to
select messages to intercept. You can also use the MessageArray,
Messages , and MessageCount properties to dynamically set
messages to detect at runtime. These properties work identically to
the properties of the same name in the dwsbc.ocx control.

3. Set the scope of the hook.

Use the Monitor property to specify the scope of the hook. You
can hook a single thread, any one form (with or without its child
windows), a single process, or the entire system.

Page 51

4. Turn on the hook.

Use the HookEnabled property to turn on the windows hooks. Note
that this property has no effect on the keyboard hook subsystem of
the dwshk.ocx control.

5. Add your Event Code.

Remember that each type of hook uses a specific event. If you add
your code to the wrong event, your code will not execute even if
everything else is set up correctly. Look at the on-line reference for
the HookType property to see which events are associated with
each hook type.

DWSHK.OCX - Use of the Nodef Parameter
The dwshk.ocx message events include a nodef parameter. This
parameter differs somewhat from the way it works with the dwsbc.ocx
control, and it is important to understand these differences.

With dwsbc.ocx, nodef is an utterly reliable way to discard a message.
The default window routine will not be called.

Dwshk.ocx uses a different technology to intercept windows
messages. Setting the nodef parameter typically prevents all further
hooks from being called for the specified message - however, it is not
always the case that your dwshk.ocx control is the first control in the
chain. This means that other hooks or tools may have processed the
message first, and that some internal Windows operations may have
already taken place. In addition, preventing further hooks does not
always seem to prevent the message from being fired.

For these reasons, setting nodef to True for the dwshk.ocx control is
not recommended and should only be done after careful
experimentation.

Depending on the type of hook, you may be able to discard a message
by setting the nodef property to True and setting the message number
to zero.

Page 52

However, there is a safe way to discard messages when you need to do
so by using dwshk.ocx in conjunction with dwsbc.ocx. Dwshk.ocx
always receives messages before they are sent to the actual window
function. This means that during processing of the message, it is
possible to subclass the window using the dwsbc.ocx control. You can
then discard the message via the dwsbc.ocx control by setting its nodef
parameter to True during the message event processing.

The dwGenericHook Object
The dwGenericHook object is part of the dwspyvb.dll component
which is written in Visual Basic.

Windows hooks with this component are designed to be implemented
in layers. dwGenericHook is the lowest level implementation,
handling most of the standard hook types. It is expected that you will
build higher level objects that use dwGenericHook in order to provide
easy to use interfaces for individual hook types. An example of this is
included with the dwPretranslate object.

This component is designed to hook your own application only. This
is because most system hooks work by loading the DLL into the
process space of each application being hooked. This requires that the
DLL be safe to map into other processes spaces, and that you
implement a cross-process communication mechanism. Visual Basic
does not reliably support either of these. For system and cross process
hooks, you should use the SpyWorks dwshk3x.ocx control.

 The steps for using this object are as follows:

1. Add a reference to the "Desaware SpyWorks x.0 VB Subclasser"
object dwspyvb.dll using the Project-References menu.

2. Dimension a dwGenericHook object with events as follows:

Dim WithEvents myobject As dwGenericHook

3. During form load or before using the object, create the object as
follows:

Set myobject = New dwGenericHook

4. Use the HookType property to set the desired type of hook.

5. Set the Enabled property to True.

Page 53

6. Add code to the myobject_HookProc event for the hook events
that you are intercepting.

Page 54

The dwPretranslate Object
The dwPretranslate object provides a functionality known as message
pre-translation for use primarily with ActiveX controls implemented
with Visual Basic 5.0 and 6.0. This object is based on the
dwGenericHook object and provides a good example of how to extend
that interface to provide easily used hook functionality.

Message pre-translation is typically used for cases where an ActiveX
control must process certain messages that are normally intercepted by
the container. A classic example of this is the tab key, which is used
by Visual Basic to tab between controls. The dwPretranslate object
can intercept the tab key and allow your control to add its own tab key
based functionality.

The dwPretranslate object is designed to translate messages destined
for a single window only - typically the control's window.

The steps for using this object are as follows:

1. Add a reference to the "Desaware SpyWorks x.0 VB Subclasser"
object dwspyvb.dll using the Project-References menu.

2. Dimension a dwPretranslate object with events as follows:
Dim WithEvents myobject As dwPretranslate

3. During form load or before using the object, create the object as
follows:
Set myobject = New dwPretranslate

4. Set the ExtendedEvent and KeyMessagesOnly properties.

5. Set the hwnd property to the handle of your ActiveX control's
window (typically the UserControl.hWnd property).

6. Add code to the myobject_PreTranslateMessage or
myobject_PreTranslateMessage2 events for the messages that
you are intercepting.

Hook Examples
Note that all examples are presented in 32 bit. 16 bit versions of these
examples are similar, most differ only by the Windows message
parameters. Please refer to your Windows API reference for details.

Page 55

This example demonstrates how to detect when the user has clicked
the right mouse button over any form or control in your application.

1. Add the Desaware SpyWorks Windows Hook Control component
to your project. Add a WinHook control to Form1.

2. Select the WinHook control’s Messages property to display the
Select Messages form and add the WM_RBUTTONDOWN
message to the Selected Messages list. We highly recommend
"Dan Appleman's Visual Basic Programmer's Guide to the Win32
API" as a reference guide to the Windows messages.

3. Set the WinHook control’s Monitor property to “4 – This Task”.

4. In Form_ Load event of Form1, set the WinHook control’s
HookEnabled property to True.

5. Attach the following VB code to the WinHook control’s
WndMessage event (since we are using the default HookType –
GetMessage, the WndMessage event is triggered when messages
are detected).

'If you are detecting more than one Windows message, you want
'to compare the msg parameter here to determine which
'message you received. Since we are only detecting a single
'message, we can skip this step.

 Debug.Print "User right clicked on " & Hex$(wnd)

• This example demonstrates how to monitor the entire system to
determine application switching.

1. Add the Desaware SpyWorks Windows Hook Control component
to your project. Add a WinHook control to Form1.

2. Select the WinHook control’s Messages property Messages to
display the Select Messages form.

3. Add the WM_ACTIVATEAPP message from the Standard
message group to the Selected Messages list. We highly
recommend "Dan Appleman's Visual Basic Programmer's Guide
to the Win32 API" as a reference guide to the Windows messages.

4. Set the WinHook control’s HookType property to “4 –
WH_CALLWNDPROC”.

Page 56

5. Set the WinHook control’s Monitor property to “6 – Entire
System”.

6. In Form_Load event of Form1, set the WinHook control’s
HookEnabled property to True.

7. Attach the following VB code to the WinHook control’s
WndMessage event (since we are using the HookType –
CallWndProc, the WndMessage event is triggered when
messages are detected).

'If you are detecting more than one Windows message, you want
'to compare the msg parameter here to determine which
'message you received. In our case, we just want to detect
'when an application has been switched.

Static currentprocessid As Long
Dim threadid As Long, processid As Long

If wp Then
threadid = GetWindowThreadProcessId(wnd, processid)
If processid <> currentprocessid Then

currentprocessid = processid
Debug.Print "Active process changed to " &
Hex$(currentprocessid)

End If

Debug.Print Hex$(wnd) & " window activated, thread " &
Hex$(lp) & " is de-activated"

Else
Debug.Print Hex$(wnd) & " window de-activated, thread " &
Hex$(lp) & " activated"

End If

• This example demonstrates how to display the mouse coordinates
(in screen coordinates) where ever the mouse moves over your
application.

1. Add the Desaware SpyWorks Windows Hook Control component
to your project. Add a WinHook control to Form1.

2. Select the WinHook control’s Messages property to display the
Select Messages form.

Page 57

3. Add the WM_MOUSEMOVE message from the Mouse message
group to the Selected Messages list. We highly recommend "Dan
Appleman's Visual Basic Programmer's Guide to the Win32 API"
as a reference guide to the Windows messages.

4. Set the WinHook control’s HookType property to “1 –
WH_MOUSE”.

5. Set the WinHook control’s Monitor property to “4 – This Task”.

6. In Form_Load event of Form1, set the WinHook control’s
HookEnabled property to True.

7. Attach the following VB code to the WinHook control’s
MouseProc event (since we are using the HookType – Mouse, the
MouseProc event is triggered when messages are detected).

'If you are detecting more than one Windows message, you
'want to compare the msg parameter here to determine which
'message you received. In our case, we just want to detect when
'the user initiates any mouse activity.

Debug.Print "Mouse position in screen coordinates: x =
" & X & ",
y = " & Y

• This example demonstrates how to monitor the entire system for
any type of mouse activity.

1. Add the Desaware SpyWorks Windows Hook Control component
to your project. Add a WinHook control to Form1.

2. Select the WinHook control’s Messages property to display the
Select Messages form.

3. Add all of the messages from the Mouse message group to the
Selected Messages list. We highly recommend "Dan Appleman's
Visual Basic Programmer's Guide to the Win32 API" as a
reference guide to the Windows messages.

4. Set the WinHook control’s HookType property to “1 –
WH_MOUSE”.

5. Set the WinHook control’s Monitor property to “6 – Entire
System”.

Page 58

6. In Form_Load event of Form1, set the WinHook control’s
HookEnabled property to True.

7. Attach the following VB code to the WinHook control’s
MouseProc event (since we are using the HookType – Mouse, the
MouseProc event is triggered when messages are detected).

'If you are detecting more than one Windows message, you want
'to compare the msg parameter here to determine which
'message you received. In our case, we just want to detect
'when the user initiates any mouse activity.

Debug.Print "Mouse activity detected, reset count down for
screen saver.”

• This example demonstrates how to detect the Enter key and
substitute the Tab key in its place. This is useful if you have a
Default command button on a form but wish to allow the user to
use either the Enter key or Tab key to move to another control
(e.g. a different data field).

1. Add the Desaware SpyWorks Windows Hook Control component
to your project.

2. Add a WinHook control to Form1.

3. Select the Enter key from the Select Keys form and hit the Add
button.

4. Set the KeyboardHook property to “1 – This Task” when
appropriate.

5. Attach the following VB code to the WinHook control’s
KeyDownHook event:

SendKeys "{TAB}" ' substitute Tab key
discard = True ' discard Enter key

• This example demonstrates how to detect the Control+F2 and
Control+F3 keys and run a subroutine. This is useful if you want
to create global hot keys that the user can hit at any time (even
when your application is not active or is hidden).

1. Add the Desaware SpyWorks Windows Hook Control component
to your project.

Page 59

2. Add a WinHook control to Form1.

3. Select the F2 key from the Select Keys form, check the Control
check box and hit the Add button. Select the F3 key, check the
Control check box and hit the Add button.

4. Set the KeyboardHook property to “2 – Entire System” when
appropriate.

5. Attach the following VB code to the WinHook control’s
KeyDownHook event:

Select Case KeyCode
 Case vbKeyF2: Call SpecialSubroutineForCtrlF2()
 Case vbKeyF3: Call SpecialSubroutineForCtrlF3()
End Select

'This next line is optional and depends on whether you want to
'disable the Ctrl+F2 or Ctrl+F3 hot keys that may be set by other
'applications.
discard = True

For Further Information on Hooks
Your best source of information on hooks is the Win32 SDK
documentation for the SetWindowsHookEx API function. This is
available on the MSDN library CD-ROM.

Many SpyWorks examples demonstrate use of hooks. Please Refer to
the on-line reference for a complete list of properties and events for
the dwshk.ocx controls (16 and 32 bit versions) and the
dwGenericHook and dwPretranslate objects of the dwspyvb.dll
component.

Page 60

SpyWorks Concepts: Private Windows
One of the nice things about Visual Basic is that it manages all aspects
of window creation, management and behavior for you. You don't
need to worry about defining the window classes for forms and
controls, creating the windows, and developing a windows function.
All of work is done for you by default. Occasionally you might need to
use a subclasser to intercept a particular message, but by and large,
Visual Basic provides a complete and satisfactory solution.

But there may be occasions where you actually want to define your
own window class and completely define the behavior of windows in
that class even to the point of implementing your own window
function. To do so you will first want to learn a bit more about
window classes and styles, a subject that is covered in Chapter 2 of
"Dan Appleman's Visual Basic Programmer's Guide to the Win32
API". Next, you can use the class definition and window creation API
functions directly and use a standard module function with the
AddressOf operator to define your own window function for the class.
But why bother when SpyWorks has done most of the work for you in
the dwspyvb.dll component? Besides, when you use this component to
manage your private windows, you don't have to worry about
interference with the Visual Basic development environment. This
approach does not prevent you from entering break mode and stepping
through your application - even with the new class window function
code that you create.

The dwPrivateWindow Object
The dwPrivateWindow object is designed to allow you to create and
manage your own windows. This feature is especially useful with
ActiveX controls, as it allows you to create standard windows that can
be created and destroyed as needed, eliminating the problems relating
to the inability to change design time only properties of constituent
controls. An in depth demonstration of this object can be found in the
book "Dan Appleman’s Developing ActiveX Components with Visual
Basic 6.0: A Guide to the Perplexed".1

1 Dan Appleman’s Developing ActiveX Components with VB 5.0: A Guide to the Perplexed
ISBN 1-53276-510-8 or Dan Appleman’s Developing COM/ActiveX Components with VB
6.0: A Guide to the Perplexed ISBN 1-53276-576-0.

Page 61

There are two approaches to creating private windows using this
object. You can create a standard window such as a LISTBOX, EDIT,
COMBOBOX or even common control class, relying on the standard
class function implementation to manage the window. You can then
use a dwSubClass object to subclass the window's container to
intercept notification messages from the window.

A second approach involves creating your own window class and
implementing your own standard class function. This approach is more
complex but provides total flexibility.

The dwPrivateWindow object is also used to implement delayed
message functionality as defined by the PostEvent property and
DelayedEvent event of the dwsbc.ocx and dwshk.ocx controls.

The steps for using this object are as follows:

1. Add a reference to the "Desaware SpyWorks x.0 VB Subclasser"
object dwspyvb.dll using the Project-References menu.

2. `Dimension a dwPrivateWindow object with events as follows:

Dim WithEvents myobject As dwPrivateWindow

3. During form load or before using the object, create the object as
follows:

Set myobject = New dwPrivateWindow

4. Use the RegisterClass method to define a window class if you do
not want to use one of the standard window classes or the object
defined user window class.

5. Use the CreateWindowEx function to create the window.

6. If you defined your own window class, add code to the
myobject_WndMessage event to process window messages for
windows of the class.

7. If you are using a standard window, use a dwSubClass object to
subclass the window's container and watch for WM_COMMAND
messages (notification messages) from the window.

8. Before your application ends, be sure to use the DestroyWindow
method to destroy the window, then release the dwPrivateWindow
object.

Page 62

SpyWorks Concepts: dwEasy - A Multifunction
Control

Subclassing is an extremely powerful technology, but it takes quite a
bit of effort and knowledge to perform some advanced tasks. We've
collected some of the most useful of these tasks into one control which
pre-packages solutions to common problems.

dweasy.ocx is designed to provide partially pre-packaged solutions to
some common Visual Basic 4.0, 5.0 and 6.0 programming tasks. You
will find that even though these are “canned” solutions in a sense,
much of the interior workings of these solutions is exposed to make
customization easy.

These solutions include:

• Global mouse position tracking.

• Determining update area during paint.

• Creating “tiny” captions and “rollup” forms and controls.

• Adding scrollbars to forms and controls.

• System menu commands.

• Adding file drop capability to your application.

• Implement and dereference Windows shortcuts using the
dwShellLink object (obtained from dweasy.ocx).

Using dweasy.ocx is as easy as placing the control on the form or
container control that you want to modify.

Placing the DWEASY.OCX Control
All Visual Basic forms act as “containers” for controls. Many controls
can also act as containers (these include picture controls, frame
controls, and some third party controls). While some of the features of
the dweasy.ocx control (such as Mouse Tracking) do not depend on
the placement of the control, some (such as rollups and update area
support) work directly on the container of the dweasy.ocx control.

The most common mistake made by VB beginners is to confuse
controls that are overlapping each other and controls that are contained
within each other.

Page 63

To make controls overlap, you draw the control on the form and move
it over another control. The Zorder determines which control is
displayed on top of the other.

To place a control in a container you must draw it directly on the
container. To tell if a control is contained in another, simply drag the
container at design time. All controls that are within it will be dragged
as well.

At runtime you can switch the container for a control using the
SetParent API function - however this can lead to side effects and is
not recommended with the dweasy.ocx control.

DWEASY.OCX - Mouse Tracking
One of the most common tasks that people want to do is updating a
status bar based on the mouse location on a form. There have been
several approaches to this. One is placing code in each MouseMove
event, using subclassing to detect MouseMove for controls that don't
have it. Another is to use a timer. Another is to detect the
WM_SETCURSOR message for a form (not reliable if a controls sets
its own cursor, and it doesn't work for graphical controls).

Windows mouse hooks provide a mechanism for monitoring the
mouse events on a system wide basis. Obviously, it would be possible
to use the dwshk.ocx control to monitor the global mouse movement,
check for the window under the mouse and update a status bar based
on the current position. Of course, the Visual Basic solution for this
would be somewhat inefficient, so dweasy.ocx implements this in low
level code, providing 99.999% reliable and efficient MouseEnter and
MouseExit events that work for every control on a form except for
some graphical controls. (Graphical control support works for most
controls placed directly on a form, however it is not reliable with
multiple levels of nesting.) This feature is enabled using the
MouseTransit property. We recommend that you set the
MouseTransit property to track windows only unless absolutely
necessary, as tracking graphical controls is relatively inefficient.

Page 64

In one change from Win16, the 32 bit dweasy3x.ocx control requires a
separate dweasy3x.ocx control for each form for which you want to
perform mouse tracking. This modification was necessitated in part
by a change in the architecture of Visual Basic 4.0, but was also
deemed advisable in order to improve the modularity of applications.
Dweasy3x.ocx also uses a combination of mouse hooks and system
timers to provide an efficient mechanism of doing mouse tracking
without requiring global system hooks (which should be avoided
whenever possible).

Invisible windows and controls are not detected by mouse tracking.

The drop down portion of a drop down list box is not detected by
mouse tracking (this is due to an internal Windows quirk by which this
drop down listbox is owned by the desktop window instead of the
combo box itself).

The control includes a MenuSelect event that allows you to monitor
menu selection state as well.

Relevant Properties:

DetectDisabled Property MDIMenuDetect Property

MouseTransit Property MouseTransitNC Property

TransitTag Property

DWEASY.OCX - Determining Update Area During
Paint

One of the limitations of the Visual Basic Paint event is that there is
no way to determine during the event which part of the window
actually needs to be updated. When images are complex, this can lead
to unnecessary drawing.

The dweasy.ocx control records the update area which can be read
during the Paint event using the UpdateLeft, UpdateRight,
UpdateTop, UpdateBottom properties. These properties contain the
Left, Right, Top and Bottom coordinates of the update area in the
current container coordinates.

The dweasy.ocx control should be placed directly on the form or
control for which you want to determine the update area.

Page 65

Relevant properties:

Update properties UpdateLeft, UpdateRight

UpdateTop, UpdateBottom

DWEASY.OCX - Tiny Captions and Rollup Windows
Two variations on standard windows have become more common in
many applications. One is a window that uses a "tiny" caption. One
example of this is the Visual Basic control toolbar. Another is the
kind of "rollup" control used in programs like Corel Draw (in which it
looks like a normal window until you roll it up, at which time only the
caption is displayed).

Rather than create special controls that perform these operations,
dweasy.ocx modifies the standard form or picture control (or most
other controls that can act as a container). Simply place the
dweasy.ocx control on the form or control that you wish to modify.

Notes on working with Tiny Captions and Rollups
In accordance with the SpyWorks philosophy of providing tools rather
than just solutions, we have not completely characterized this control
under every possible configuration. Instead we chose to expose some
of the internal working of the control through events and provide you
with the capability to modify the action of the control if you wish.

We would be very interested in hearing suggestions on how to extend
or modify this capability. While we don't guarantee to make the
changes you want, if it sounds good we may be able to incorporate the
new feature and send it to you within a very short period of time.

Additional Notes:

Forms that are modified by setting the CaptionStyle property to a
non-zero value may not have visible menus. Form menus can be
created as invisible for use with the Popup Menu function.

Double clicking on the control box of resized or rollup containers has
no default behavior.

The "tiny caption" and "rollup" features of dweasy.ocx are not
designed to be used with MDI child forms or MDI forms. It will
produce some interesting results.

Page 66

When using rollups with forms, you should keep the CaptionHeight
property greater or equal to 100. This is because Windows sets the
minimum size for a window which overrides the attempt of
dweasy.ocx to reduce the height of the window below that of a
standard caption. If you use a CaptionHeight smaller than 100, a small
portion of the form will remain visible under the caption. This
limitation does not apply to rollups made from containers that are
controls on a form.

No Min or Max button will appear when the CaptionStyle is '1 -
Resized' for non-form containers. This is because the concept of
"minimize" and "maximize" does not really apply to child windows.

Relevant Properties/Events:

CaptionHeight Property CaptionStyle Property

ForceActive Property ForceCtlBox Property

ForceOutline Property ForceTitle Property

MinMax3D Property RolledUp Property

ShowInTaskbar Property StateButton Event

SysMenuRequest Event

DWEASY.OCX - Adding Scrollbars to Forms and
Controls

Visual Basic does not provide support for the scrollbars that are
potentially built into most windows. dweasy.ocx not only allows you
to turn on and use those scrollbars, but provides some automated
scrolling capabilities as well. The scrolling capability can range from
user defined control of the scrollbars, to "terminal" style scrolling
support, to true virtual form or control capabilities.

The scrollbars properties and events are in most cases identical to the
standard Visual Basic scrollbar control properties and events except
that they are preceded by a 'V' or 'H' character to indicate the vertical
or horizontal scrollbar.

Simply place the dweasy.ocx control on a form or container control,
and use the ScrollBars property to turn on one or both scrollbars.

This control is not designed for use with forms and picture
controls that have their AutoRedraw property set to True.

Page 67

The scrolling properties use integer values. Be sure to consider the
possibility of overflows towards the high and low ends of the scrolling
range.

Automatic scrolling with this control is done entirely in pixels. You
can perform your own coordinate transformations to twips if you wish.

The dwspyvb.dll includes the dwScrollBar component which can also
be used to turn on scrollbars for windows in an application. It does not
include the virtual form capabilities of dwEasy, but it is written in
Visual Basic and is idea for turning on the scrollbars for a Visual
Basic User Control object.

Relevant Properties/Events:

Change, Hchange Event ScrollBars Property

VScroll, Hscroll Event ScrollViewport Property

VSmallChange, HSmallChange
Properties

ScrollUpdate Property

VValue, Hvalue Properties ScrollWindow Property

VLargeChange, HLargeChange
Properties

VMax, HMax Properties

VMin, HMin Properties

DWEASY.OCX - Other Functions
System Menu Support
Allows you to easily detect system menu commands. Refer to the
SystemCommand event for additional details.

DWEASY.OCX - Windows Explorer/File Manager Drag-
Drop Commands

Visual Basic 5.0 (and later) includes support for OLE drag and drop
which provides effective drag-drop capability across applications.
dwEasy does include file drag drop support for use with Visual Basic
4.0 that enables your form or container to receive dragged files from
File Manager, Explorer, or other applications.

Page 68

Relevant Properties/Events:

DetectDropped Property DroppedFile Property

FileDropHwnd Property FilesDropped Event

dwShellLink - Shell Link Support
The dwEasy.ocx control provides support for the IShellLink interface
under Windows 95/98/ME and Windows NT (version 4.0 and higher).
This interface is used to implement shortcuts to files. Each shortcut
can have its own working directory, calling arguments and icon,
providing an efficient way to reference files in different ways without
having multiple copies of the file. Windows also supports automatic
link resolution that can often find a file even after it has been moved or
renamed.

The most common use of the dwShellLink object is with file
drag/drop support. When a shortcut is dropped onto a window that has
file drag/drop enabled (using the dwEasy DetectDropped property),
the control receives the name of the shortcut file (with the extension
.LNK) instead of the file that is referenced by the shortcut. dwEasy’s
IShellLink support makes it possible to resolve the link to determine to
which file it refers. It also allows you to create and modify links.

Obtaining a dwShellLink Object
dwEasy implements the IShellLink interface by exposing an object of
type dwShellLink. You can obtain a dwShellLink object using the
dwEasy GetShellLink method. This method is defined as follows:

1. GetShellLink(FileName as String, AllowPrompt as Boolean)

The FileName property allows you to immediately initialize the
dwShellLink object to a shortcut file. The AllowPrompt property
determines whether Windows is allowed to bring up a dialog box to
allow you to resolve the link if it has been broken (because the target
file has been moved or renamed). If you set AllowPrompt to False, and
Windows is unable to resolve the link automatically, a run-time error
will occur. If you try using this function in an operating system
without shell links, you will also get a run-time error. You can pass an
empty string as the FileName to obtain an uninitialized dwShellLink
object. You’ll need to call the LoadLinkFile method to associate the
object with a link file if you wish to use an existing link file.

The general sequence for using the dwShellLink object is as follows:

Page 69

2. Obtain an object as follows:

Dim myobject as dwShellLink
Set myobject = sbcEasy1.GetShellLink("", False) ‘ (or specify the

file here)
(optional) Load a link file into the object using the LoadLinkFile object.
(optional) Set new values into the link file object.
(optional) Save the link file using the SaveLinkFile object.

Notes on Working with Shell Links
Some of the information associated with shell links can be seen by
viewing the properties for the link under the Windows Explorer. You
should note, however, that some of the information (including the
ShowCmd property and ShowCmd associated icon) is cached by
Explorer and thus changes made through the dwShellLink object will
not be reflected immediately when these properties are viewed in
Explorer.

dwEasy Examples:

• The following demonstrates how to display status help for menus
selected in a form.

1. Create a new project with a single form and a label control.

2. Add a menu to the form and name it “File”.

3. Add 3 sub menus to “File ” and name them “New”, “Open” and
“Save”.

4. Add a dwEasy control to the form. The dwEasy control
automatically detects menu selections on its container.

5. Attach the following code to the dwEasy’s MenuSelect event:

' You can also do the comparison based on the menu's position
' by comparing the position parameter, but do this only if the
' menus positions will not change.

Select Case MenuName
Case "New": Label1.Caption = "Creates a new document."
Case "Open": Label1.Caption = "Opens an existing
document."

Page 70

Case "Save": Label1.Caption = "Saves the current
document."

End Select

• The following demonstrates how to display status help for menus
selected from a MDI form.

1. Create a new project with a single MDI form and a label control.

2. Add two MDI child forms.

3. Add a menu to the first MDI child form and name it “File”.

4. Add 3 sub menus to “File ” and name them “New”, “Open” and
“Save”.

5. Add a menu to the second MDI child form and name it “Edit”,
then add 3 sub menus to “Edit” and name them “Cut”, “Copy” and
“Paste”.

6. Add a dwEasy control to the MDI form. The dwEasy control
automatically detects menu selections on its container.

7. Attach the following code to the Form_Load event of the MDI
form:

Form1.Show
Form2.Show

8. Attach the following code to the dwEasy’s MenuSelect event:

' You can also do the comparison based on the menu's position by
' comparing the position parameter, but do this only if the menus
' positions will not change.

Select Case MenuName
Case "New": Label1.Caption = "Creates a new document."
Case "Open": Label1.Caption = "Opens an existing
document."
Case "Save": Label1.Caption = "Saves the current document."

Case "Cut": Label1.Caption = "Cut the selected data and place
It on the clipboard."
Case "Copy": Label1.Caption = "Copy the selected data and
place it on the clipboard."

Page 71

Case "Paste": Label1.Caption = "Paste the data from the
clipboard to the insertion point."

End Select

• The following demonstrates how to display status help for
controls that the mouse is currently over in your form.

1. Create a new project with a single form and a label control.

2. Add a command button, a picture box, and an image control to the
form.

3. Add a dwEasy control to the form.

4. Set the dwEasy control’s MouseTransit property to “2 – Track all
controls ” (this will allow dwEasy to detect the image control, if
you do not need to track graphical controls, set the MouseTransit
property to “1 – Track windows” for better efficiency).

5. Attach the following code to the dwEasy’s MouseEnter event:

Select Case ControlDesc
Case "Label1": Label1.Caption = "Mouse is over the label"
Case "Command1": Label1.Caption = "Mouse is over the
command button"
Case "Picture1": Label1.Caption = "Mouse is over the picture
box"
Case "Image1": Label1.Caption = "Mouse is over the image
control"

End Select

6. Attach the following code to the dwEasy’s MouseExit event:

Label1.Caption = ""

Page 72

SpyWorks Concepts: dwSpy3x.dll Function
Library

IMPORTANT NOTE: dwspy36.dll is a replacement for dwspy32.dll
for SpyWorks version 5.2 and later. All functions in dwspy32.dll are
included in dwspy36.dll and are called in the same way. The term
dwspy3x.dll is intended to refer to both DLLs. The dwspy36.dll is an
ATL edition of dwspy32.dll which was compiled using MFC. We
recommend that you use the dwspy36.dll library when possible since it
is lighter and more efficient. Only dwspy36.dll is supported in Visual
Studio .NET .

The dwSpy3x.dll dynamic link library contains a selection of functions
that have proven useful over the years. They are intended to fill holes
in the capabilities of Visual Basic.

As it has evolved, many of the functions in dwSpy3x.dll have been
rendered superfluous as Microsoft added equivalent functionality to
Visual Basic. In addition, some capabilities that were supported in 16
bit editions of Visual Basic could not be implemented in the 32 bit
edition due to significant changes in the underlying architecture.

These components are also used by the Desaware ActiveX controls to
perform their tasks, and thus must be distributed (dwspy36.dll with
dwsbc36.ocx; dwshk36.ocx; and dweasy36.ocx; dwspy32.dll with
dwsbc32.ocx; dwshk32.ocx; dweasy32.ocx and dwcbk32.ocx;
dwspydll.dll with the 16 bit OCX and VBX controls).

The dwspy3x.dll functionality falls into a number of categories as
follows:

Port I/O Functions Data Structures

Miscellaneous Functions Indirect Property Access

Data and Memory Access Visual Basic API Functions

Printer Driver Function Access User Defined Type Packing
Functions

DATA AND MEMORY ACCESS
dwspydll.dll and dwspy3x.dll contain a selection of functions designed
to help ease the process of working with API functions, especially
with regards to manipulating text strings and pointers.

Page 73

dwspy3x.dll also includes functions to transfer data to and from other
process spaces. This can be critically important when subclassing
other applications.

Function Name Description

dwDWORDto2Integers,
dwDWORDto4Bytes

Breaks a 32 bit long variable into integers or
bytes.

dwCopyData, dwCopyDataBynum Copies a block of memory.
dwSwapBytes, dwSwapWords Swaps bytes within an integer or integers within

a long variable.

Function Name Description

dwGetAddressFor ... Obtains the address of a variable.
dwGetAddressForLPSTR Obtains the address of a string.
dwGetStringFromLPSTR,
dwGetStringFromPointer

Converts a pointer containing a null terminated
string into a VB string.

dwHugeOffset Calculates an address offset (16 bit).
dwPOINTSToLong Converts a POINTS structure into a long

variable.
dwMakeROP4 Creates an ROP4 structure.
dwGetStringFrom2NullBuffer Extracts a string from a list of strings separated

by null characters and terminated by two null
characters.

dwSpy3x.dll - dwXCopyDataTo,
dwXCopyDataFrom

Copies data between processes.

dwSpy3x.dll -
dwXCopyAnsiStringFrom,
dwXCopyUnicodeStringFrom

Retrieves a string from another processes
memory space.

dwXAllocateDataFrom,
dwXFreeDataFrom

Allocates data space in the memory space of
another process.

dwIsValidName Determines if a name is a valid method or
property name for an ActiveX automation
component.

Page 74

User Defined Type (UDT) Packing Functions

Consider the following C structure:

struct mystruct
{

a as short
b as long
c as short
d as short

}
An API function expecting this structure as a parameter would expect
to see a total of 10 bytes. The first two bytes containing integer ‘a’,
followed by four bytes containing variable ‘b’, followed by ‘c’ and ‘d’
respectively.

You cannot pass this type of structure to a DLL using Visual Basic 4,
5 or 6.

Why is this? Because Visual Basic enforces certain alignment rules in
user defined structures. Within Visual Basic itself, all variables start
on a 32 bit (4 byte) boundary. When VB passes a structure to a DLL it
packs it part of the way - so that each variable in the structure starts at
its natural boundary. This means that bytes start anywhere, integers
(16 bit variables) start at a 16 bit boundary (even byte addresses) and
long variables start at 32 bit boundaries (byte addresses evenly
divisible by 4). In this case the DLL would receive a structure in
which the first two bytes contain integer ‘a’, followed by 2 unused
bytes, followed by four bytes containing variable ‘b’. Variables ‘c’ and
‘d’ follow immediately, since they fall on even addresses. The
resulting structure ends up containing 12 bytes - not the 10 expected,
and variables b, c and d are in the wrong locations.

The good news is that this occurs rarely when using the Win32 API -
most API structures are designed so that all of their variables fall on
their natural boundaries. Unfortunately, some of Microsoft’s
programmers don’t always follow their own programming standards,
and some API structures (such as a couple used in common dialogs)
require single byte packing in order to work.

Page 75

Until now this required careful work-arounds on the part of Visual
Basic programmers. It was necessary to either divide long variables
into two integers and recombine them later, or to carefully copy a
Visual Basic user defined structure into a byte array (moving variables
as necessary), passing the address of the array to the DLL, then
copying the data back into the user defined structure when done.

SpyWorks includes a number of functions to automate this process,
making it easy to load a memory buffer with a packed version of a
user defined structure, and to unpack it when done.

Relevant Functions:

dwFreeUDT dwPackedUDTSize

dwPackUDT dwRegisterUDT

dwUnpackUDT

Please refer to the on-line Help file for further information.

Miscellaneous Functions
These are functions that do not fit conveniently into any of the other
categories.

Function Name Description

Control Analysis Functions Used to analyze 16 bit custom
controls. Not implemented in 32
bit.

dwFindFiledwSpy Searches for a file on the disk
starting with the directory
containing the executable file for
the current process.

dwSubtractFileTimes This function subtracts the value
in one Win32 API FILETIME
structure from another. This can
be useful for performing relative
timing using the GetProcess-
Times function.

Page 76

dwXGetModuleFileName This function retrieves the
executable file name (including
path) for the specified process as
long as the process has a
window.

GetSpyWorksVersion Returns a string containing the
current version of SpyWorks.

Port I/O functions These functions allow direct port
access under Windows 95/98.
Windows NT's security system
prevents them from working
under Windows NT.

Printer Driver Function Access These functions are used under
16 bit Windows only.

Indirect Property Access
Visual Basic 4.0 makes it easy to access properties for any control or
form in a project. But what if you have a window handle and want to
retrieve a property for that window? You need to search through the
entire form and control collection and compare the hWnd property of
each object with the window handle to determine which control you
are referencing. Only then can you access a property of the control.
And if the control is in a different application, you are completely out
of luck.

SpyWorks provides some indirect property access capability. It can be
used to quickly read or write the values of properties for VB forms or
controls in your own application, in other applications, or even in the
VB design environment. It is ideal for creating extensions to the
Visual Basic design environment, for creating external test or trace
tools, and so on.

dwspy3x.dll also supports a limited form of Cross Task Indirect
Property Access.

Relevant Functions:
dwSpyDll.dll,
dwSpy3x.dll

 dwGetPropertyValue,
dwGetPropertyValueByID

Page 77

dwSpyDll.dll dwSetPropertyValue,
dwSetPropertyValueByID

Please refer to the on-line Help file for further information.

Visual Basic API Functions
With the transition to 32 bit, Visual Basic eliminated the Visual Basic
API functions that were supported under the 16 bit editions.
Fortunately, most of the functionality provided by these functions was
built in to 32 bit editions of Visual Basic and were thus no longer
necessary.

The Visual Basic API contains a large number of functions that are not
directly accessible from Visual Basic. Refer to the Custom Control
Development Kit portion of Visual Basic Professional for further
information on these functions.

Most of these functions are provided in two varieties. The first variety
accepts control or form objects as parameters, the other accepts a 32
bit control or form identifier as returned by the dwGetControlID
function.

Unless specified otherwise, these functions should only be used within
an application (attempting to access information on controls or forms
in other applications can lead to general protection faults). Special "X"
versions of some functions that can be used on forms or controls in
other applications are provided. Use them only if necessary; they are
much slower than the regular versions.

Relevant Functions:

dwGetInstance, dwGetWndInstance

dwSpyDll.dll dwGetControlName , dwGetControlNameByID,
dwXGetControlName

dwSpyDll.dll dwVBGetAppTitle

dwSpyDll.dll dwVBGetVersion

dwSpyDll.dll dwXGetVBInfo

dwSpyDll.dll dwXPixelsToTwips, dwYPixelsToTwips,
dwXTwipsToPixels , dwYTwipsToPixels

Please refer to the on-line Help file for further information.

Page 78

dwSpy3x Examples
Please refer to the on-line Help file for these examples.

Page 79

SpyWorks Concepts: Exporting Functions
SpyWorks 5 introduced a new technology called Dynamic Export
Technology which allows you to export functions from any ActiveX
DLL including ActiveX controls. This technology provides
outstanding performance and ease of use, yet avoids modifying your
compiled DLL or OCX in any way, eliminating any possibility of
build errors or the chance that your component may be corrupted.

Version 7 extended Dynamic Export Technology for use with Visual
Basic .NET and C#, allowing you to export functions from DLL
assemblies written in either of these languages.

Note: If you are upgrading from SpyWorks 5.0 Professional
Edition to a later version, be sure to upgrade your projects as
follows:

• Your ActiveX DLL must be marked for apartment model
multithreading if you expect your DLL to be used with
multithreaded clients (not applicable for .NET).

• You must install Visual Studio Service Pack #2 or later (for
Visual Basic 5.0) before compiling your ActiveX DLL (not
applicable for .NET).

The documentation that follows will cover these issues in more detail.

What are Exported Functions?
Every Dynamic Link Library (DLL) consists of a collection of
functions.

Those DLLs that make up Windows contain many hundreds of
functions called Windows API functions (API = Application
Programming Interface). You can access those functions from Visual
Basic using the Declare statement. In order for a function to be
accessible using the Declare statement, it must be "exported" - this
means that the name of the function and its location in the DLL is
made public by the DLL.

There is another way for DLLs to expose functions - by using OLE
interfaces (also known as ActiveX interfaces). These DLL's export a
single function called DllGetClassObject which can be used by the
system to obtain a COM object - an object compatible with the
Common Object Model. An in depth look at using these types of

Page 80

objects can be found in the book "Dan Appleman's Developing
COM/ActiveX Components with Visual Basic 6.0: A Guide to the
Perplexed".2 You'll need to understand the fundamentals of creating
these ActiveX DLLs in order to use the dynamic exporting capability
of SpyWorks.

.NET assemblies expose functions through yet another mechanism,
publishing public objects in the assembly’s manifest. Objects exposed
through .NET assemblies are created and managed by the Common
Language Runtime (CLR).

Visual Basic 5.0 and 6.0, Visual Basic .NET and C# do not allow you
to export functions, yet this can be an important feature. If you can
export functions, you can create your own export function libraries
that other applications can access, whether they are written in Visual
Basic (in which case you use the Declare statement), or written in
other languages.

Some operating system features will only work with dynamic link
libraries that export functions. For example, you must be able to
export functions to create control panel extension applets. Also, NT
services (which typically use control panel applets) benefit from this
capability. Lastly, certain services and applications will only work
with dynamic link libraries that export functions. For example: the
Internet Service API (ISAPI) requires this capability.

Exporting functions from a Visual Basic 5.0 or 6.0 DLL or ActiveX
control is a two step process.

1. Add a dwExporter class to your ActiveX DLL or control.

2. Use the dwExUtil program to create an alias DLL which loads
your DLL and links the functions.

Similarly, exporting functions from a Visual Studio .NET DLL is also
a two step process.

1. Add the ExportAttribute template file to your project.

2. Use the ExportWizard to create an alias DLL which loads your
DLL and links the functions.

2 Dan Appleman’s Developing ActiveX Components with VB 5.0: A Guide to the Perplexed
ISBN 1-53276-510-8 or Dan Appleman’s Developing COM/ActiveX Components with VB
6.0: A Guide to the Perplexed ISBN 1-53276-576-0.

Page 81

But first, we recommend you read a little bit about how Desaware's
Dynamic Export Technology works.

How Dynamic Export Technology Works
Desaware's Dynamic Export Technology works without modifying
your ActiveX DLL or control (or .NET assembly) in any way. This
has two advantages:

• It eliminates any chance that Desaware's tools might corrupt your
component file.

• It eliminates any chance that you might forget a step after
recompiling your component.

The following figure illustrates the operation of the SpyWorks
exporting feature.

Program that wants to call an exported
function in your ActiveX Component

Alias DLL
Resources:
Icons, Bitmaps
Strings

dwExporter
Class - Provides
list of functions

Your Component

Figure 5
SpyWorks Exporting Feature

Page 82

First, you'll implement the dwExporter class in your component in VB
5 or 6. This class has a number of methods that will be called by
SpyWorks when your component loads in order to find out about the
functions that it wants to export. For Visual Studio .NET , you define a
Public class called Exports in your project.

The real work is done by a separate DLL called an Alias DLL. For VB
5 and 6, this DLL is created by the dwExUtil utility program. The
utility program requires that you specify the name of your component
and any string, bitmap or icon resources that you wish to include. It
then creates the alias DLL with a name that you specify. For Visual
Studio .NET , you use the ExportWizard utility program to create the
Alias DLL. The ExportWizard requires that you specify the name of
your .NET DLL and version resource. The ExportWizard also requires
that your .NET DLL exists before creating the Alias DLL.

As far as other programs or the windows system are concerned, your
functions are exported by the Alias DLL - thus you will specify the
Alias DLL as the library to use in Declare statements or by the system.

But when the other application or the system actually loads the Alias
DLL, it will load your component DLL and read its dwExporter class
information (VB 5 and 6 - for .NET it reads the Exported attribute
information) to obtain the list of functions that you wish to export. It
will then dynamically link those functions that they may be accessed
by the calling application.

From then on, the calling application or system will call the functions
in your component directly - completely bypassing the Alias DLL.
This approach offers the best performance possible.

For VB5 and VB6 components, exported functions represent direct
entry points into an application, so it is important that certain threading
rules be followed if you are exporting functions for use by a
multithreaded client. Most problems can be avoided by simply
marking your component for Apartment Model multithreading.

For .NET assemblies, the alias DLL performs the necessary transition
from unmanaged code (called by those using the exported function),
and your managed assembly. However, all incoming calls will be on
the caller’s thread. The Alias DLL performs no synchronization, so if
your caller is multithreaded, be sure to synchronize incoming calls as
needed for your particular application.

Page 83

If you are using Visual Basic 5.0, we strongly recommend that you
upgrade your copy of Visual Basic by installing Visual Studio Service
Pack #2 or later (available from Microsoft) before using the exporting
features of SpyWorks - especially if you expect to use multithreading
clients.

Sometimes you may want your component to provide resources such
as icons, bitmaps or strings to the calling application. Even though the
calling application is calling functions in your ActiveX component, it
thinks it is calling functions in the Alias DLL, and that is where it will
look for these resources. This is the case with control panel extensions.

For this reason, the dwExUtil program allows you to embed resources
into the Alias DLL. It uses a subset of the Desaware Resource
Compiler from Desaware's StorageTools to accomplish this.

 The dwExporter Class (for VB 5 and 6)
The first step in exporting functions from your ActiveX DLL or
control is to add a dwExporter class object into your application.
We've included a template file that will get you started.

Critical first steps: (must be followed exactly as stated):

1. Set the class name to dwExporter (no other name will work).

2. Set the class module's Instancing property to 5 - MultiUse.

3. Add a reference to the file dwExport.tlb. You will not need to
distribute this file with your component.

4. Add the following line to the class module:
Implements IdwDynamicExport.

The dwExporter class must implement the following private functions:

• Private Sub
IdwDynamicExport_GetFunctionCount(FunctionCount As Long)

• Private Sub
IdwDynamicExport_GetFunctionInfo(ByVal FunctionNumber

As Long Ordinal As Integer, FunctionName As String
FunctionAddress As Long)

• Private Sub
IdwDynamicExport_GetModuleHandle(ModuleHandle As Long)

Page 84

 You will also want to add the following function to the class, if you do
not have it already in a public module in your component:

 Private Function GetAddress(ByVal l As Long) As Long
 GetAddress = l
 End Function

 This function is used to convert the address of a function in a standard
module into a long variable.

 The following is a review of the three IdwDynamicExport functions:

 GetFunctionCount
 This function is used by your component to specify the number of
functions that you are exporting. Simply set the FunctionCount
parameter to the number of functions to export. This example
illustrates a component that exports two functions.

 Private Sub
IdwDynamicExport_GetFunctionCount(FunctionCount As Long)
 FunctionCount = 2
 End Sub

 GetModuleHandle
 This function is used to let the Alias DLL know your component's
module handle. This is necessary for the linking process to work
correctly.

 This function will always look exactly like this:

 Private Sub
IdwDynamicExport_GetModuleHandle(ModuleHandle As Long)
 ModuleHandle = App.hInstance
 End Sub

 GetFunctionInfo
 This function will be called by the Alias DLL once for each function
that you have exported. It first calls GetFunctionCount to determine
how many functions you are exporting, then goes through the list one
by one (starting with function #1).

 A typical implementation would be as follows:

Page 85

 Private Sub IdwDynamicExport_GetFunctionInfo(ByVal
FunctionNumber As Long, Ordinal As Integer, FunctionName
As String, FunctionAddress As Long)

 Select Case FunctionNumber
 Case 1
 Ordinal = 10
 FunctionAddress = GetAddress(AddressOf MyExportedFunction)
 FunctionName = "MyExportedFunction"
 Case 2
 Ordinal = 11
 FunctionAddress = GetAddress(AddressOf MyExportedFunction2)
 FunctionName = "VariableAddress"
 End Select
 End Sub
 The FunctionNumber parameter is a value from 1 to the value you
returned in the GetFunctionCount call specifying the function for
which you should return information.

 For each exported function you should set the Ordinal, FunctionName
and FunctionAddress parameters as follows:

• Set the Ordinal to any 16 bit number other than zero. This is
called the function's ordinal value, and you'll generally assign the
values sequentially. In most cases the value has no significance,
but you should set them in order, and each ordinal value should be
unique.

• The FunctionAddress parameter is set to the address of any public
subroutine or function in a standard module. The AddressOf
operator obtains the address and passes it to the GetAddress
function, which returns it as a long variable.

• The FunctionName parameter is set to the name under which you
want the function exported. This name need not match the name
of the function in the standard module.

 You can add new functions to be exported at any time. You can delete
them as well, but this may break other applications that use your DLL.
All you need to do is adjust the number returned in the
GetFunctionCount function, and return the information for the
function in the GetFunctionInfo function, then recompile your
component.

Page 86

 You should mark your component for Apartment Model threading
before compiling the DLL.

 You do not need to create a new alias DLL when you change the
functions being exported.

 The Desaware Export Utility (for VB 5 and 6)
 The Desaware Export Utility is used to create the alias DLL which
provides support for the Dynamic Export Technology. It includes a
simple resource compiler which allows you to add string, icon or
bitmap resources to the Alias DLL.

 Once you create an Alias DLL for a component, you will never need
to change it unless you want to add or change the resources in the
DLL. You do not need to create a new Alias DLL when you change
the list of functions being exported - the Alias DLL creates the export
function list dynamically based on the functions specified in the
dwExporter class.

 The Project Menu is used to create the Alias DLL.

 It contains the following commands:

• Set Source Project. Use this command to specify the project name
of your component (as set in the Project-Properties dialog box for
your component). The Alias DLL will attempt to load the object
ProjectName.dwExporter to obtain the exported function list, so if
you don't use the correct project name, the exporting operation
will fail.

• The Set Alias DLL command. Use this command to specify the
name and path for the newly created Alias DLL.

• Set Custom Error Message command. Use this command to
specify an error message which will be displayed by the Alias
DLL if it cannot successfully load your Visual Basic component.
If you do not enter an error message, a default error message will
be displayed.

• The Build Alias DLL command. Use this command to create the
new alias DLL.

Page 87

 Important:

 The file dwExport.dll must be in the same directory as the
dwExUtil.exe program. This DLL is the template from which your
Alias DLL is created. You should not distribute dwExport.dll.

 You can use the other dwExUtil commands to add resources to the
Alias DLL.

 What are Resources? (for VB 5 and 6)
 One common problem that programmers face is the need to include
constant data in a program. This is most typically text data or image
data. Ancient versions of Basic supported the ‘Data’ statement that
allowed you to place the data directly in your program code. This
command has never been part of Visual Basic.

 So what options are available for embedding data into your executable
files? You can, of course, take the simple code approach. Perhaps
something like this:

 dim EmbeddedStrings(3)
 EmbeddedStrings(0) = “first string”
 EmbeddedStrings(1) = “second string”
 EmbeddedStrings(2) = “third string”
 EmbeddedStrings(3) = “fourth string”

 This approach works nicely, but does have disadvantages. It has an
impact on performance, since the code that initializes the variables
takes time to execute. Also, if you wish your program to support
multiple languages, you will need to include strings for each language
in your code.

 Windows addresses these problems by making it possible to define a
part of your executable file as containing fixed data called resources.
A number of predefined resource types are defined, of which the most
interesting ones to Visual Basic programmers are strings, bitmaps,
icons and user defined binary data.

Page 88

 Visual Basic allows you to embed a resource file into your application
by adding a resource file (.res extension) to your project. The
enterprise edition of Visual Basic includes a resource compiler, as
does Visual C++. This resource compiler compiles a resource
command file (.rc extension) into a .res file. The .rc file is a text file
that lists resources and is moderately cryptic to work with. A more
complete introduction to resources, why they exist and how they can
be used can be found in both the "Dan Appleman's Visual Basic
Programmer's Guide to the Win32 API" and the original “Visual Basic
Programmer’s Guide to the Windows API”.

 Suffice to say that in order to use resource files with Visual Basic you
must first obtain a resource compiler, write an .rc file, and compile
that .rc file any time any of the resources change. This approach
works, but is rather awkward. Desaware's StorageTools product
includes an easy to use resource compiler that is written in Visual
Basic and includes full source code. This technology was adapted for
the dwExUtil project to add resources directly to your Alias DLL. The
dwExUtil program neither creates nor uses .res files, but it is able to
use the same .drl and .drc resource files used by the Desaware resource
compiler, and is able to create these files.

 Adding Resources to the Alias DLL (for VB 5 and 6)
 There are three types of files that you will need to be concerned about
when adding resources to the Alias DLL. The first is a project file or
“script” file which contains a list of the resources to use. This utility
uses two proprietary script file formats. The first is a list file or .drl
file. This file contains a list of bitmap files, icon files and strings in a
simple text format. The second is a .drc file which uses OLE
structured storage to save the resource information.

 The .drl file has the advantage of being very fast and easily editable
using any text editor such as Notepad. However, if any of the files in
the list are missing, you will not be able to compile the project file (the
missing resource will be ignored).

 The .drc file stores the entire resource in the resource file along with
the original file name and date. This ensures that the project can be
recompiled even if the original resource files are missing. It also
allows the project to automatically update the .drc file if a more recent
version of the file is found. This approach does take up additional
space and is somewhat slower when saving the file (load times and
compile times are comparable to the .drl files).

Page 89

 The first step in using the dwExUtil resource features is to select a
project file, by either opening an existing .drl or .drc file, or by
creating a new one. This is done using the File-New or File-Open
commands.

 You can then add or delete any of the resources for the file. If you
make any changes, you will be prompted to save the file when you
close the application or try to open a new project file. You can also use
the File-Save command to save the project file at any time. The File-
Save As command can be used to copy the current project file into a
new one.

 .drl and .drc files are common to both the 16 and 32 bit versions of an
application. In other words, the same file can be loaded under either
environment.

 You do not need to add resources to an Alias DLL. If you would
prefer not to do so, simply ignore all of the menus other than the
Project menu of the dwExUtil program.

 The dwExUtil Main Form (for VB 5 and 6)
 The primary form for the Desaware Export Utility is shown below:

Figure 6

Desaware Export Utility

Page 90

 At any given time the following information is displayed:

 Source

 Project Field The project name of the component from
which you are exporting functions.

 Alias DLL Field The name and path of the Alias DLL that you
will build.

 Resource File Field The current project file (resource script) as
selected using the File menu.

 Resource Type A combo box which can be used to select
bitmaps, icons or strings.

 List Box How the resources in the project file.

 Use the Resource-Add menu to add a new resource. For bitmap and
icon resources, this will bring up a file common dialog with which you
can select a new bitmap or icon file. After you select a file, you will be
asked to specify a numeric resource identifier.

 For string resources, this will bring up a string resource editing form
which allows you to add a string, edit a string and assign a resource
identifier.

 The resource identifier should be from 2 to 32768. The resource
compiler will prevent you from selecting a resource that is currently in
use by another resource of the same type (in other words, you can
specify only one bitmap with a given ID, but a bitmap and icon may
share the same ID).

 If you select an entry in the list box you may use the Resource-Delete
command to delete it (or press the Del key). In the case of strings, you
can double click on an entry or use the Resource-Edit command to edit
an existing string resource.

 String resources are more efficient if you keep them in sequential
groups (every 16 string identifiers are stored in one resource).

Page 91

The Exports Class (for Visual Studio .NET)
The first step in exporting functions from your .NET assembly is to
add the ExportAttribute class file into your project. We've included a
VB and C# template file that you can add to your project. You do not
need to make any changes to this file.

Critical first steps: (must be followed exactly as stated):

1. Add a Public Class with the assigned name Exports to your
project (no other name will work).

2. Define Public Shared (VB) or public static (C#) functions in the
Exports class for functions that are to be exported.

3. Add the Exported attribute to these functions, define the exported
function name and exported ordinal value in the attribute. The
function name is set to the name under which you want the
function exported. This name need not match the actual name of
the function in code.

Set the function's ordinal value to any 16 bit positive number. In
most cases the value has no significance, but you should set them
in order, and each ordinal value should be unique. You may also
specify the ‘C’ calling convention for the exported function (the
default is the standard API calling convention).

 <Exported("MyExportFunc", 1)> Public Shared Function…

 <Exported("MyExport", 2, CCall:=True)> Public Shared Function…

You can add new functions to be exported at any time. You can delete
them as well, but this may break other applications that use your DLL.
All you need to do is recompile your project. You do not need to
create a new alias DLL when you make changes to the functions
being exported.

 Currently, byval and byref passing of the following function parameter
and return data types are supported:

 System.Int32

 System.Int16

 System.Byte

 System.IntPtr

Page 92

 The ExportSample project demonstrates how to use the
System.MarShal class to pass other data types (such as strings and
structures).

The Export Wizard (for Visual Studio .NET)
 The Desaware Export Wizard (ExportWizard) is used to create the
Alias DLL which provides support for the Dynamic Export
Technology under .NET.

 Step Explanation

 Alias DLL File Name This step is used to specify the path and
file name of your alias DLL.

 DLL and Assembly Name This step is used to specify the path and
file name of your .NET DLL that
includes the function export code. The
DLL file’s Assembly Name will be
retrieved for your verification.

 Version Resource This step allows you to specify a
version resource for the Alias DLL file.
At a minimum, the File Version and
Company Name must be specified.

 Assembly Verification This step scans the specified Assembly
for the required declarations, formatting
errors, and other inconsistencies
regarding the Assembly.

 Compile This step compiles the specified Alias
DLL file.

 Once you create an Alias DLL for an assembly, you will never need to
change it. You do not need to create a new Alias DLL when you
change the list of functions being exported - the Alias DLL creates the
export function list dynamically based on the functions specified by
the exported attribute.

 Testing Exported Functions
 Functions can only be exported within the process space of an
application. This means that the Alias DLL and your component must
be running within the same process space as the calling function.

Page 93

 This means that you will not be able to run your component within
Visual Basic while another application calls exported functions in that
component. You must compile it into a DLL or OCX first.

 The following suggestions should help you with your debugging
process:

• Create test routines within your component that call the exported
functions in the standard modules directly. You can expose these
routines through a debugging object which can be accessed by a
standard project that you can load at the same time as your
component.

• Use the MessageBox commands, modeless forms and debug
monitors. (A separate application that has a public object which
has functions to display messages. Your component can access
that object and call its functions to display information in much
the same way that you would use a Debug statement.) These will
help you trace execution and information within your component.

 Distributing Your Component
Distributing the Alias DLL for VB 5 and 6
 You must distribute the Alias DLL with your component. Remember
that applications using your component must actually refer to the Alias
DLL - it will redirect the exported functions as needed. The Alias DLL
need not be in the same directory as your component.

 Your component must be registered in order for the Alias DLL to
work - it must find the dwExporter object in your component. The
Alias DLL itself need not (and in fact cannot) be registered.

Distributing the Alias DLL for .NET
 You must distribute the Alias DLL with your .NET assembly.
Remember that applications using your assembly must actually refer
to the Alias DLL - it will redirect the exported functions as needed.
The Alias DLL must be installed in the same folder as your assembly
or installed in a shared folder. Your .NET assembly must be installed
in the same folder as the calling application, or in the same folder as
the Alias DLL.

Page 94

 Warning! Exporting Functions is Dangerous!
 When you export a function from a DLL component you are providing
a function address which will be called directly by the calling
application or the system.

 The number of parameters and parameter types of your exported
functions must be correct - in other words, they must match exactly
what the calling application is using.

 If you get it wrong you will almost certainly trigger a memory
exception. There is no error checking provided by Visual Basic - this
is part of the nature of exporting functions.

 So double and triple check those declarations!

 Be sure that if you are exporting a function (as compared to a
subroutine) that you return the correct data type. Specifying the
incorrect data type can also trigger a memory exception.

 Be sure that your ActiveX DLL is marked for Apartment Model
multithreading if you expect it to be used by multithreaded clients.

 .NET assemblies should not throw errors to the caller. The client is
most likely not a .NET application and will not be able to handle the
errors. Our framework does forward any errors thrown to the calling
function, however you should assume that the caller will not handle it
and that this will actually result in a memory exception.

 It is important that you catch any errors raised in your code. We
recommend you return an error value, and possibly call the
SetLastError API function to provide additional error information to
the caller.

 Control Panel Applets and Multithreading Clients
in Visual Basic 5 and 6

 When a client is multithreading several issues come into play:

 It makes it more difficult for the Alias DLL to obtain the export
information from your DLL, since this operation depends on OLE and
Visual Basic's ability to handle multithreaded clients.

 The client thread calling the exported functions may not be the same
thread in which your DLLs objects are running, meaning that cross-
thread marshaling of data will be necessary.

Page 95

 If multiple threads in the client call your exported functions, you may
run into race or deadlock conditions, since Visual Basic does not
provide synchronization at this level.

 This situation also applies to control panel applets under Windows
95/98 and NT 4.0, since they run in different threads under Explorer.

 Writing Control Panel Applets with SpyWorks
Standard
 The SpyWorks\VB ? Samples\Export\CPApplet directory contains a
sample control panel applet. The module exports a single function
called CPlApplet. The CPLTest1 project also contains the main form
for the control panel applet. This is a change from the original
SpyWorks 5.0 release made possible by significant improvements in
Visual Basic's multithreading model included in Visual Studio Service
Pack #2.

 Effective as of the SpyWorks 5 Standard, we require that control panel
applets meet the following requirements:

• The applet DLL must be marked for Apartment Model
multithreading.

• The applet DLL must be compiled with Visual Basic 5.0 (with
Visual Studio 97 Service Pack 2 or later installed) or later.

Control panel applets that meet these requirements should run reliably
on Windows 95/98, Windows NT 3.51 and Windows NT 4.0 and later.

 It is also possible for your control panel applet to access a second DLL
or EXE server that will actually do the applet's work and contain any
necessary forms. This secondary object can be run in a separate
instance of Visual Basic, simplifying the job of debugging your
control panel applets.

 Note that Visual Basic's normal runtime error checking is not very
effective with API style callbacks (which is what an exported function
essentially is) - so be very careful not to try to call functions on an
empty object. If your DLL raises an error you will receive a message
from Explorer indicating that an error occurred in the control panel
applet. You may actually crash Explorer (which results in all of your
Explorer windows and the task bar vanishing. In most cases Explorer
will automatically reload in situations such as this).

Page 96

 Writing Control Panel Applets with SpyWorks
Professional
 SpyWorks Professional includes a framework for authoring control
panel applets that is similar to the technology used to create NT
services. As with services, it allows you to test and debug your control
panel applets using the Visual Basic IDE. This implementation
however, requires that you create your control panel applet on an NT
4.0 or later based operating system. Your control panel applet may be
deployed on Windows 95/98/ME and Windows NT 4.0 or later based
operating systems.

 Building a Control Panel Applet

 Building a control panel applet using this toolkit requires you take the
following simple steps:

1. Build the control panel framework CPL file using the Desaware
Control Panel Applet Wizard.

2. Create a new VB ActiveX DLL project (or modify the template
file provided). Perform the modifications listed later in this
section.

3. Test the control panel applet by running your VB ActiveX DLL in
the VB environment, then installing your CPL file.

 Refer to the online documentation for additional information
regarding building a Control Panel Applet using the Desaware Control
Panel Applet Wizard.

Page 97

SpyWorks Concepts: Interface Extensions and
Hooks

"ActiveX Extensions" is the term that we use to describe four closely
related technologies that are implemented by the dwAXExtn.dll
component in SpyWorks 5 and later:

• Ability to override the behavior of selected object interfaces.

• Ability to utilize objects through selected interfaces.

• Ability to implement custom and standard interfaces, including
those that are not automation compatible.

• Ability to utilize objects that are not automation compatible.

 We expect this component to ultimately prove as important to Visual
Basic programmers as a subclasser or hook control. It allows you to
overcome virtually all of the limitations from which Visual Basic still
suffers when compared to Visual C++ in regards to creating ActiveX
components or controls.

 You will find it considerably easier to understand these features if you
already have a background on COM and interfaces and creating
ActiveX controls and components. We recommend the book "Dan
Appleman's Developing ActiveX Components with Visual Basic 6.0:
A Guide to the Perplexed"3 which includes a solid introduction to
COM and interfaces designed for Visual Basic programmers (in other
words, it does not overwhelm you with implementation details in
C++).

 Upgrading from dwAxExt.dll to dwAxExtn.dll
 The dwAxExt.dll component provided in the initial release of
SpyWorks 5 has been superceded by a new version named
dwAxExtn.dll. This component is source code compatible, but you
will need to recompile your application or component in order to use
it. Because this new DLL has a new name, there is no risk of breaking
backward compatibility. This DLL adds the following new features:

3 Dan Appleman’s Developing ActiveX Components with VB 5.0: A Guide to the Perplexed
ISBN 1-53276-510-8 or Dan Appleman’s Developing COM/ActiveX Components with VB
6.0: A Guide to the Perplexed ISBN 1-53276-576-0.

Page 98

• Generic call capability allows you to call any method on any
object (including those that are not Automation compatible).

• Improved licensing allows you to redistribute the component with
your own components.

• This version has no additional dependencies and no longer
requires distribution of the MFC components.

To update to the new component perform the following steps:

1. Load the project that you wish to update.

2. Bring up the Project-References dialog box.

3. Uncheck the box titled "Desaware ActiveX Extension Objects".

4. Check to box titled "Desaware ActiveX Extension Library".

5. Recompile.

Introduction to Interfaces
If you find this section hopelessly confusing, we again encourage you
to refer to the book "Dan Appleman's Developing ActiveX
Components with Visual Basic 6.0: A Guide to the Perplexed"4. The
following few paragraphs summarize material that is covered through
hundreds of pages and dozens of examples in this book.

With Visual Basic 6.0, almost every language element that you deal
with is an object. Forms are objects, class modules are objects,
controls are objects, and there are a multitude of support objects such
as the Printer, App and Collection objects. All of these objects are
based on the Common Object Model, or COM for short.

When you have a reference to an object (in a variable dimensioned As
Object, or as a specific object type), you can't access the data in the
object directly. You can only do so by calling functions or accessing
properties belonging to the object. These are called the methods of the
object.

4 Dan Appleman’s Developing ActiveX Components with VB 5.0: A Guide to the Perplexed
ISBN 1-53276-510-8 or Dan Appleman’s Developing COM/ActiveX Components with VB
6.0: A Guide to the Perplexed ISBN 1-53276-576-0.

Page 99

An object does not expose all of its methods in one group - rather, it
divides them into groups called interfaces. Each interface contains
methods that are closely related to each other to provide some
functionality.

Every time you create a class with functions and properties, you are
defining an interface for the class. Interfaces that you create in your
own classes are custom interfaces. Windows also defines certain
standard interfaces that provide standard functionality, for example:
the IViewObject interface is used to display an object. Any object that
implements this interface can be displayed in a standard way by any
application that uses the object.

You can also conclude from this that it is possible for one object to
implement many different interfaces. For example: An ActiveX
control is nothing more than a COM object that implements a set of
standard interfaces that are required of any ActiveX control (for
example: every ActiveX control implements the interface
IOleControl). In Visual Basic you can implement multiple interfaces
in an object using the Implements statement.

Interfaces are uniquely identified by a 16 byte value called an IID
(Interface Identifier). This process is normally hidden to Visual Basic
programmers.

There are two standard interfaces that you should keep in mind:

• IUnknown is a standard interface that is a part of every other
interface.

• IDispatch is a standard interface that supports late binding - the
ability to determine at runtime the set of automation functions that
are supported and their parameters.

 The IDispatch interface is also called an "automation" interface.
Automation interfaces do not support all of the capabilities and
variable types that are possible under OLE. Visual Basic does not
support all of the capabilities and variable types that are possible even
under automation interfaces.

Page 100

 Overriding Interfaces
 One of the reasons that Visual Basic is the easiest Windows
programming system to use is that it encapsulates much of the
functionality of Windows into the language itself. Visual Basic
handles many low level tasks for you automatically. However, because
of this, you tend to be limited by that very implementation.

 For example: the Visual Basic property window displays the value of
properties for ActiveX controls that you author using Visual Basic.
But what if you wish to override that behavior and display other
information? This capability is used by the picture property of a
control, where the property window can display the words (bitmap),
(icon), or (none) in the property window instead of an image. But
Visual Basic does not provide a way for you to customize the display
yourself.

 The Visual Basic property window display is handled by having each
control expose an interface called IPerPropertyBrowsing. This
interface also allows a control to create custom drop down lists in the
VB property window for any property. But Visual Basic does not
allow you to control the behavior of this interface, so you are limited
by the implementation built into Visual Basic - which displays the
value of a property or a drop down enumerated list based on an
enumerated variable.

 The dwAxExtn.dll component allows you to override certain methods
in selected interfaces such as IPerPropertyBrowsing. The component
does not replace the interface - doing so would interfere with Visual
Basic's normal operation. It does, however, allow you to intercept
certain method calls to add your own functionality as needed.

 Referencing Non-Automation Compatible Interfaces
 How can you handle cases where you wish to work with an object that
exposes an interface that is not automation compatible? There are two
issues to consider here:

• The interfaces do not have a public type library. This means that
even though the interface is theoretically compatible with Visual
Basic, VB does not have a way to determine the methods and
parameters of the interface, so it is unable to call them. This may
occur because the interface is hidden, or a type library for the
interface is unavailable.

Page 101

• The interface has methods with parameters or properties that are
not compatible with automation or one of Visual Basic's data
types.

 The most reliable way to handle these situations is that used by the
dwAxExtn.dll component and the dwEasy3x.ocx control. These
components create separate objects that provide an interface layer to
the object with the incompatible interface.

 There is another approach that will work in some cases, but at greater
risk.

 How to Avoid Corrupting Your System Registry
 You can use the MIDL compiler included with Visual Basic
Professional to create a type library that defines a standard interface.

 If the interface is already compatible with Visual Basic, there is no
problem with this approach (other than the usual complexity of
creating an IDL file), but most compatible standard interfaces are
public anyway, so this is not particularly useful.

 A second approach is to create and register a type library that changes
the definition of a standard interface to use method parameter and
property types that are compatible with Visual Basic.

 We at Desaware strongly discourage this approach.

 Changing the meaning of a standard interface can seriously interfere
with the behavior of other applications on your system. All of our
products and our own in-house design philosophy are based on
minimizing the impact of our tools on the system and providing the
highest possible degree of compatibility. We would never permit a
developer to redefine a standard interface on any of our systems, and
thus do not recommend this approach for others. It's a hack.

 If, however, you choose to take this approach, under no circumstances
should you ever distribute the new type library with your application.
From our perspective this is roughly the equivalent of distributing a
virus. It can interfere with the normal behavior of Windows
components (and it's hard enough getting them to all work properly
together in the first place).

Page 102

Implementing Standard and Non-Automation Compatible
Interfaces

 It is one thing to reference standard or non-automation compatible
interfaces in other objects. Adding these interfaces to your own objects
is another matter entirely. For example: if you wish to distribute
ActiveX controls over the Internet, it is important to be able to mark
whether the control is safe to load and safe to run. There are two ways
to do this: you can mark the control's safety level in the registry during
installation, or you can build an interface called IObjectSafety into
your object. The advantage of this latter approach is that you can
create controls that are safe when used in a browser but provide full
functionality when used in an environment such as Visual Basic.

 The dwAxExtn.dll component provides two approaches for
implementing interfaces:

• An easy to use implementation of selected standard interfaces
such as IObjectSafety.

• A general purpose way of implementing any interface that is more
flexible, but harder to use.

Declaring and Initializing the dwAxExtn.dll Component
Regardless of whether you are using the component to override an
interface, reference a standard interface or implement a new interface,
the first steps are the same.

1. Dimension a dwControlHook object as follows:

Dim ControlHook As dwControlHook

 You do not need to dimension this WithEvents. The
dwControlHook object does not raise events. You must have one
(and only one) dwControlHook object in existence throughout the
lifetime of the object that you are extending.

2. Create the dwControlHook object during the object's Initialize
event as follows:

 Set ControlHook = New dwControlHook
ControlHook.Initialize Me
ControlHook.EnableComponent("…. license key …")

Page 103

 The first line creates the object. The second line performs the
necessary initialization and installs all necessary hooks. How does
the component know which hooks to add? That's in the next step.
The third line allows you to pass a license key to the component
in cases where you wish to distribute it for use with ActiveX
controls or other in process components (it is not required for
executables). Refer to the section on component licensing for
details.

3. Add zero or more Implements statements to implement
dwAxExtn.dll interfaces. For example: to hook the
IPerPropertyBrowsing interface, you would add the following
line at the top of your form, class, UserDocument or UserControl
object:

Implements IdwPerPropertyBrowsing

4. The dwAxExtn.dll component exposes a number of interfaces
through which you implement your desired extensions. The
component automatically determines which of these interfaces
you have implemented during initialization, and enables those
features. This approach is both easy to use, and extremely
efficient, since it allows all of the functionality provided by this
component to be early bound (which offers the best possible
performance).

5. Create additional objects from dwAxExtn.dll as you need them.
Objects might include the dwEnumerator object, or the
dwGenericCall object.

6. Add code for each method of the interfaces that you have
implemented. This will be described in the following sections for
each interface.

7. Destroy the dwControlHook object during the object's Terminate
event as follows:

Set ControlHook = Nothing

All of the examples in the on-line Help file assume that you have left
the base index of all arrays at zero.

Page 104

Interface overrides supported in this release of SpyWorks include:

Object Description

IPerPropertyBrowsing Controlling the VB Property window.

IOleControl Trapping Enter keys and detecting
changes in container freeze status.

Non-Automation objects exposed in this release of SpyWorks
include:

Object Description

dwEnumerator Adds For…Each capability to any object
(including arrays).

dwGenericCall Allows you to call methods on any object
including those that are not automation
compatible.

dwMalloc Work with objects that expose the IMalloc
interface to manipulate blocks of memory.

dwShellLink Create, edit and view file system shortcuts
(See dwEasy3x.ocx).

Standard/Custom interfaces supported in this release of
SpyWorks include:

Object Description

IobjectSafety Create dual mode controls (safe on the
Internet, full featured otherwise).

IdwCustomOleHook Allows you to implement ANY interface,
automation or non- automation compatible,
as part of any VB object.

Page 105

Inside the SpyWorks Interface Extensions
An article by Daniel Appleman

Can one component make it possible to both implement and call
any OLE interface even if it is not automation compatible? Find
out in this technical white paper.

SpyWorks contains a new component called the Desaware ActiveX
Extension Library. This component follows in the tradition of many
Desaware products – a very cool technology that provides features that
many Visual Basic programmers do not even realize are possible. The
purpose of this paper is to introduce some of the ideas behind this
technology and how you can use it to do virtually anything in OLE
from Visual Basic.

This paper presumes that you have are familiar with COM (the
Component Object Model) at least to the degree in which it is covered
in part I of my recent book: "Developing ActiveX Components with
Visual Basic 6.0: A Guide to the Perplexed"5. This section introduces
COM from the perspective of Visual Basic programmers.

Additional information on objects, interfaces and COM can be found
in the on-line reference for the dwAxExtn.dll component.

The COM Contract
A Visual Basic application or component is made up of COM objects.
These objects can take many forms. Every class object that you create
is a COM object. So are forms and controls. Every time you create an
object from a component or system library, you've created a COM
object.

Each object has methods available – the functions and properties that
you can use to program the object. These methods are grouped
together into interfaces. Each interface has a specific set of methods.
An object can implement any number of interfaces.

5 Dan Appleman’s Developing ActiveX Components with VB 5.0: A Guide to the Perplexed
ISBN 1-53276-510-8 or Dan Appleman’s Developing COM/ActiveX Components with VB
6.0: A Guide to the Perplexed ISBN 1-53276-576-0.

Page 106

Your application typically accesses these objects through an object
variable – a variable that is defined 'As Object', or as a specific object
type. Each object variable contains a reference to a single interface on
the object.

You can switch between interfaces by assigning one object variable to
another type of object variable. For example, the code:

Dim ObjectRef1 as MyClass1 ' ObjectRef1 can only reference the
MyClass1 interface.
Dim ObjectRef2 as OtherInterface ' ObjectRef2 can only reference
an interface called OtherInterface.
Set ObjectRef1 = New MyClass1 ' MyClass1 is the name of the
main interface for the MyClass1 object.

What happens when the following line is executed?

Set ObjectRef2 = ObjectRef1

If the MyClass1 object uses the Implements statement to support the
"OtherInterface" interface, this code will work. Otherwise it will fail.
You see, every COM interface has a function called QueryInterface
that allows one interface to request a reference to another interface. It
also has the functions AddRef and Release which are used for
reference counting so that objects can be deleted when they are no
longer used. These three functions: QueryInterface, AddRef and
Release form an interface called IUnknown, which must be supported
by every object.

Not only that, but the IUnknown interface is a part of every other
interface – thus those three functions define the first three functions of
every interface.

There is one more thing that you must keep in mind when dealing with
interfaces. While you can and certainly will define your own
interfaces, Windows defines many standard interfaces as well –
IUnknown is just one of many. Standard interfaces are important
because they define ways that clients can work with object without
knowing additional details about the object. For example: every object
that implements the interface IPersistStream has the ability to save and
create itself from a stream – a special kind of storage space that is part
of OLE structured storage specification. An application that uses OLE
structured storage can store any object that implements this interface –
it doesn't need to know details about the object. T

Page 107

hat's how an application such as Microsoft Word can store data types
ranging from sound to video to proprietary graphic objects. It doesn't
need to know anything about the object itself. All it needs to do is ask
the object for an IPersistStream interface. If it has one, Word can save
the object. It's that simple.

The Two Sides of COM
The above description is, of course, very cursory. If you find it
unclear, I strongly encourage you to find out more about COM . It
should, however, be enough to communicate a key point when it
comes to dealing with objects and interfaces.

When it comes to addresses use of objects from Visual Basic, we are
actually concerned about two different issues.

First: How do you implement and interface in your object. In other
words – how do you make it so that a client using your object can
obtain an interface to that object. How could you, for example,
implement the IPersistStream interface to your object?

Second: How do you call the methods on an interface once you have a
reference to that interface? For example: If your Visual Basic object
could implement the IPersistStream interface, how would it call the
functions on the stream object itself given a reference to its IStream
interface?

Visual Basic provides some support for both of these. You can
implement some interfaces using the Implements statement. And you
can call methods on many types of objects. But you can't implement
every interface, and you can't call the methods on every type of object.

Why not?

The major reason is that Visual Basic does not support all of the data
types that are supported by COM. For example: Visual Basic does not
have an unsigned long data type. COM demands strong type checking,
so Visual Basic simply assumes that it can't implement an interface if
it finds a function in it that has an unsigned long parameter. Visual
Basic also limits itself to data types that are compatible with OLE
automation. OLE automation provides a flexible way for clients to
find and call a set of available methods at runtime. This kind of call is
handled by a special interface called IDispatch. But functions and
properties that can be called through IDispatch can't handle every
COM data type. If an interface only uses that subset of data types that

Page 108

IDispatch supports, it is called OLE automation compatible. Visual
Basic can only implement interfaces that are automation compatible.

The same applies to calling methods on an interface. In order for
Visual Basic to implement or create an object of a particular interface
type, the interface must be publicly defined in a type library, and it
must be automation compatible.

Hacking Further
Now, before I go further, I should mention something important about
Desaware's philosophy towards extending Visual Basic. We specialize
in advanced low level Visual Basic techniques. Many of the
techniques that we describe are "dangerous" in the sense that you are
very likely to see application crashes and possibly system crashes
during the development process. But as a result, we take an extremely
paranoid approach both to our components and to the ways that we
advocate that they be used. We know that our customers are
professionals, and that any approach that we advocate must do more
than work correctly. It should also meet the following requirements:

• Follow all ActiveX/OLE, Windows and COM rules of the road.

• The code we recommend should be clear and readable, and
supportable on the long term.

• The code and components should not interfere with the operation
of other applications or the system.

• The code and components should not interfere with Visual Basic's
IDE. You should still be able to break and step through your code.
The stop button should not crash Visual Basic.

• The solution should be economical. The cost of the entire package
should be far less than it would cost to develop a solution on your
own.

• On those rare occasions where we must break one of these rules –
we document it and warn people about the consequences of this
choice.

 Some of the techniques that I'm about to describe can be implemented
using pure Visual Basic. Some of the techniques that may be used
include:

Page 109

• Creating a type library that modifies the definition of a system
interface to be automation compatible.

• Using the AddressOf operator and memory copying to overwrite
internal function table pointers.

 Perhaps I'm paranoid, but I simply don't believe in redefining standard
system interfaces. You see, it's almost impossible to know when the
new definition might interfere with the normal operation of another
application. And how can you be sure that the redefined type library
will never get off your development system and spread among other
systems on your network or to customer sites? In these days of rapid
change, it's hard enough getting Windows applications and
components to play together reliably anyway. I don't trust myself to
remember to undo these types of changes. So I'd rather avoid them in
the first place. SpyWorks does not modify any standard interfaces or
type libraries.

 The SpyWorks code that you'll see does make use of the AddressOf
function, and it does perform some function table pointer manipulation
internally. But it does so in an extremely paranoid manner, with great
care to keep reference counts accurate and to minimize the impact on
Visual Basic. You'll find that our interface extension technology in
most cases does not interfere with your ability to take full advantage of
Visual Basic's development environment. Finally, SpyWorks makes
interface extensions easy to do – a matter of minutes in most cases,
and as easy as declaring API functions in others.

 To demonstrate this approach, let's take a look at a very simple
interface called IObjectSafety. This interface is used by controls to
report whether they are safe to run in a web browser.

 The interface is defined as follows:

 // Option bit definitions for IObjectSafety:
 #define INTERFACESAFE_FOR_UNTRUSTED_CALLER

0x00000001 // Caller of interface may be untrusted
 #define INTERFACESAFE_FOR_UNTRUSTED_DATA

0x00000002 // Data passed into interface may be untrusted

 // {CB5BDC81-93C1-11cf-8F20-00805F2CD064}
 DEFINE_GUID(IID_IObjectSafety, 0xcb5bdc81, 0x93c1, 0x11cf,
0x8f, 0x20, 0x0, 0x80, 0x5f, 0x2c, 0xd0, 0x64);

 interface IObjectSafety : public IUnknown

Page 110

 {
 public:
 virtual HRESULT __stdcall GetInterfaceSafetyOptions(
 /* [in] */ REFIID riid,
 /* [out] */ DWORD __RPC_FAR *pdwSupportedOptions,
 /* [out] */ DWORD __RPC_FAR *pdwEnabledOptions) = 0;

 virtual HRESULT __stdcall SetInterfaceSafetyOptions(
 /* [in] */ REFIID riid,
 /* [in] */ DWORD dwOptionSetMask,
 /* [in] */ DWORD dwEnabledOptions) = 0;
 };

 The operation of this interface (what the various functions do) won't
be covered here – you can find the explanation in my ActiveX book.
You don't need to know what they do in order to learn how to handle
them in Visual Basic.

 This interface suffers from several problems from the Visual Basic
perspective. Though a standard interface, most Windows systems do
not include a type library for the interface. Even if they did, the
interface as defined here uses DWORD data types – an unsigned long
type that is not compatible with Visual Basic. The REFIID type is
actually a pointer to a 16 byte GUID value, which also is not an
automation data type.

 Implementing IObjectSafety – The Easy Way
 SpyWorks interface extensions are implemented using the
dwAxExtn.dll component. First you must add a reference to the
Desaware ActiveX Extension Objects Library to your application.
You'll use the dwControlHook object to enable the interfaces that you
want to implement. Each interface is implemented with the aid of a
Desaware defined interface called IdwCustomOleHook. You'll also
need an array to hold the GUID values of the interfaces that you're
implementing.

 The following declarations will typically appear in the module
declaration level of the class or control that you are defining:

 Implements IdwCustomOleHook
 Dim Interfaces(15, 1) As Byte
 Dim ctlhook As dwControlHook

Page 111

 When you initialize the object, you'll do the following:

 Set ctlhook = New dwControlHook
 Call ctlhook.Initialize(Me)

 This code creates the main dwControlHook object and passes it a
reference to the object itself using the Initialize method. The first thing
that this method does is query the object using QueryInterface to see
which ActiveX extension interfaces you have decided to implement.
The IdwCustomOleHook interface that is implemented in this example
has the ability to allow you to implement any interface in your
application. So the object begins by calling methods on the
IdwCustomOleHook interface to find out about the interfaces that you
want to implement.

 It calls the IdwCustomOleHook_GetInterfaceCount interface to allow
you to tell the object how many interfaces you wish to implement. In
this case, only one interface (IObjectSafety) is implemented as
follows:

 Private Sub IdwCustomOleHook_GetInterfaceCount(iCount As
Long)
 iCount = 1
 End Sub

 The dwControlHook object needs to know which interfaces you wish
to implement. You can specify them by name or by GUID using a
standard string format. IObjectSafety is rarely registered as a standard
interface, but you can see below how you could specify IOleWindow
just by providing the name of the interface. The dwControlHook
object will search the registry for the interface identifier. In this
example, we use the IObjectSafety GUID obtained from the C
declaration shown earlier. This method will be called once for each of
the interfaces that you defined based on the count you specified
earlier.

 Private Sub IdwCustomOleHook_GetInterfaceName(ByVal
InterfaceNumber As Long, InterfaceName As String)
 If InterfaceNumber = 0 Then
 ' InterfaceName = "IOleWindow"
 InterfaceName = "{cb5bdc81-93c1-11cf-8f20-00805f2cd064}"
 End If
 End Sub

Page 112

 You need to specify a location to store all of the interfaces. It can be a
memory buffer or a byte array. In this example we just use a byte array
that is defined to be large enough to hold all of the interfaces. The
VarPtr operator retrieves the location of the start of that buffer. We
decided to store the interfaces with the object in this manner so that
you could easily obtain the actual GUID, or set it manually if you
prefer to do so.

 Private Sub
IdwCustomOleHook_ReferenceInterfaceIID(IIDPointer As Long)
 IIDPointer = VarPtr(Interfaces(0, 0))
 End Sub

 Now you need to provide the addresses of the functions for each
interface. The GetAddress function shown below allows you to obtain
the address of a function using the AddressOf operator.

 Private Function GetAddress(ByVal addr As Long) As Long
 GetAddress = addr
 End Function

 The IdwCustomOleHook_GetInterfaceVtbl requests the functions for
each of the functions in the interface. You don't need to provide the
standard IUknown functions – they are handled automatically.

 Private Sub IdwCustomOleHook_GetInterfaceVtbl(ByVal
InterfaceNumber As Long, FunctionAddresses() As Long)
 ReDim FunctionAddresses(1)
 FunctionAddresses(0) = GetAddress(AddressOf GetOptions)
 FunctionAddresses(1) = GetAddress(AddressOf SetOptions)
 End Sub

 The GetOptions function demonstrates a typical implementation
function. The first parameter is always the object itself. The IUnknown
object type is the lowest level generic object point – since every
interface includes IUnknown, this object type is guaranteed to work
with any interface. You can then easily set it into a variable that is
defined 'As Object' or to your own object type, and call methods on
the object directly.

 Public Function GetOptions(ByVal obj As IUnknown, ByVal riid
As Long, X1 As Long, X2 As Long) As Long
 Dim objmine As YourObject

Page 113

 Set objmine = obj
 ' Perform operation here
 End Function

 This is a key feature to the SpyWorks approach to implementing
interfaces. Since you can immediately access the actual object, the
amount of code implemented in your global module can be reduced to
an absolute minimum. This keeps your program highly modular,
making it more readable and supportable in the long term.

 That's all there is to it. The dwControlHook object works by hooking
the QueryInterface functionality of your object, but it doesn't interfere
with the object's normal operation.

 What if the interface uses a non OLE automation type? It doesn't
matter. You'll use standard Visual Basic data types in the functions
that you implement. It's up to you to correctly interpret the meanings
of those variables. For example: the riid parameter in this case is a
long value that contains a pointer to a 16 byte buffer containing the
identifier of the interface that this function is testing. It turns out that
for most applications of the IObjectSafety interface, you won't use this
parameter at all. But you could easily use a memory copy function to
copy the data from the address provided in this variable to a byte
array, and thus access the data in Visual Basic. These types of data
conversions and manipulations are routine to VB programmers who
use the Win32 API. Many of them are discussed in my book "Dan
Appleman's Visual Basic Programmer's Guide to the Win32 API".

 Implementing IObjectSafety – The Easier Way
 As easy as the generic implementation approach is, there are a number
of interfaces that we tried to make even easier to handle by building
direct support for those interfaces into the dwControlHook object.
IObjectSafety is one of these.

 Instead of implementing the IdwCustomOleHook interface, you can
simply interface the IdwObjectSafety interface. The dwControlHook
object will discover that you've implemented this interface when it is
initialized and will handle all of the interface manipulation directly.
 All you need to do is implement the
IdwObjectSafety_GetInterfaceSafetyOptions and
IdwObjectSafety_SetInterfaceSafetyOptions in your object directly.
No need to specify GUID's, or create module level functions.

Page 114

 Dim ControlHook As dwControlHook
 Implements IdwObjectSafety

 Set ControlHook = New dwControlHook
 ' Set up the control hook
 Call ControlHook.Initialize(Me)

 Private Sub IdwObjectSafety_GetInterfaceSafetyOptions(ByVal
pIID As Long, SupportedOptions As Long, EnabledOptions As
Long)
 ' This control is always safe for initialization and safe for
scripting
 SupportedOptions = DwAXExt.dwSafeToInitialize Or
DwAXExt.dwSafeToProgram
 EnabledOptions = SupportedOptions
 End Sub

 Private Function
IdwObjectSafety_SetInterfaceSafetyOptions(ByVal pIID As Long,
ByVal OptionMask As Long, ByVal EnabledOptions As Long) As
Boolean
 ' We're always safe, so just return True
 IdwObjectSafety_SetInterfaceSafetyOptions = True
 End Function

 The dwAxExtn.dll object supports a number of standard interfaces
directly including IPerPropertyBrowsing, IEnumVariant and
IOleControl.

 Calling Generic Interfaces
 You've seen how an object can implement the IObjectSafety interface.
What if you have an object reference and you want to obtain an
IObjectSafety interface for the object and call the methods of that
interface?

 We spent a great deal of time trying to choose the most reliable way to
generically call any method on any interface. The one we chose turned
out to be the simplest, and has the advantage of running flawlessly
both in the design environment and in compiled applications.

Page 115

 After adding a reference to the dwAxExtn.dll object, you must create
a dwGenericCall object for each object that you wish to call. Let's say
you have object "TargetObj" which implements IObjectSafety.

 Dim gencall As dwGenericCall
 Dim TargetObj As IUnknown

 When you're ready to work with the object, you would have the
following code:

 Set TargetObj = Some function that returns an object interface.
The interface need not be IObjectSafety.
 Set gencall = New dwGenericCall
 Call gencall.SetInterfaceInfo("{cb5bdc81-93c1-11cf-8f20-
00805f2cd064}", TargetObj)
 Set TargetObj = Nothing

 The SetInterfaceInfo method does two things. First, it lets you specify
the interface that you want to call. The format is the same one used
earlier in the IdwCustomOleHook interface – you can provide the
interface name, or the interface identifier in string format. You also
provide it with the object itself. You can delete the object at this point.
The dwGenericCall object will hold a reference to the object until you
delete it.

 The next step is an interesting, but effective trick. The dwAxExtn.dll
DLL contains an entry point called dwGenericCall which can be called
directly from Visual Basic using standard declaration techniques. You
should create a separate alias for each function that you want to call,
but they all use the same entry point "dwGenericCall". The first
parameter is a special long parameter called ObjectReference – more
on this later. The rest of the parameters are the parameters you would
use if the method was an API call. You use standard API declaration
techniques to define the VB equivalents for each data type. The
examples for IObjectSafety are shown below.

 Declare Function GetOptionsCall Lib "dwaxextn.dll" Alias
"dwGenericCall" (ByVal ObjectReference As Long, ByVal riid As
Long, X1 As Long, X2 As Long) As Long

 Declare Function SetOptionsCall Lib "dwaxextn.dll" Alias
"dwGenericCall" (ByVal ObjectReference As Long, ByVal riid As
Long, ByVal X1 As Long, ByVal X2 As Long) As Long

Page 116

 I know it looks strange, but yes – you can specify as many parameters
as you need for the function call. The dwAxExtn.dll function fixes
things up internally so that as long as you define the declaration
correctly for the interface method you are calling, the parameters will
all arrive in the right place and the internal stack will clean be cleaned
up properly when the call returns!

 The call itself is trivial. The only trick is the first parameter. You pass
the function the result of the dwGenericCall object's
GenericCallReference method, passing the position of the desired
method as a parameter. The GetInterfaceSafetyOptions method of the
IObjectSafety interface is the third method on the interface
(remember, the first three, numbered zero through two, are
QueryInterface, AddRef and Release – from the IUnknown interface).

 Call GetOptionsCall(gencall.GenericCallReference(3), &H5555, l1, l2)
 Call SetOptionsCall(gencall.GenericCallReference(4), &H6666, 8, 9)

 That's all there is to it. The first of these is equivalent to calling the 3rd

method of the original TargetObj function with parameters &H5555,
11, and 12. These particular values are, of course, meaningless for this
particular interface - which only emphasizes the fact that this is a truly
generic calling scheme. The values that you pass and their meanings
are entirely your responsibility.

 There are many situations where OLE functions and interfaces give
you interface references to standard interfaces such as IStream,
IMalloc, IStorage and others. The generic call capability shown here
allows you to easily work with those interfaces without worrying
about side effects.

Page 117

SpyWorks Concepts: Winsock - Internet/Intranet
Programming
(Professional Edition Only)

 There are dozens of controls available to add Internet and Intranet
features to your application including several controls that are part of
the Visual Basic package. All of these controls suffer from the same
limitations of every other control - you are tied down to the features
that are offered by the control. Even the most powerful controls rarely
expose all of the capability of the underlying Winsock API.

 SpyWorks offers a different approach.

 The dwSock.dll component has several unique characteristics:

• It provides a great deal of low level access to the underlying
Winsock API.

• It is written in Visual Basic.

• It includes complete source code.

 This edition of SpyWorks includes the dwSock component that is
designed for version 1.1 of Winsock.

 How to Approach the Winsock Package
 This component can be as complex or a simple as you need it to be.

 What does this mean?

• If all you want to do is read FTP or web sites, you can use the
dwFTPclient or dwHTTP10 objects to perform most operations
with very little effort.

• If you want to create some typical sockets for use as server or
client applications, you'll find it almost as easy using the
dwSockets and dwSocket object.

 But this component really was designed for advanced users who really
want full control over the Winsock subsystem. So things can get
complex very quickly. Don't let the documentation here (which is
certainly sparse considering the scope of the subject) intimidate you.
Your best source of information will be the sample programs that
demonstrate how to perform common tasks.

Page 118

 Important Note Regarding Support For This
Component

 The Winsock API is quite large and fairly complex. The dwSock
component provides a fairly complete wrapping of the Winsock API.
If you find any errors in any of the methods of properties of this
component, please bring them to our attention and we will correct
them as quickly as possible.

 Note, however, that we assume that people using this component are
reasonably knowledgeable with regards to Winsock programming.
Desaware cannot at this time provide additional documentation or
training on Winsock programming or particular applications or
protocols that use this type of programming. Nor can we provide aid
with regards to obtaining an Internet connection, configuring networks
or servers, or other system administration tasks.

 In other words, while we have provided some simple examples that
you can use to perform common tasks (such as perform name
resolution, retrieve a file via FTP or retrieve a web page), we do
expect that you will have to learn the principles of Winsock API
programming and TCP/IP from other sources if you wish to perform
more sophisticated tasks. Entire books have been written on these
subjects, and we simply cannot cover that much material in this
documentation.

 Learning Winsock
 A complete description of sockets and the Winsock API is far beyond
the scope of this document. You will need to be familiar with the
fundamentals of Internet programming in order to take full advantage
of this component.

 The Winsock API documentation in the Win32 SDK or MSDN CD-
ROM library will prove useful.

The book "Visual Basic 4.0 Internet Programming" by Carl Franklin
(ISBN 0-471-13420-1) or "Visual Basic 6.0 Internet Programming" by
Carl Franklin (ISBN 0-471-31498-6) contains an excellent
introduction to Internet programming.

 The Microsoft Developer's Network CD-ROM includes the complete
Winsock specification. This component is written to version 1.1 of the
specification.

Page 119

 Meanwhile, here are a few introductory concepts to help you get
started.

 IP Addressing
 Every system on the Internet has a unique address. This address is
called an IP address (which stands for Internet protocol). The address
is currently 32 bits long.

 When you contact a system, such as www.desaware.com, the name
"www.desaware.com" identifies a system, but is not the actual IP
address. This kind of identifier is also called a URL or Universal
Resource Locator (for reasons that are probably well known to Internet
mavens but are totally irrelevant for this discussion). When you
request this site, your system uses the name resolution capabilities of
the Winsock API to look up the IP address assigned to that name. This
lookup might actually involve a search of many systems over the
Internet - but that takes place behind the scenes. In this case the
Winsock functions would tell you that the IP address of
www.desaware.com is 206.169.23.2. These numbers represent four
bytes of data which form a 32 bit IP address.

 The order of bytes in the 32 bit long address is important. The Internet
defines a specific order called the "network order" for the bytes, but
your system may pack bytes into a long variable in a different order,
depending on the processor you are using. This order is called the host
order. Winsock provides functions that allow you to convert host order
data into network order data, so you can use your computer's natural
ordering until right before you use the address.

 Ports
 Let's say you want to connect to a system. You have the other system's
IP address and you send it a message telling it that you want to make a
connection. How does the system know what type of connection you
are making? Are you trying to transfer a file using FTP or request a
web page? And what if many systems are requesting connections at
once - how does the system keep track of the connections?

Page 120

 These problems are solved by having each system support multiple
ports. A port is just a number that identifies a connection point to the
system. Some port numbers define standard types of connections. For
example: if you connect to a system at port 21, you are requesting an
FTP connection. Port 80 is a HTTP request (HTTP is the world wide
web protocol).

 Every connection thus has the following attributes:

• A source IP address (your system's address).

• A source port (the port that you are using for the connection).

• A destination IP address (the address of the system to which you
are connecting).

• A destination port (the port that you are connecting to on the
destination system).

 All four of these attributes form a unique connection.

 A connection is made up of two sockets, one on each system. The
socket is defined by an IP address and port combination.

 When a client system requests an FTP connection it first creates a
socket on its own system using an available port number over 1025. It
then attempts to connect to port 21 on the server system.

 Meanwhile, the server has created a socket that is bound to port 21
using the Bind function, and told to listen using the Listen function.
When the server is notified that a client has requested a connection,
the server creates a new socket at an available port number and
connects that socket to the client's socket. This leaves the original
server socket available to listen for further connections.

 UDP and TCP
 There are two protocols that are commonly used by socket connections
(though others are supported). UDP is a connectionless protocol. This
means that when you send data across a UDP socket, you can't be
certain that the data will actually arrive, and no error will be generated
if it does not. TCP sockets form reliable connections, meaning that
data is guaranteed to arrive at the destination - if it does not, an error
will be reported.

Page 121

 Most of your internet programming will probably use TCP (the FTP
and HTTP protocols both use it), but UDP does have its uses. It is
much more efficient, for example, and is ideal for situations where lost
data is not a big issue, such as some audio data streams.

 dwSock Architecture
 The most important objects in the dwSock component are the
dwSockets object and the dwSocket object.

 The dwSockets object initializes the Winsock system and keeps track
of all of the sockets that you have in use. You will usually use only
one dwSockets object, though higher level objects may create and use
their own dwSockets objects as well to manage their own set of
sockets. If you are using the dwSock package from a multithreaded
client (such as an ActiveX control marked for apartment model
threading) you will create a separate dwSockets object in each
apartment. This component is not designed for free threading.

 The dwSocket object represents an individual socket. Its methods
correspond to Winsock API commands that control individual sockets
(and take socket handles as parameters). This is the object that you
will actually use to perform data transfers.

 The Desaware Winsock Component is designed to take full advantage
of the asynchronous features of the Winsock DLL. This means that
most requests simply start a background operation. This is the only
way to provide reasonable performance with multiple connections -
otherwise a data request could block all other sockets in use by the
application. The dwSockets object raises events when background
operations finish, passing the appropriate object to the client as an
event parameter. All of the work of keeping track of which operation
refers to which socket, is handled by the component.

 The dwSocketUtil object includes a number of utility methods that
simply wrap some useful Winsock API functions. It allows you to
request various types of information from the internal Winsock
database. For example: you can obtain information about a service by
requesting a dwServEnt object. Information about protocols can be
determined by requesting a dwProtEnt object.

 The dwHostEnt object identifies a computer, both by URL and by IP
address, and is generally obtained by one of the name resolution
functions in dwSockets or dwSocketUtil.

Page 122

 The dwAsyncSocket object manages all of the background operations
for sockets. You will probably never use this object directly, as it is
designed to be used by the dwSockets object.

 The dwUDP and dwTCP objects provide a higher level interface to the
Winsock package. You will typically use them instead of a dwSockets
object.

 The dwFTPclient and dwHTTP10 objects provide easy to use FTP
client and HTTP data transfers. These are likely to be the objects that
you will use most often in real operations.

 Refer to the Winsock specification for a complete list of Winsock
errors. The constants for these errors start with the prefix WSA and
can be found in the GlobalInfo standard module. The dwSock.dll
object can also raise the following errors:

ERR_INVALIDPARAMETER =
vbObjectError + 513

An invalid parameter was
passed to a method.

ERR_CMDSTATEERROR =
vbObjectError + 514

You requested an operation that
is not valid for the current
object state.

ERR_HOSTFILEERROR =
vbObjectError + 515

A host file error occurred.

ERR_INVALIDHTTPURL =
vbObjectError + 516

An invalid URL format was
passed to a URL parameter.

Dependencies:
The dwSock.dll component requires that you distribute the following
additional components:

dwspyvb.dll
(dwSock6.dll
requires
dwspyvb6.dll
instead)

The Desaware Windows Utility component.

dwspy5.dll A utility DLL used by dwspyvb.dll.

SockIntf.dll A DLL that is required as an interface to Winsock in
order to retrieve accurate error status information.

Page 123

SMTP
The dwSMTP component is an extension component to the dwSock
component that implements the Simple Mail Transport Protocol
(SMTP). This is the standard mail protocol that is used by virtually all
Internet TCP based Email systems.

Like the dwSock component, the dwSMTP component provides a
great deal of flexibility. It is easy to use in the form provided, however
requires a high familiarity with the SMTP protocol if you wish to go
beyond the functionality provided. Full source code for the component
is also included.

Using the Winsock Package
Additional examples are included with this package including a simple
FTP client and a demonstration of direct use of sockets. Full
documentation on the WinSock class objects are found in the
SpyWorks Help file.

Winsock Utility Functions
Obtaining Winsock Version Information
Create a dwSockets object, then use it's SocketData property to access
the dwSocketInfo object which contains information about the current
Winsock system. From SktTst1.vbp

Dim skt As New dwSockets
Debug.Print "Current version: " &

Hex$(skt.SocketData.CurrentVersion)

Obtaining Your Host Name
The following code demonstrates how to retrieve your computer's
name using Winsock. The dwSocketUtil object provides a number of
utility functions.

Dim skt As New dwSockets
Dim su As dwSocketUtil
Set su = skt.Util
Debug.Print su.gethostname()

Page 124

Determine the Standard Port Number of a Service
First create a dwSockets object. Next use it's dwSocketUtil object (via
the Util property) to perform a getservbyname operation, in this case
on the "FTP" service. If the operation succeeds, it will display the port
number, which in this case is 21.

Dim s As dwServEnt, x As Long
Dim su As New dwSockets
Set s = su.Util.getservbyname("ftp", "")
If Not (s Is Nothing) Then
 Debug.Print "Name: " & s.Name
 For x = 1 To s.AliasCount
 Debug.Print.Alias(x)
 Next x
 Debug.Print "Port: " & s.Port
 Debug.Print "Protocol: " & s.Protocol
Else
 Debug.Print "No info on: " & TextServ.Text
End If

Perform an Asynchronous Name Resolution
This example from the SockTst2 application demonstrates how names
can be resolved.

At the module level define:

Dim WithEvents skt As dwsockets

Start the operation thus:

Dim hndasync&
hndasync = skt.WSAAsyncGetHostByName("www.desaware.com")

One of the following two events will be raised:

Private Sub skt_AsyncError(ByVal AsyncHandle As Long, ByVal
Errval As Long)

 Debug.Print "Async Error: " & AsyncHandle & " #: " & Errval
End Sub
Private Sub skt_HostResolved(ByVal AsyncHandle As Long,

HostObject As dwSock.dwHostEnt)
 Dim x&
 Debug.Print "Async Done: " & AsyncHandle
 Debug.Print "Name: " & HostObject.Name

Page 125

 For x = 1 To su.AliasCount
 Debug.Print su.Alias(x)
 Next x
 For x = 1 To su.AddressCount
 Debug.Print skt.Util.inet_ntoa(su.Address(x))
 Next x
End Sub

Note how the dwSocketUtil object's inet_ntoa function is used to
convert the network address to a string. For a more interesting
example, see what happens when you perform a name resolution on
www.microsoft.com.

HTTP Example:
The material in this document can be a bit overwhelming. This
example illustrates how easy it actually is to retrieve a file from a web
site.
At the module level define:

Dim WithEvents http As dwHTTP10
When the form loads, initialize the dwHTTP10 object

Private Sub Form_Load()
 Set http = New dwHTTP10
 http.RetrieveMode = dwRetrieveText
End Sub

Here's the command that actually does the request

Private Sub cmdExecute_Click()
 Call http.Execute("www.desaware.com", "GET", , ,)
End Sub

The data arrives as a string because we set the RetrieveMode property
to text

Private Sub http_HTTPDataReceived(DataReceived As Variant)
 Debug.Print DataReceived
End Sub

Page 126

SpyWorks Concepts: Components and Class
Libraries

SpyWorks includes a selection of additional components and classes.
A brief description follows. The on-line Help file includes detailed
information.

Desaware Windows Utilities and
Subclassers (dwspyvb.dll)

A powerful low level component
authored in Visual Basic with
source code included.

Desaware API Class Library A set of classes that simplify use
of the Win32 API and
demonstrate many API
programming techniques.

Light edition of Desaware’s NT
Service Toolkit

Create true NT services using
Visual Basic 6.0. (Professional
Edition only).

Desaware DLL Background
Thread

Create background threads easily
with this new component. Run
your objects in a separate
background thread. (Professional
Edition only).

SpyNotes Additional samples and utilities.

Desaware Windows Utilities and Subclasser
The intent of SpyWorks is to help Visual Basic programmers to do
anything in Visual Basic that can be done using other languages.
Historically, this meant providing the best low level windows,
subclassing and hook tools available. With the appearance of the
AddressOf function in Visual Basic 5.0, it became possible for the first
time to implement some of these functions in Visual Basic. Desaware's
philosophy in cases such as these is: if you can do it in Visual Basic,
it's our job to show you how to do it right. The dwspyvb.dll
component is written in Visual Basic (though it does make use of a
small support DLL dwspy5.dll) and includes full Visual Basic source
code. We encourage you to use the actual component in your projects -
it is quite efficient and has a great deal of functionality.

Page 127

Future SpyWorks releases will include advanced technical notes
explaining in more detail how the components work internally.

Before you try to use this component or create your own subclasser,
please read the section titled Before You Begin in the on-line Help
file.

Before you ship this component, please read about Distribution and
Licensing Issues.

The following classes are included in the dwspyvb.dll component:

Classes Description

dwSubClass A subclassing object.

dwGenericHook A Windows hook object.

dwPretranslate A Windows hook object specialized for pre-
translation of tab and arrow keys.

dwPrivateWindow An object that facilitates the creation and use
of private windows.

dwScrollBars Enables window scrollbars

dwObjectList Provides efficient object collection

dwHandleCol Maps objects to handles

dwFlexPicture Converts bitmaps to pictures

NT Service Toolkit (Light Edition)
(Professional Edition Only)

SpyWorks Professional includes a light edition of Desaware’s NT
Service Toolkit. This provides the ability to create true NT services in
Visual Basic 6.0.

Further information on this product can be found in the NT Service
Toolkit’s on-line Help file.

Page 128

SpyNotes
SpyNotes are a series of application notes that will deal with a
particular subject and include both code and documentation in
Windows Help file format. SpyNotes #1 and SpyNotes #2 (the
Common Dialog Toolkit) are included in the Professional edition of
SpyWorks. Refer to the on-line Help file for the individual products
for further information.

Page 129

SpyWorks Concepts: Background Threads
Desaware’s new dwBackThread component offers a mechanism for
Visual Basic 6.0 programmers creating ActiveX DLL’s to create
threads for execution of background operations. The dwBackThread
component adheres to all of Visual Basic’s threading requirements and
all COM threading rules – thus is extremely safe to use. Objects
created in background threads are self-synchronizing, so there is no
need to worry about explicit synchronization.

The following section summarizes the use of the dwBackThread
component, and its object’s properties. Complete documentation for
the dwBackThread component can be found in the SpyWorks online
help file.

Note: We strongly recommend that you read the full online
documentation for this component before you attempt to use
it. Multithreading of this type imposes strict requirements
for software design, debugging and cleanup that are not
always intuitive.

dwBackThread - Quick Start
Using the dwBackThread component is easy – just follow these simple
instructions:

1. Using the Project-References menu, add a reference to the
Desaware DLL background thread component.

2. Create a dwObjLaunch object for each background thread you
wish to use.

3. Create a class to run in the background thread. The background
class should have a subroutine named ExecuteBackground that
takes no parameters.

4. Declare a variable to hold a reference to the class (you can declare
it With Events if you wish).

5. Create an instance of the background class object using the
LaunchObject method of the dwObjLaunch object.

Page 130

6. Set the properties for the background class object. Then use the
dwObjLaunch BackgroundExecute or
BackgroundExecuteDelayed methods to launch the background
operation asynchronously.

Let’s take a closer look

' This line creates a new dwObjLaunch object
Dim BackObjControl As New dwObjLaunch

' This variable will reference the class that runs in the
' background thread
Dim WithEvents BackObj As clsBackTest

' The LaunchObject method here creates an instance of the
' background class object. The background class must be a
' public multi-use class, and must be declared by name.
Public Sub Start()
 Set BackObj =
BackObjControl.LaunchObject("BackTest.clsBackTest")
End Sub

' The BackgroundExecute method causes the
' "ExecuteBackground" method in the background class to be
' called asynchronously. You can set properties on the
' background class before calling the BackgroundExecute
' method to set up the operation.
Public Sub BackExecute()
 BackObjControl.BackgroundExecute
End Sub

' The background class can raise events to let the program
' know when the background operation is finished.
Private Sub BackObj_GotExecute(ByVal ThreadID As Long)
End Sub

' Cleanup is very important!
Private Sub Class_Terminate()
 Set BackObj = Nothing
End Sub

Here’s a simple background class that simply raises an event when the
ExecuteBackground method is called.

Page 131

Option Explicit

Event GotExecute(ByVal ThreadID As Long)

Public Sub ExecuteBackground()
 RaiseEvent GotExecute(GetCurrentThreadId())
End Sub

dwBackThread - Methods and Properties
The dwObjLaunch object has the following methods and properties.

LaunchObject(ObjectName As String) As Object
ObjectName is the full name of the object in the form
“component.class”. This method creates the background thread and
creates the specified object in that thread, returning a proxy to the
object that can be referenced from the calling thread.

If you have already used this method to launch an object in a thread,
calling this method again will release that object and create a new one.
Be sure to free the references in your program held by that object
before using this method to launch a new one!

BackgroundExecute()
This method causes the background object’s “ExecuteBackground”
method to be called. An “invalid method or property name” error will
be raised if the background object does not have an
ExecuteBackground method, or does not support IDispatch (all VB
objects support IDispatch). An error will also be raised if a
background execution is already in progress.

The background object's ExecuteBackground method will be called at
some arbitrary time after this method is called depending upon the
manner in which the system schedules threads. You cannot assume
that the background operation will have already started when this
method occurs – in fact, it usually will not have started.

Page 132

BackgroundExecuteDelayed()
If no background operation is in progress, this method is identical to
BackgroundExecute. If a background operation is in progress, this
method signals that the ExecuteBackground method should be called
again as soon as it returns. This method is typically used in events
raised by the background object, where you wish to start another
operation, but a call to BackgroundExecute would raise an error.

BackgroundObject
The dwObjLaunch object holds on to a reference to the background
object you create. You can thus access the object at any time using this
property. Using this property is safer than holding your own reference
because you don’t have to worry about releasing the object first if you
rely on this property.

dwBackThread - Summary of Rules
A full explanation of these rules and the underlying reasons for them
can be found in the online documentation.

• If you call the dwObjLaunch object’s BackgroundExecute method
while a background execution is in progress, you will get a
runtime error. Use BackgroundExecuteDelayed method to queue
another call to the background object’s ExecuteBackground
method while a background execution is in progress.

• Always free background objects (set all references to Nothing)
before you free references to the dwObjLaunch object. Failing to
do so may trigger a runtime error.

• Do not rely on Visual Basic to clean up your objects – do so
during the class terminate event. You don’t know what order VB
will use to release objects.

• Never free the dwObjLaunch object from within an event that was
raised from your background objects. Doing so might cause a
memory exception.

• If you use progress events (especially to allow access to your
background object) be sure to actually implement the event. If you
don’t add code for the event, it will be ignored and method calls
will not be allowed into the background object at that time.

Page 133

• If your background object creates additional objects and passes
them back to the client, be VERY sure to release those objects as
well before you free the dwObjLaunch object.

• If at all possible, Terminate background operations before your
client application terminates.

• Watch for automation timeouts that can occur if method or
property calls to a background object are blocked waiting for a
background operation to end, raise an event, or call DoEvents.

• If you’re careless and call the ExecuteBackground method of the
background object directly, instead of through the dwObjLaunch
object, your application will probably freeze (you’ll get OLE
automation busy messages, and such). Always call the
ExecuteBackground method through the dwObjLaunch object’s
BackgroundExecute method.

• Be sure to test your background object as a compiled DLL – it
will work, but will not exhibit multi-threading when tested within
the VB development environment.

• Each dwObjLaunch object creates a single object on a thread that
it manages. You can, however, create as many dwObjLaunch
objects as you wish, subject to limitations on the number of
threads in the system.

• If you pass object references to your background object, be sure to
pass them with ByVal. Marshalling ByRef objects across threads
in VB seems iffy (to say the least).

Page 134

SpyWorks Concepts: Tools and Utilities
SpyWorks includes a large selection of additional tools and utilities
written in Visual Basic. This section includes a brief review of these
parts of the package. Detailed instructions for using these tools can be
found in the on-line Help file.

Tools Description

SpyMsg A program for spying on messages going to a form,
control or process. Demonstrates advanced
subclassing and hook techniques. Professional Edition
includes source code (32 bit VB 4/5/6 only).

SpyWin A program for browsing the windows of an
application or the entire system. Allows you to obtain
detailed information about each window. Includes
source code, allowing you to learn advanced API and
callback techniques.

SpyMem6 A program for examining processes and memory
under Windows 95/98/ME and Windows
NT/2000/XP. Professional Edition includes VB 4/5/6
source code, allowing you to learn about otherwise
poorly documented system API techniques.

SpyMenu A program for examining the menus of any window.
Includes source code for VB 4/5/6.

SWIniEdt A program for editing the SpyWorks.ini configuration
file. Includes source code (VB 4/5/6) with a private
initialization file class library.

SpyMsg
This advanced utility includes the following features:

• View any or all of the messages going to a form, control or
process.

• Your choice of detection technologies to use: subclassing,
SendMessage hooks or GetMessage hooks.

Page 135

• Set the scope of message detection: Any combination of one or
more windows, any process, or system wide.

• View detailed information on the form or control that received the
message.

• View information on the parameters to the message

• Easy selection of Windows to subclass - use a Windows hierarchy
"tree" or point at a window and click.

• Write output to a file to create a complete history of the messages
that occur in your application.

• Improved parameter descriptions for most standard windows
messages.

• Full Source Code (Professional Edition only - VB 4/5/6, 32 bit
SpyMsg only).

 SpyWin
 This advanced utility includes the following features:

• The first truly Visual Basic aware window/form/control browser
(16 bit only).

• Windows are organized by task or process, making it easy to track
down the windows for a given application.

• Provides a great deal of information about each window/form or
control, including VB specific information (16 bit only) such as
control name and model information, styles, class information and
so on.

• Allows you to select windows for further processing by your own
programs.

• SpyWin includes complete VB and .NET source code.

 SpyMem6 for Windows
 This advanced utility includes the following features:

 For Windows 95/98/ME

• Browse the Windows process, stream and module lists. Free any
module or stop any process (ideal for cleaning up after a GPF).

Page 136

• Browse the Windows memory heap of each process. View any
block of memory.

• Automatic comparison of the current heap with a saved reference -
makes it easy to track down memory that is not being freed.

• Ability to measure the memory used by an application when it is
loaded.

For Windows NT/2000/XP

• Browse the Windows process lists. Terminate any process.

• Browse the Windows memory heap of each process.

• Automatic comparison of the current heap for a process with a
saved reference - makes it easy to track down memory that is not
being freed.

• Ability to browse the global driver list..

• Includes complete VB 4/5/6 source code (Professional Edition
only).

 SpyMenu
 This utility includes the following features:

• Analyze the system menu and regular menu for any window in the
system.

• Includes complete VB 4/5/6 source code.

 SwIniEdt
• Provides easy editing of the SpyWorks.ini initialization file. Used

for creating groups of messages that are used by the other
SpyWorks applications and debugging tools.

For more detailed information refer to the on-line Help file for the
program and the section describing the SPYWORKS.INI file.

Page 137

SpyWorks Concepts: Callbacks
Consider a situation where you need to enumerate objects. For
example: the problem of listing all of the top-level windows in the
system. One way to do this is to use the EnumWindows API function.
This function works by calling a user-defined function for each
window. Similar enumeration functions follow the same principle for
enumerating fonts, properties, GDI objects, and so on.

How do enumeration functions know which user-defined function to
call? Like data objects, the code for functions are present in memory
and has a memory address associated with it. The enumeration
functions require as one of their parameters the address of a user-
defined function to call. Figure 6 illustrates the program flow used
during such enumeration. The Windows application passes the address
of a callback function to Windows. Windows then calls the function
for each object being enumerated.

Page 138

Figure 7 - Illustration of Callbacks

Page 139

Visual Basic 5.0 and later allows you to obtain an address of a public
VB function in a standard module to use as an enumeration function.
For earlier versions of Visual Basic, the dwcbk32.ocx custom control
contains a built-in pool of function addresses that can be provided to
an enumeration function. These addresses are obtained using the
ProcAddress property. The Visual Basic application obtains the
address of a callback function in dwcbk32.ocx using the ProcAddress
property, and passes it to Windows. Windows then calls the callback
function, which in turn triggers a Visual Basic event for each object
being enumerated.

Enumeration functions not only expect a function address, but they
expect it to be a function of a certain type—it accepts certain
parameters and returns certain values. The dwcbk32.ocx custom
control has a Type property that specifies the type of enumeration
function in use. When the enumeration function calls the callback
function address provided by the dwcbk32.ocx custom control, the
custom control triggers a Visual Basic event corresponding to the type
of enumeration. Under VB5 it is the programmer’s responsibility to
declare the callback function correctly. Failure to do so will likely
cause a memory exception.

Most enumeration functions provide a mechanism for stopping the
enumeration process. dwcbk32.ocx supports this capability by
including a return value parameter to the Visual Basic event. This
return value can be set by your program to specify the value that will
be returned by the callback function. This return value usually
determines whether the enumeration should continue. Refer to the
description of each event in the on-line reference for information on
required return values.

Most enumeration functions provide a user-defined parameter that is
passed to the enumeration function and in turn is passed to the
callback function each time it is called. The value is then passed to the
appropriate Visual Basic event. This parameter can be used in any way
you choose. One common technique is to pass the address of a
structure or block of memory. This block of memory can then be used
to save information during the enumeration process so that when the
original enumeration function returns it has all of the accumulated data
available. This provides an alternative to using global variables to pass
information back to the calling function.

Page 140

DWCBK.OCX
Many Windows API functions and third party DLL functions require a
function address as a parameter. The function uses that address as a
"callback" function. This means that the DLL or Windows will
execute the function at that function address at certain times to notify
the application that something has or should occur. Refer to your
Windows API reference for more information on callback functions.
Examples of API functions that use callback functions are
EnumWindows , EnumFonts , and SetAbortProc .

Visual Basic 4.0 does not support function addresses. Dwcbk.ocx
contains a pool of callback function addresses that can be passed to
Windows or a DLL. When the callback function is called, dwcbk.ocx
will trigger an appropriate event.

For Visual Basic 5.0 and later, we recommend that you provide a
callback function in a standard module using the AddressOf operator.

Refer to the description of the Type and Convention property for
information on selecting the appropriate callback function type.

Selecting the correct callback type and convention is critical. An
incorrect choice can lead to the occurrence of a General Protection
Fault.

 Selecting Compatible Callback Events
What if the callback function you require is not in the type list for the
dwcbk.ocx control? You may find that one of the callbacks is
compatible with what you need. The trick with compatibility is to find
an event type that has parameters that match those used by the
callback function you need. If the callback function needs to return a
value, you will need an event type that provides a parameter with
which you can return a value.

Please refer to the SpyWorks Help file for the list of the parameters
and return option for each of the standard event types supported by the
dwcbk.ocx control.

If you need a callback function type that is not in this list, please
contact Desaware. We will be glad to add the callback type you need
to the list and send you an upgraded version of the control.

Page 141

Using DWCBK.OCX
Receiving callback events using the dwcbk.ocx control is a very
simple process.

1. Choose the type of callback function.

 Look through the compatible events table to find an event that
corresponds to the Windows API function you are using. If you
are using a custom or third party DLL that requires a callback
function address, find one that is compatible with an existing
callback type. If none are compatible, contact Desaware to obtain
an updated dwcbk.ocx control for use with your DLL. The type
can be set at design or runtime.

2. Set the Convention and EventTrigger properties.

 Most (if not all) Windows API functions that have callbacks use
the Pascal calling convention (which is also known as stdcall).
dwcbk.ocx also provides support for the C calling convention for
those few third party DLLs that require this. Choosing the
incorrect calling convention is guaranteed to cause a General
Protection Fault or memory exception.

 Almost all callbacks will use the 'Immediate' EventTrigger.

3. Obtain a function address.

In your program, use the ProcAddress property to obtain a
function address. This function address can then be passed to the
Windows API or DLL function for use as a callback function of
the specified type.

Note: Do not try to use the Windows API MakeProcInstance
function on this address. The function address is in a DLL code
segment and is already prepared for use as a callback function.

dwCbk Examples:
• The following example calls the EnumWindows API function and

displays the name of each window’s caption.

1. Add the Desaware SpyWorks Callback Control component to
your project. Add a Callback control to Form1.

2. Set the Callback control’s Type property to “6 – EnumWindows”.

3. Attach the following code to the form’s declaration:

Page 142

 #If Win32 Then
 Private Declare Function EnumWindows& Lib "user32"
(ByVal lpEnumFunc&, ByVal lParam&)
 Private Declare Function GetWindowText& Lib "user32" Alias
"GetWindowTextA" (ByVal hwnd As Long, ByVal lpString
As String, ByVal cch As Long)
 Private Declare Function dwGetStringFromLPSTR$ Lib
"dwspy32.dll" (ByVal src$)

 #Else
 Private Declare Function EnumWindows% Lib "user" (ByVal
lpEnumFunc&, ByVal lParam&)
 Private Declare Function GetWindowText% Lib "user" (ByVal
hwnd As Integer, ByVal lpString As String, ByVal cch As
Integer)
 Private Declare Function dwGetStringFromLPSTR$ Lib
"dwspydll.dll" (ByVal src$)

 #End If

4. Add a List box and Command button to Form1. Set the Command
button’s Caption property to “Get Windows”. Attach the
following code to the Command1_Click event:

 Dim ret&

 ' To start the window enumeration process, first call
 ' the API function EnumWindows. It will loop through
 ' all the windows in the system. For each window, it
 ' will call a callback function based on a function
 ' address that you provide using the Callback control.
 List1.Clear
 ret& = EnumWindows(Callback1.ProcAddress, 0)

5. Attach the following VB code to the Callback control’s

EnumWindows event.

' This function is called once for each window found
' by EnumWindows. The window found is identified by
' the window handle (hwnd).
' In this example, we will use the window handle to
' get the caption text of the window, and then add it
' to a listbox.

Page 143

Dim windName As String
Dim ret&

' First, set aside enough room in the variable length
' string for the window caption text.
windName = String$(64, 0)
' Get the caption of the window, up to 64 characters.
ret& = GetWindowText(hwnd, windName, 64)
' Trim the string.
windName = dwGetStringFromLPSTR(windName)
' Format the hWnd and caption name for the listbox.
' Chr$(34) is the quotes character.
windName = Chr$(34) & windName & Chr$(34) & " handle: " &
CStr(hwnd)
' Add the entry into the listbox.
List1.AddItem windName

Page 144

Distribution and Licensing
Desaware's philosophy is that you should be able to distribute any
components and applications that you create using our tools without
having to pay any distribution royalty fees.

The following topics discuss the files that are re-distributable, and
special licensing requirements that exist when distributing the
dwAxExtn.dll, dwbkthrd.dll, dwsock.dll (or dwsock6.dll),
dwsmtp5.dll (or dwsmtp.dll), dwcmndlg.dll (or dwcmndg6.dll) and
dwspyvb.dll (or dwspyvb6.dll) components, and the dwsbc36.ocx,
dwshk36.ocx and dweasy36.ocx controls when used to build your own
in-process components.

About our Software License
With the increased ability of Visual Basic to allow you to create
components, we have adapted our software license to be comparable
to those of Microsoft and other vendors with regards to building
components based on our components.

Desaware's software components and controls are provided with the
intent that they be used in applications and components that offer
significant and primary functionality beyond that of our components.
In other words - our license does not permit you to use code or
software that we provide to market another component that provides
the same or slightly modified functionality that we provide. For
example, you can't use dwspyvb.dll to create another subclassing or
hook tool that you will market.

You may not distribute the source code provided with SpyWorks to
anyone who has not purchased SpyWorks version 7 or later.

You may not, under any circumstances, distribute the file
dwcmndlg.lic, dwsdes32.dll or dwsdes16.dll.

Page 145

You may, however, distribute our components on a royalty free basis
with your compiled applications. You may distribute modified
versions of our component for which we provide source code with
your compiled applications as long as you include either our licensing
code or other code that will prevent the component from being
programmed without a valid SpyWorks license. You must also change
the project name and rebuild the component with compatibility turned
off in order to generate a completely new set of class and object
identifiers. If you have any questions regarding distribution, please do
not hesitate to contact us directly.

Licensing dwAxExtn.dll, dwbkthrd.dll, dwspyvb.dll,
dwspyvb6.dll, dwcmndlg.dll, dwcmndg6.dll, dwsock.dll
and dwsock6.dll

The dwbkthrd.dll, dwspyvb.dll, dwspyvb6.dll, dwsock.dll,
dwsock6.dll, dwcmndlg.dll, dwcmndg6.dll and dwaxextn.dll
components, like other Desaware components, have built in licensing
that require that a license file be present in order for the component to
run within the Visual Basic environment. This poses no problem when
using the component with applications or ActiveX EXE servers.
However, it does present a problem if you wish to use these
components within your own ActiveX DLLs, ActiveX controls or
ActiveX Document DLLs. When the end-user tries to load your
component within Visual Basic, even though your control may be
licensed, the dwbkthrd.dll, dwspyvb.dll, dwspyvb6.dll, dwsock.dll,
dwsock6.dll, dwcmndlg.dll, dwcmndg6.dll and dwAxExtn.dll
components detect that they are running within Visual Basic and raise
a licensing error.

In order to allow you to use these components within your own
components, Desaware is introducing a license key scheme that will
allow you to enable the component to run even when a license file is
not present. This scheme requires only a few lines of code in your
component. Naturally, there are no costs or royalty fees for you to use
this mechanism. However, we do remind you that under the terms of
the SpyWorks license, you may only distribute our components when
your component adds significant and primary functionality. In other
words, you can't use it to ship your own general purpose subclassing,
hook, winsock, common dialog, ActiveX extension or window
management component. This is similar to the license terms that
Microsoft and other companies use in cases like this – for example:

Page 146

Microsoft does not allow you to use the JET re-distributable
components to implement your own general purpose database product.
If you have any questions, don't hesitate to contact us.

Using the License Key with dwspyvb.dll and
dwspyvb6.dll

The dwspyvb.dll project includes a class called "dwRedistributable".
This class contains a single method called "IsLicensed". When you
call this function with a valid license key, the dwspyvb component
will be enabled for use with your component. You must create a
dwRedistributable object and call the IsLicensed method before you
attempt to create any other objects in the dwspyvb library.

Here is an example of how the component can be enabled for
redistribution. This sample enables the dwspyvb.dll component to run
in VB when the dwsock.dll component is also present.

Dim sublicok As Boolean
Dim EnableRedistribution As New dwSpyVB.dwRedistributable
'Enable the SpyWorks component when used with this component
(dwsock.dll)
sublicok =
EnableRedistribution.IsLicensed("3636242E302E6A213E2D57")

The IsLicensed method will return True (non-zero) if the component
licensing is enabled for the component. Note that this key will only
work to enable licensing when using your compiled component. You'll
need the SpyWorks license file while designing your control.

Using the License Key with dwsock.dll and dwsock6.dll
The dwsock.dll project includes a class called "dwRedistributable".
This class contains a single method called "IsLicensed". When you
call this function with a valid license key, the dwsock component will
be enabled for use with your component. You must create a
dwRedistributable object and call the IsLicensed method before you
attempt to create any other objects in the dwsock library.

Here is an example of how the component can be enabled for
redistribution for an imaginary control named desaware.ocx:

Dim sublicok As Boolean
Dim EnableRedistribution As New dwSock.dwRedistributable

Page 147

' Enable the SpyWorks component when used with this control
(desaware.ocx)
sublicok =
EnableRedistribution.IsLicensed("36242420242436207C2E343953")

The IsLicensed method will return True (non-zero) if the component
licensing is enabled for the component. Note that this key will only
work to enable licensing when using your compiled component. You'll
need the SpyWorks license file while designing your control.

Using the License Key with dwcmndlg.dll and
dwcmndg6.dll

The dwcmndlg project includes a class called "dwRedistributable".
This class contains a single method called "IsLicensed". When you
call this function with a valid license key, the dwcmndlg component
will be enabled for use with your component. You must create a
dwRedistributable object and call the IsLicensed method before you
attempt to create any other objects in the dwcmndlg library.

Here is an example of how the component can be enabled for
redistribution for an imaginary control named desaware.ocx:

Dim sublicok As Boolean
Dim EnableRedistribution As New dwcmndlg.dwRedistributable

' Enable the SpyWorks component when used with this
' control (desaware.ocx)
sublicok =
EnableRedistribution.IsLicensed("36242420242436207C2E343953")

The IsLicensed method will return True (non-zero) if the component
licensing is enabled for the component. Note that this key will only
work to enable licensing when using your compiled component. You'll
need the SpyWorks license file while designing your control.

Using the License Key with dwAxExtn.dll
The latest version of the dwAxExt component (now named
dwaxextn.dll) supports licensing through the new EnableComponent
method of the dwControlHook object. This method takes the license
key as a parameter.

Page 148

The following code shows how you might enable licensing for an
imaginary Visual Basic ActiveX control named desaware.ocx that uses
the dwAxExtn.dll component.

Dim ctl As New dwControlHook

Private Sub UserControl_Initialize()
 On Error GoTo initfailed
 ctl.EnableComponent "36242420242436207C2E343953"
 ctl.Initialize Me
 Exit Sub
initfailed:
 Do appropriate error handling here.
End Sub

A licensing error #419 (Permission to use object denied) if you
attempt to use the dwAxExtn.dll component within the VB
environment without enabling licensing.

Using the License Key with dwbkthrd.dll
The dwbkthrd component supports licensing through the
EnableComponent method. This method takes the license key as a
parameter.

The following code shows how you might enable licensing for an
imaginary Visual Basic ActiveX DLL file named
BackTutorialDLL2.dll that uses the dwbkthrd.dll component.

Dim backlauncher As dwObjLaunch

Set backlauncher = New dwObjLaunch
' License the background thread component
' to run with BackTutorialDLL2.dll
backlauncher.EnableComponent _
"1020342A0730302A2028362D170908777C253B2D53"
Set backclass = _
backlauncher.LaunchObject("BackTutorialDLL2.BackClass2")

A licensing error #419 (Permission to use object denied) if you
attempt to use the dwbkthrd.dll component within the VB environment
without enabling licensing.

Page 149

Creating a License Key
You can create a license key for your component using the
dwLicGen.exe program. This program will ask you to enter the
compiled name of your component (not including a path, but including
an extension). Each key is unique to a component name. If you change
your component name, you'll have to create a new license key. After
the program generates the key, you will have the option to copy it to
the clipboard to past into your application.

Final Notes on Licensing DLLs
• You only need to use this license key scheme when distributing

in-process components such as ActiveX DLL's, ActiveX Controls
or ActiveX document DLL servers. You do NOT need to use this
mechanism for standalone applications, ActiveX executables, and
ActiveX document EXE servers. They do not run within the
Visual Basic environment, thus need no special handling.

• If you release the dwspyvb objects that you are using such that the
component unloads, you will need to re-enable the component
using the license key once the component is reloaded. It is
perfectly safe to call the IsLicensed function multiple times. It is
also safe to maintain a reference to this object to prevent the
dwspyvb component from unloading until your component
terminates.

Licensing dwsbc36.ocx, dwshk36.ocx and
dweasy36.ocx for use as Constituent Controls

The new dwsbc36.ocx, dwshk36.ocx and dweasy36.ocx may be used
as constituent controls in ActiveX controls created with Visual Basic.
As before, our licensing terms require that your control provide
significant and primary functionality beyond these controls if you are
using them as constituent controls.

Because of the mechanism that Visual Basic uses to create constituent
controls, it is not possible to use the object based licensing scheme that
we use for our ActiveX DLLs. Instead, it is necessary for you to create
a license key and place it in the registry.

Page 150

Creating a license key is described in the section titled "Licensing
dwAxExtn.dll, dwbkthrd.dll, dwspyvb.dll, dwcmndlg.dll and
dwsock.dll". Use the compiled name of your OCX to generate the
license key.

When you install your control, add this license key into the registry as
a subkey under location

HKEY_CLASSES_ROOT\Licenses\DesawareConstituentOCX

Thus, to enable constituent control operation for an ActiveX control
named test.ocx, you would create the following key:

HKEY_CLASSES_ROOT\Licenses\DesawareConstituentOCX\26242
4357D2A273D52

Most installation programs (including downloaded CAB files) provide
for the addition of registry entries. Refer to your installation program
documentation for more information.

File Descriptions and Redistribution Terms
The following files and controls may be distributed with your
compiled Visual Basic application without payment of license fees
according to the terms in the license agreement.

File Description

DWSPYDLL.DLL
and
DWSPY3x.DLL

Main runtime dynamic link library. This
file is used by the extension controls
dwsbc.ocx, dwcbk.ocx, dwshk.ocx and
dweasy.ocx. It should be installed in a
directory that is in your PATH environment
setting (typically the system directory).
DWSPY32.DLL requires MFC
components.

DWSPY5.DLL Utility dynamic link library used by
dwspyvb.dll.

DWSBC.OCX Generic Subclass custom control. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory). This
file can be distributed with your compiled

Page 151

Visual Basic application without any license
fees. (Note that dwspydll.dll or
dwspy3x.dll must be present to use this
control. Dwsbc32.ocx requires MFC
components.)

DWCBK.OCX Generic Callback custom control. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory). This
file can be distributed with your compiled
Visual Basic application without any license
fees. (Note that dwspydll.dll or
dwspy32.dll must be present to use this
control. The 32 bit edition requires MFC
components.)

DWSHK.OCX Keyboard and Windows Hook custom
control. This file should be installed and
registered in a directory that is in your
PATH environment setting (typically the
system directory). This file can be
distributed with your compiled Visual Basic
application without any license fees. (Note
that dwspydll.dll or dwspy3x.dll must be
present to use this control. Dwshk32.ocx
requires MFC components.)

DWEASY.OCX Easy subclassing custom control. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory). This
file can be distributed with your compiled
Visual Basic application without any license
fees. (Note that dwspydll.dll or
dwspy3x.dll must be present to use this
control. Dweasy32.ocx requires MFC
components.)

Page 152

DWTASKBR.OCX
and
DWTASKB6.OCX
(SpyWorks
Professional only)

MDI task bar custom control. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory). This
file can be distributed with your compiled
Visual Basic application without any license
fees. (Note that dwspyvb.dll or
dwspyvb6.dll must be present to use this
control.)

DWSPYVB.DLL
and
DWSPYVB6.DLL

SpyWorks VB 5.0 and 6.0 Subclasser
component. This file should be installed and
registered in a directory that is in your
PATH environment setting (typically the
system directory). This file can be
distributed with your compiled Visual Basic
application without any license fees,
however it does require that you take
additional steps to enable the component
when distributed with your ActiveX
controls and in-process components. (Note
that dwspy5.dll must be present to use this
component.)

DWAXEXTN.DLL SpyWorks VB ActiveX extension
component. This file should be installed and
registered in a directory that is in your
PATH environment setting (typically the
system directory). This file can be
distributed with your compiled Visual Basic
application without any license fees,
however it does require that you take
additional steps to enable the component
when distributed with your ActiveX
controls and in-process components.

DWCMNDLG.DLL
and
DWCMNDG6.DLL
(SpyWorks
Professional only)

Common Dialog ActiveX component. This
file should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory). This
file can be distributed with your compiled
Visual Basic application without any license
fees, however it does require that you take

Page 153

additional steps to enable the component
when distributed with your ActiveX
controls and in-process components. (Note
that dwspy5.dll must be present to use this
control.)

DWSOCK.DLL and
DWSOCK6.DLL
(SpyWorks
Professional only)

Winsock ActiveX component. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory).
This file can be distributed with your
compiled Visual Basic application without
any license fees, however it does require
that you take additional steps to enable the
component when distributed with your
ActiveX controls and in-process
components. (Note that dwspy5.dll,
dwspyvb.dll or dwspyvb6.dll, and
sockintf.dll must be present to use this
control.)

DWSMTP5.DLL
and DWSMTP.DLL
(SpyWorks
Professional only)

SMTP ActiveX component. This file
should be installed and registered in a
directory that is in your PATH environment
setting (typically the system directory).
This file can be distributed with your
compiled Visual Basic application without
any license fees. (Note that dwspy5.dll,
dwspyvb.dll or dwspyvb6.dll, dwsock.dll or
dwsock6.dll, and sockintf.dll must be
present to use this control.)

DWBKTHRD.DLL
(SpyWorks
Professional only)

Background thread ActiveX component.
This file should be installed and registered
in a directory that is in your PATH
environment setting (typically the system
directory). This file can be distributed with
your compiled Visual Basic application
without any license fees.

Export Alias DLLs Export Alias DLL's created using the
dwExUtil.exe or ExportWizard.exe
programs may be distributed.

Page 154

The following files and controls may NOT be distributed and are
subject to the terms in your license agreement.

File Descriptions

dwsdes16.dll and
dwsdes32.dll

Design time dynamic link library. This file
must be installed in the same directory as
dwspydll.dll or dwspy32.dll.

Projects from the
“\SpyWorks\VB ?
Samples\” and
“\SpyWorks\VS_NE
T_Samples\” and
associated files

The sample source files for SpyWorks.
Use these as examples of possible
applications for SpyWorks.

spydemo.vbp and
associated files

The source files for the SpyDemo
application. Refer to the file spydemo.vbp
for a complete list of the files in this
project. Use these as examples of possible
applications for SpyWorks.

spymsg32.exe,
spymsg.vbp and
associated files

SpyWorks Windows Message Monitor.
Refer to the file spymsg.vbp for a
complete list of the files in this project.

spywin32.exe,
spywin.vbp and
associated files

SpyWorks Windows Hierarchy Browser.
Refer to the file spywin.vbp for a complete
list of the files in this project.

spymnu32.exe,
spymenu.vbp and
associated files

SpyWorks Menu Hierarchy Browser.
Refer to the file spymenu.vbp for a
complete list of the files in this project.

spymem32.exe,
spymem6,
spymem??.vbp and
associated files

SpyWorks Memory Browser. Refer to the
file spymem.vbp for a complete list of the
files in this project.

Page 155

swiniedt.exe,
swiniedt.mak and
associated files

SpyWorks.ini Initialization File Editor.
Refer to the file swiniedt.vpb for a
complete list of the files in this project.

Dwspywrk.hlp On-line Help file for all SpyWorks
controls and applications.

spynote1.hlp and
sn1*.vbp and
associated files

Application Note Pak #1 for SpyWorks.

spynote2.hlp,
project files in the
SpyNote2
subdirectory

Application Note Pak #2 for SpyWorks.
Demonstrates how to modify the Windows
Common Dialogs.

dwspyvb.vbp and
associated files

The source files for the dwSpyVB and
dwSpyVB6 ActiveX components. Refer to
the dwSpyVB*.vbp files for a complete
list of the files in this project.

dwtaskbr.vbp and
associated files

The source files for the dwTaskbr and
dwTaskb6 ActiveX controls. Refer to the
Taskbar*.vbp files for a complete list of
the files in this project.

dwcmndlg.vbp and
associated files

The source files for the dwcmnDlg.DLL
component. Refer to the file
CommnDlg.vbp for a complete list of the
files in this project.

dwsock.vbp and
associated files

The source files for the dwsock.DLL
component. Refer to the file dwsock.vbp
for a complete list of the files in this
project.

dwsmtp.vbp and
associated files

The source files for the dwsmtp.DLL
component. Refer to the file dwsmtp.vbp
for a complete list of the files in this
project.

Page 156

dwExUtil.exe SpyWorks Dynamic Export Utility
program. This utility creates the alias
export DLL.

dwExport.dll,
dwExport.tlb

SpyWorks Dynamic Export DLL. This
DLL is used to create the alias export
DLL.

CPLWizard.exe,
dwcpl.svt,
cpapplet.tlb,
Svchelp.dll

SpyWorks Control Panel Applet Wizard
and dependency files.

ExportWizard.exe,
dwNetExp.xft,
Sw7help.dll

SpyWorks .NET Function Export Wizard
and dependency files.

Page 157

SpyWorks and Visual Studio .NET
The .NET framework represents a completely new “virtual machine”
from the perspective of both Visual Basic and C++ programmers.
SpyWorks has historically been a product dedicated to providing high
level access to lower level system functionality. With the arrival of
.NET, some of the previous features of SpyWorks are now handled by
the .NET framework, while others are even more important. Our focus
with SpyWorks has been to ensure that key SpyWorks capabilities will
be available for .NET in as timely a manner as possible.

SpyWorks 7.0 is tied to the final release of Microsoft Visual Studio
.NET. Our focus has been to ensure that the base subclassing and hook
controls, and the cross process memory access functions work
properly with .NET. This drop includes .NET support for:

• Subclassing (in task and cross-task)

• Hooks (system and thread)

• Keyboard hooks (system and thread)

• Cross Process memory access functions

Support is provided using the dwshk36.ocx and dwsbc36.ocx controls.
We chose to support these features using updated versions of our
current controls for several reasons:

1. We can guarantee the highest possible performance and reliability
using these proven and stable components.

2. Our experience with .NET is that COM interop works extremely
well – especially with controls such as these that do not have a runtime
user interface.

3. The nature of subclassing and hooks demands working in unsafe
code (accessing unmanaged memory) – so there is no benefit to be
gained by a pure .NET code solution for these components.

We are confident that those of you who need the types of low level
system access provided by these components will be very pleased with
their behavior under .NET.

Page 158

Installing the SpyWorks .NET files
Run the primary SpyWorks setup.exe installation program to install
the .NET assemblies and samples. The primary SpyWorks installation
program installs additional information required by the .NET
installation.

Migrating to .NET from Visual Basic 6.0
Migrating a Visual Basic 6.0 project to .NET is not recommended.
But, nevertheless here are some tips and known issues if you must do
so.

Learning .NET
One of the first steps is learning Visual Studio .NET . Not just the
syntax changes or learning the namespaces, but what is really
important to learn and leveraging what you already know. For all this,
we recommend Dan Appleman’s “Moving to VB.NET: Strategies,
Concepts, and Code” book, ISBN 1-893115-976 published by Apress.
If you are trying to decide whether to stick with the Visual Basic
language or go to C#, we recommend Dan Appleman’s “Visual
Basic.NET or C#? Which to Choose?” ebook which can be purchased
directly from Desaware, Inc., or on Amazon.com.

Migrating Visual Basic 6.0 projects
We recommend that you use the .NET upgrade wizard to upgrade your
current VB 6 projects to a VB.NET project. You will still need to
make some code modifications after the upgrade wizard finishes
porting your project, but at least it does a pretty good job with most of
your code migration.

Migrating SpyWorks Subclass and WinHook ATL
based ActiveX controls
The SpyWorks Subclass and WinHook controls include a Primary
InterOp Assembly for use with .NET. This is installed to your
system’s Global Assembly Cache during the SpyWorks installation.

Page 159

We recommend that you use the Primary InterOp Assembly provided
rather than generating a different one for each project. The upgrade
wizard however, does not migrate the Subclass and WinHook ActiveX
Controls correctly. It will preserve the control, but will include the
incorrect Assembly Name in the code that will generate a compile
error. If you try to view the form in the designer, the control may not
appear. Do the following to fix the code error:

For the WinHook Control

1. Look for the error message “Type
'AxDWSHK36Lib.AxWinHook' is not defined.” in the task list.

2. Go to the error in the code file, the
“AxDWSHK36Lib.AxWinHook” should be highlighted.

3. Replace that with
“AxDesaware.SpyWorks.dwshkNET.AxWinHook”

For the Subclass Control

1. Look for the error message “Type 'AxDWSBC36Lib.AxSubClass'
is not defined.” in the task list.

2. Go to the error in the code file, the
“AxDWSBC36Lib.AxSubClass” should be highlighted.

3. Replace that with
“AxDesaware.SpyWorks.dwsbcNET.AxSubClass”

The Messages and Keys properties for the Subclass and WinHook
controls are also not preserved when upgrading to a Visual Basic .NET
project from a Visual Basic 6.0 project. For these properties, you
should copy them from the VB 6 project and manually enter them in
the .NET project.

.NET Features
Function Export
SpyWorks Professional includes a .NET function exporter that allows
you to export functions from your .NET assemblies. Other
development platforms can call your .NET export functions just as
they would call any standard Windows API functions. Refer to the
Exporting Functions section in this manual or the .NET Function
Export samples for more details.

Page 160

Primary InterOp Assemblies
SpyWorks includes a Primary InterOp Assembly for the Subclass
control and WinHook control. These assemblies are installed in the
Global Assembly Cache. When you add a new control to your .NET
project’s windows form, a new assembly name “AxDWSHK36Lib” or
“AxDWSBC36Lib” will be referenced in your project. These are
ActiveX control wrappers generated by .NET to allow ActiveX
controls to work in windows forms.

The Primary InterOp Assembly for the Subclass and WinHook
controls will also be added to your project’s Reference. But, the
Reference Assembly’s name may be different. The Reference name
may be displayed as “DWSHK36Lib” or “DWSBC36Lib” if you had
added the control to a new .NET project.

Merge Modules
SpyWorks also includes Merge Modules for redistributing the
Subclass control and Hook control. You can include these with your
.NET installation package.

.NET Samples
SpyWorks samples are provided to demonstrate the different
functionality of SpyWorks technology. But, they are also provided for
educational purposes. We hope that you’ll be able to learn and benefit
from the introduction of many advanced coding techniques found in
our samples. In our samples, we attempt to write our code in
compliance with Microsoft recommended coding practices. But, .NET
is just beginning to evolve and this may be a moving target as new
coding practices may be introduced.

We would like to have your feedback regarding which language you
are using and in which language you would prefer to have the sample
code written. We are still in the early stages of migrating to and
learning .NET. If there are particular samples using some of the
SpyWorks controls or functions that you would like to see, please
submit a request to support@desaware.com. Please include a detail
description along with your contact information. Please refer to the
online documentation for a full description of the .NET samples.

Page 161

Differences Between C# and Visual Basic .NET
Sample Projects
In most cases, the Visual Basic .NET project was written first, then the
C# project was written based on the Visual Basic .NET project. Rather
than using functions specific to Visual Basic .NET, .NET equivalent
namespaces are used whenever possible so that the code base between
the two languages will be as similar as possible, making it easier to
read the other language.

Page 162

Additional Topics
SpyWorks.ini - Configuration and Initialization File

The SpyWorks.ini initialization file can be used to configure the
interpretation of message and class names under SpyWorks. Please
refer to the on-line Help file for further information.

This divides into a number of functional areas:

Message Grouping How messages are divided into groups.

Style Interpretation How SpyWin knows which styles to
use for a control.

Message Interpretation How SpyMsg knows which message
name to assign to a message value.

Application Specific Where the SpyWorks applications save
their current settings.

Each SpyWorks OLE custom control loads most of the SpyWorks.ini
information when it is loaded. As a result, if you change the contents
of this file it is necessary to close all applications using the control for
the changes to take effect for that particular control.

In order to save time, a precompiled version of SpyWorks.ini is saved
to disk in file SpyWorks.sts. If no changes have occurred between
uses of SpyWorks, the message information will be loaded from this
status file instead of SpyWorks.ini.

The dwsbc.ocx and dwshk.ocx custom controls use the information in
SpyWorks.ini at design time when you are specifying message filters.
This information is not used at runtime.

The SpyWorks.ini file is not required for executable applications that
use the SpyWorks custom controls (dwcbk.ocx, dwsbc.ocx,
dwshk.ocx), and thus should not be distributed with your compiled
applications.

Application Setups
SpyWorks.ini is also used to hold the current setups for the various
SpyWorks debugging tools. These entries are set by the individual
applications and should not need to be modified by hand.

Page 163

Message Interpretation
When SpyMsg detects a windows message, it receives an integer
message number. Standard messages (those numbered below
WM_USER which is defined as &H400) all have the same name
regardless of window class. Messages over &H400 may have
different names depending on the class of the window.

The ClassMessages topic defines the group names which should be
given priority for a given class. For example, the entry:

ComboBox=ComboBox

Indicates that classes ComboBox and ThunderComboBox should
first search the ComboBox group when choosing the message name
for a particular message. Note that SpyMsg automatically strips off
‘Thunder’ from class names for the purposes of this search.

A list can be specified here as well. If you had a control that had
messages from two different groups, you could specify:

classname = group1,group2

to specify the order in which groups should be searched.

After the specified groups are searched, the entire message list will be
searched in the order specified by the MessageGroups topic.

Style Interpretation
Every window has a style property which defines the styles of the
window. The meaning of some of these style bits is common to all
windows, however the meanings of some other style bits are defined
by the type of window.

The SpyWin Detail command attempts to interpret styles correctly
according to the class of the window. In many cases, a control that is
subclassed from a standard window control can use the standard
window styles.

The ClassList topic contains a list of aliases for standard classes.
These take the form:

new class=standard class

Page 164

Where the new class is the actual class of the control or window, and
the standard class represents one of the standard windows classes
Button, ComboBox, ListBox, or Edit. The complete source for the
SpyWin application is included with SpyWorks, so you can easily
extend the interpretation of style bits to add custom styles if you wish.

Message Grouping
Most "Spy" or message viewing type programs divide messages into
groups for convenience in defining message filters. SpyWorks takes
this a step further by allowing you to define your own groupings for
windows messages.

The MessageGroups topic contains a list of all of the message groups.
Each entry takes the form:

Description=Groupname

Where the Description is the description of the group as it will appear
in the various SpyWorks group lists, and Groupname is the internal
name of the group.

Each Groupname forms a topic which contains a list of all of the
messages in that group. This list contains the name of the message
followed by the message value.

You can add additional groups or assign messages to different groups
at will.

Page 165

Technical Support
For information on customer support and last minute changes, refer to
the file readme.wri on the SpyWorks CD. This file is compatible with
write.exe (included with each copy of Windows).

There is a saying in the software world that no non-trivial program is
completely bug free. The corollary to that saying is that no program
with more than 10 lines in it is non-trivial. SpyWorks is emphatically
non-trivial....

SpyWorks has undergone extensive testing to make it as bug free as
possible. Nevertheless, it is possible that some have crept through.
This is especially true considering the fact that both operating systems
and development environments are brand new. Please write or send us
a fax if you find one, and include all of the steps needed to reproduce
the problem. Also, if there are any files needed to reproduce the error,
send them to us on a diskette.

If you have any questions you are also welcome to refer to our
Frequently Asked Questions section of our web site.

We would also appreciate your suggestions regarding this manual.
Specific comments and questions are especially welcome. We have
attempted to address as many questions as possible, but if you run into
something confusing, please let us know so that we can incorporate
revisions into the next edition.

Finally, and perhaps most important, we would love to hear your
suggestions for improvements to SpyWorks, or any suggestions you
may have for new products or custom controls.

Please address all correspondence to:

Desaware, Inc.
1100 East Hamilton Avenue, Suite 4
Campbell, CA 95008
Telephone: 408/377-4770 Fax: 408/371-3530
Web Site: http://www.desaware.com
E-mail: support@desaware.com

Page 166

Other Sources of Information
Here are several other resources that we recommend for advance
Windows development.

Regular Expressions with .NET
This ebook is intended to be a complete introduction to Regular
Expressions that can even be read and understood by programmers
who have never heard of them. It is also intended to help experienced
Regular Expression programmers come up to speed quickly on the
.NET implementation of Regular Expressions.

This ebook is available from Amazon.com.

Visual Basic.NET or C# ... Which to Choose?
In this ebook you will find an in-depth comparison of the two
languages. In a feature-by-feature, head-to-head contest, Dan pulls no
punches in calling the winner in each case.

But a technical comparison is only the beginning. With a keen eye for
the business issues involved in language choice, the author focuses on
the economic issues involved in this decision, considering the cost of
retraining and long-term support, as well as that of initial
development.

This ebook is available from Amazon.com.

Introduction to NT/2000 Security Programming
with Visual Basic
NT Security is a subject that is intimidating, to say the least. But if you
dig past the confusing acronyms, you'll find that it's actually very easy
to understand. This article, based on Dan Appleman’s well received
talks at VBits, will help you get started on the right foot with NT
security, and give you the foundation of knowledge you'll need to
understand even the most obscure security concepts. It will also
introduce you to techniques for adding security based features to your
applications (with an emphasis on Visual Basic applications).

This ebook is available from Amazon.com.

Page 167

Moving to VB.Net:Strategies, Concepts and Code
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN 1893115976).

VB.Net is not Visual Basic. Porting is stupid. COM is "dead". These
are just a few of the things you'll learn as Dan takes you on a journey
unlike any other into the world of VB.Net. Covers adoption strategies,
unlearning VB6 concepts that are fatal in VB.Net, and analysis of
language changes that goes beyond the documentation.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine 's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic 's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special

Page 168

interest to VersionStamper customers will be the chapters on OLE and
COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

Dan Appleman's Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-01-1). Appleman's Win32 API Guide
covers 700 API functions. This book covers the other 7800. How? By
teaching you everything you need to know to read and understand the
Microsoft C documentation and create correct API declarations for use
in Visual Basic. Presented in an entertaining puzzle/solution format
that challenges you to solve real world API problems. In depth
tutorials take you behind the scenes to understand what really happens
when you call an API function from VB.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

How Computer Programming Works
A useful book for future programmers or anyone interested in
explaining important computer programming concepts. Full color
illustrations help to visually explain important topics! New expanded
section on computer programming for the Internet.

Just as a child must learn the alphabet before they can read, future
programmers must understand certain concepts before they can write
their first program. This unique book uses full color illustrations to
help the reader to truly understand the underlying computer science on
which all programming is based. ISBN 1-893115-23-2.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

The Desaware Visual Basic Bulletin
and other related technical articles. At the Desaware website:
http://www.desaware.com.

Page 169

PC Magazine's Visual Basic Programmer's Guide
To The Windows API
Written by Daniel Appleman (president of Desaware) this book is
intended to help Visual Basic programmers navigate the complexities
of Windows. It is the only text on Windows that is designed
specifically for Visual Basic programmers, and the only one that
covers the interactions between Visual Basic and Windows.

Available on CD Rom only from Desaware. Call (408) 377-4770 or
email support@desaware.com.

Msdn.microsoft.com
This web site is a comprehensive reference.

Page 170

INDEX

.NET
Function Export, 83

ActiveX Extensions, 20, 25, 100
AddHwnd, 40
AddMessage, 42
AddRef, 109
AddressOf, 64, 88
Alias DLL, 85-97, 158

Distribution
.NET, 96
VB 5 and 6, 96

Resources, 91
AllowPrompt, 72
API Class Library, 14, 26, 130
API Function, 17--22, 26, 34, 45, 46, 48,

63, 64, 67, 76, 78, 80, 82, 141, 145, 146
Application Programmer's Interface, 22
Assembly Name, 95, 164
Assembly Verification, 95

Background Threads, 20, 133
BackgroundExecute, 135
BackgroundExecuteDelayed, 134, 136
BackgroundObject, 136
Button, 169

Callback, 20
Caption, 146
CaptionHeight, 70
CaptionStyle, 69, 70
Classes

Button, 169
ComboBox, 168, 169
dwExporter, 83, 85, 86, 89
dwPrivateWindow, 37
dwRedistributable, 150, 151
Edit, 169

ExportAttribute, 94
FTP, 24
HTTP, 24
ListBox, 169
ThunderComboBox, 168

COM, 82, 100-102, 108-111
ComboBox, 168, 169
Compatibility, 16
Component Object Model. See COM
Control Array, 41
Control Panel Applet, 19, 97-99, 160
Convention, 144, 145
CrossTask, 41
CrossTaskTimeout, 41
CtlParam, 39, 40
Customer Support, 26

Debug.Print, 36, 44, 45, 59, 60, 61
Delayed, 54
DelayedEvent, 37, 65
DetectDisabled, 68
DetectDropped, 72
Discard, 53
Distribution. See Distribution and

Licensing
Distribution and Licensing, 148, 154
DllGetClassObject, 82
DoEvents, 36, 41
Drag-Drop Commands, 71
DroppedFile, 72
dwAsyncSocket, 126
dwAxExt.dll, 100
DwAXExt.dwSafeToInitialize, 118
DwAXExt.dwSafeToProgram, 118
dwAxExtn.dll, 22, 100, 103-108, 114,

118, 119, 148, 149, 151, 152
License Key, 151, 152
Licensing, 149

dwBackThread, 20, 133-136

Page 171

DWCBK.OCX, 144
dwCmndlg.dll, 21, 151

License Key, 151
dwControlHook, 105, 106, 114-117, 151,

152
dwCopyData, 77
DWEASY

Mouse Tracking, 67
Rollup Windows, 69
Scrollbars, 70
System Menu, 71
Tiny Captions, 69

dwEnumerator, 106, 107
dwExport, 22, 86, 90
dwExport.dll, 90
dwExporter, 83-86, 89, 96
dwExUtil, 92
dwFindFile, 79
dwFTPclient, 121, 126
dwGenericCall, 106, 107, 118-120
dwGenericHook, 49, 56, 58, 63, 131
dwGetAddressFor, 77
dwGetAddressForLPSTR, 77
dwGetControlID, 81
dwGetControlName , 81
dwGetControlNameByID, 81
dwGetInstance, 81
dwGetPropertyValue, 80
dwGetStringFromLPSTR, 77
dwHostEnt, 125, 128
dwHTTP10, 121, 126, 129
dwLicGen.exe, 153
dwMalloc, 107
dwObjLaunch, 133-137, 152
dwPretranslate, 49, 51, 56, 58, 63, 131
dwPrivateWindow, 37, 64, 65, 131
dwPrivateWindow Object, 64
dwProtEnt, 125
dwRedistributable, 150, 151
DWSBC.OCX, 39
dwServEnt, 125
dwSetPropertyValue, 80

dwShellLink, 66, 72, 73, 107
dwSMTP. See SMTP. See SMTP
DWSOCK

Architecture, 125
Error Values, 126
Examples, 127

dwSock.dll, 126, 150
License Key, 150

dwSocket(s), 121, 125-128
dwSocketInfo, 127
dwSocketUtil, 125, 127, 128, 129
dwSpy32.dll, 25, 76, 77, 80
dwspydll.dll, 19, 25, 76
dwspyvb.dll, 28, 34, 37, 38, 42, 45, 49,

51, 56, 58, 63-65, 71, 126, 130, 131,
148-150, 154, 155
License Key, 150
Licensing, 149

dwSubClass, 35, 42, 45, 65, 131
dwSubtractFileTimes, 79
dwSwapBytes, 77
dwTaskbr, 20
dwTCP, 126
dwUDP, 126
dwXAllocateDataFrom, 77
dwXCopyAnsiStringFrom, 77
dwXCopyDataTo, 77
dwXGetModuleFileName , 79
dwXPixelsToTwips, 81
dwXTwipsToPixels , 81
dwYPixelsToTwips, 81
Dynamic Export Technology, 19, 25, 82,

84, 89

Edit, 169
Editions, 13
Enabled, 56
EnumWindows, 146
Error Handling, 97
Events

Delayed, 37, 54
DelayedEvent, 37, 65

Page 172

EnumWindows, 146
FilesDropped, 72
Form_Load, 44, 45, 59-62, 74
Initialize, 105
KbdHook, 52, 53
KeyDown, 25, 53
KeyDownHook, 52, 53, 62, 63
KeyUp, 25, 53
KeyUpHook, 52, 53
MenuSelect, 68, 73, 74
MouseEnter, 67, 75
MouseExit, 67, 75
MouseMove, 67
MouseProc, 61, 62
myobject_HookProc, 57
myobject_PreTranslateMessage, 58
myobject_PreTranslateMessage2, 58
myobject_WndMessage, 43, 65
Paint, 68
StateButton, 70
SysMenuRequest, 70
SystemCommand, 71
Terminate, 106
WndMessage, 39, 44, 59, 60
WndMessageX, 39, 45

EventTrigger, 145
ExecuteBackground, 133-137
Explorer, 71, 73
Explorer/File Manager, 71
Export Utility, 89
ExportAttribute, 83, 94
Exported Functions, 19, 25, 82
Exporting Functions, 82
Exports Class, 94
ExportWizard, 2, 83, 85, 95, 158, 160
ExtendedEvent, 58

Features, 18
File Descriptions

Redistribution Terms, 154
FileDropHwnd, 72
FileName, 72

FilesDropped, 72
ForceActive, 70
ForceCtlBox, 70
ForceOutline, 70
ForceTitle, 70
Form_Load, 44, 45, 59-62, 74
FTP, 20, 24, 25, 121-128
FunctionAddress, 86, 88
FunctionCount, 86, 87
FunctionName , 86, 88
FunctionNumber, 86, 88

GetAddress, 87, 88
GetFunctionCount, 86, 87, 88
GetFunctionInfo, 86, 87, 88
GetMessage, 46, 48, 49, 59
GetModuleHandle, 86, 87
GetShellLink, 72, 73
GetSpyWorksVersion, 79
GUID, 113-117

HLargeChange, 71
HMax, 71
HMin, 71
Hook, 54
Hook Examples, 58
HookCount, 40
HookEnabled, 55, 59-62
HookType, 49, 55, 56, 59, 61
HSmallChange, 71
HTTP, 20, 24, 25, 124-126, 129
Hvalue, 71
hWnd, 44, 45, 58, 80
HwndArray, 40
HwndParam, 39, 40, 44, 45

IDispatch, 102, 111
IdwCustomOleHook, 107, 114-119
IdwDynamicExport, 86-88
IdwObjectSafety, 117, 118
IdwPerPropertyBrowsing, 106
IEnumVariant, 118

Page 173

IID (Interface Identifier), 102, 113
IMalloc, 107, 120
Indirect Property Access, 80
Information

Other Sources, 171
Initialize, 105
Installation, 16
Instancing, 86
Interfaces

COM, 109
dwAxExtn.dll, 106
IDispatch, 102, 111
IdwCustomOleHook, 107, 117, 119
IdwObjectSafety, 117
IEnumVariant, 118
IMalloc, 107, 120
Implementing Standard, 105
IObjectSafety, 105, 107, 115-120
IOleControl, 102, 118
IPerPropertyBrowsing, 103, 106, 118
IPersistStream, 110
IShellLink, 72
IStorage, 120
IUnknown, 102, 109, 110, 120
IViewObject, 102
Non-Automation Compatible, 103, 105
Overriding, 103

IObjectSafety, 20, 105, 107, 112-120
IOleControl, 102, 107, 118
IOleWindow, 115
IP Address, 123
IPerPropertyBrowsing, 103, 106, 107, 118
IPersistStream, 110
ISAPI, 19, 24, 83
IShellLink, 25, 72
IsLicensed, 150, 151, 153
IStorage, 120
IStream, 110, 120
IUnknown, 102, 109, 110, 113, 116, 118,

120
IViewObject, 102

KbdHook, 52, 53
Key Value, 53
Keyboard Hooks, 51
KeyboardEvent, 53
KeyboardHook, 52, 62, 63
KeyboardNotify, 52, 53
KeyDown, 25, 53
KeyDownHook, 52, 53, 62, 63
KeyMessagesOnly, 58
Keys, 52, 53
Keystrokes

Discarding, 53
KeyUp, 25, 53
KeyUpHook, 52, 53

LaunchObject, 133-135, 152
License Key

Creating, 153
Licensing. See Distribution and Licensing
ListBox, 169
LoadLinkFile , 72, 73

MDIMenuDetect, 68
MenuSelect, 68, 73, 74
Merge Modules, 165
MessageArray, 41, 54
MessageCount, 41, 54
Messages , 39, 41, 44, 45, 54, 59, 60, 61
Migrating, 17
MinMax3D, 70
Monitor, 54, 59-61
MouseEnter, 67, 75
MouseExit, 67, 75
MouseMove, 67
MouseProc, 61, 62
MouseTransit , 67, 68, 75
MouseTransitNC, 68
Multiple Windows, 40
myobject_HookProc, 57
myobject_PreTranslateMessage, 58
myobject_PreTranslateMessage2, 58
myobject_WndMessage, 43, 65

Page 174

New Features, 23
Nodef Parameter, 40, 55, 56
Notify, 54
NT Service

Library, 130
NT Services, 20, 25

Objects
COM, 82, 102, 108
dwAsyncSocket, 126
dwAxExtn.dll, 118
dwControlHook, 105, 114-117, 151
dwEnumerator, 106, 107
dwExporter, 96
dwExporter Class, 86
dwFTPclient, 121, 126
dwGenericCall, 106, 107, 118-120
dwGenericHook, 49, 56, 58, 63, 131
dwHostEnt, 125
dwHTTP10, 121, 126, 129
dwMalloc, 107
dwPretranslate, 49, 51, 56, 58, 63, 131
dwPrivateWindow, 64, 65, 131
dwProtEnt, 125
dwRedistributable, 150, 151
dwServEnt, 125
dwShellLink, 66, 72, 73
dwSock, 125
dwSocket(s), 121, 125-128
dwSocketInfo, 127
dwSocketUtil, 125, 127, 128, 129
dwSubClass, 35, 42, 45, 65, 131
dwTCP, 126
dwUDP, 126
IOleControl, 107
IPerPropertyBrowsing, 107
LoadLinkFile , 73
ProjectName.dwExporter, 89
SaveLinkFile, 73
UserControl, 71, 106
UserDocument, 106

Paint, 68
Persist, 43
Port I/O functions, 79
PostEvent, 37, 43, 65
PostOnFreeze, 43, 54
PostOnFreezeMax, 43
Primary InterOp Assemblies, 165
Private Windows, 64
ProcAddress, 143, 145
Process Spaces , 42
ProjectName.dwExporter, 89
Properties

AddHwnd, 40
AddMessage, 42
AllowPrompt, 72
Caption, 146
CaptionHeight, 70
CaptionStyle, 69, 70
Convention, 144, 145
CrossTaskTimeout, 41
CtlParam, 39, 40
DetectDisabled, 68
DetectDropped, 72
Discard, 53
DroppedFile, 72
Enabled, 56
EventTrigger, 145
ExtendedEvent, 58
FileDropHwnd, 72
FileName, 72
ForceActive, 70
ForceCtlBox, 70
ForceOutline, 70
ForceTitle, 70
HLargeChange, 71
HMax, 71
HMin, 71
Hook, 54
HookCount, 40
HookEnabled, 55, 59, 60, 61, 62
HookType, 49, 55, 56, 59, 61

Page 175

HSmallChange, 71
Hvalue, 71
hWnd, 44, 45, 58, 80
HwndArray, 40
HwndParam, 39, 40, 44, 45
Instancing, 86
KeyboardEvent, 53
KeyboardHook, 52, 62, 63
KeyboardNotify, 52, 53
KeyMessagesOnly, 58
Keys, 52, 53
MDIMenuDetect, 68
MessageArray, 41, 54
MessageCount, 41, 54
Messages, 39, 45, 54, 59, 60, 61
MinMax3D, 70
Monitor, 59, 60, 61
MouseTransit, 67, 68, 75
MouseTransitNC, 68
nodef, 55
Notify, 54
Persist, 43
PostEvent, 37, 43, 65
PostOnFreeze, 43, 54
PostOnFreezeMax, 43, 44
ProcAddress, 143, 145
RegMessage, 39
RemoveHwnd, 40
RetrieveMode, 129
RolledUp, 70
ScrollBars, 70, 71
ScrollUpdate, 71
ScrollViewport, 71
ScrollWindow, 71
ShowCmd, 73
ShowInTaskbar, 70
SocketData, 127, 128
SubclassType, 35
TransitTag, 68
Type, 35, 39, 143-145
UpdateBottom, 68, 69
UpdateLeft, 68, 69

UpdateRight, 68, 69
UpdateTop, 68, 69
UserControl.hWnd, 58
VLargeChange, 71
VMax, 71
VMin, 71
VSmallChange, 71
VValue, 71

QueryInterface, 109, 114, 116, 120

Readme, 16
Register, 27
Registered message, 29, 39
RegMessage, 39
Release, 109
RemoveHwnd, 40
Resource Compiler, 86
RetrieveMode, 129
RolledUp, 70
Rollup Windows, 69

SaveLinkFile, 73
ScrollBars, 70, 71
ScrollUpdate, 71
ScrollViewport, 71
ScrollWindow, 71
SendMessage, 29, 46, 48
SetParent, 67
SetWindowsHookEx, 63
Shell Link Support, 72
ShowCmd, 73
ShowInTaskbar, 70
SMTP, 23, 25, 127, 158
SocketData, 127
Software License, 2
SpyMem95, 24, 26
SpyMemNT, 24, 26
SpyMenu, 140
SpyMnu32, 26
SpyWin, 26
SpyWorks

Page 176

Editions, 13
Features, 18
New Features, 23
Philosophy, 18
Safety, 21
Versions, 13

SpyWorks Concepts
Callbacks, 141
Components and Class Libraries, 130
dwEasy - A Multifunction Control, 66
dwSpy32.dll Function Library, 76
Exporting Functions, 82
Interface Extensions and Hooks, 100
Private Windows, 64
SubClassing, 28
Tools and Utilities, 138
Windows Hooks, 46
Winsock, 121

SpyWorks.ini, 167
StateButton, 70
SubClassing, 28

16 Bit, 38
Control Array, 41
CrossTask, 41
Multiple Windows, 40
Process Spaces, 42

SubClassing array, 39, 40
Support, 26
SwIniEdt, 140
SysMenuRequest, 70
SystemCommand, 71
SystemParametersInfo, 34

TCP, 24
Terminate, 106
ThunderComboBox, 168
Tiny Captions, 69
TransitTag, 68
Type, 35, 39, 143-145

UDT Packing Functions, 77
Update Area

Determining, 68
UpdateBottom, 68, 69
UpdateLeft, 68, 69
UpdateRight, 68, 69
UpdateTop, 68, 69
User Defined Type Packing Functions, 77
UserControl, 58, 71, 106, 152
UserControl.hWnd, 58
UserDocument, 106
Util, 128

Version
GetSpyWorks, 79
SpyWorks, 13

Version Resource, 95
Visual Studio .NET, 13, 16, 17, 23, 76,

85, 94, 95, 162, 163
VLargeChange, 71
VMax, 71
VMin, 71
VSmallChange, 71
VValue, 71

WH_CALLWNDPROC, 48-51, 59
WH_CALLWNDPROCRET, 24, 50
WH_CBT, 24, 50
WH_GETMESSAGE, 48-51
WH_JOURNALPLAYBACK, 24, 50
WH_JOURNALRECORD, 24, 50
WH_KEYBOARD, 48, 49, 51
WH_MESSAGEFILTER, 49
WH_MOUSE, 48, 49, 51, 61
WH_MSGFILTER, 49
WH_SHELL, 24, 50
WH_SYSMESSAGEFILTER, 49
WH_SYSMSGFILTER, 49
Windows Hooks, 53
Winsock, 184

Internet/Intranet, 121
Learning, 122
Library, 20, 25
Package, 121

Page 177

WM_ACTIVATEAPP, 59
WM_COMMAND, 44, 65
WM_CONTEXTMENU, 34
WM_CREATE, 54
WM_DESTROY, 43, 45
WM_MOUSEMOVE, 61
WM_NCCREATE, 54
WM_NCHITTEST, 35

WM_RBUTTONDOWN, 59
WM_SETCURSOR, 67
WM_SETTINGCHANGE, 34
WM_SYSCOMMAND, 34
WM_USER, 168
WndMessage, 39, 44, 59, 60
WndMessageX, 39, 45

Page 178

Desaware Product Descriptions
Thank you for your purchase of this Desaware product. We have
additional quality software to enhance your programming efforts.
Please visit our web site at www.desaware.com for detailed
descriptions and product demos.

SPYWORKS Standard 6/Professional 7.0

SpyWorks in a nutshell? Impossible!

You're going to want to download the SpyWorks demo to even begin
to understand its capabilities. This product has been evolving for
several years, and it includes so many features it's hard to know where
to begin. SpyWorks is a VB power tool. When you need to override
VB's default behavior or to extend VB's functionality, you will want to
use SpyWorks.

Do That in Visual Basic??

Want to put VB to the test? Want to learn advanced programming
techniques? Want to keep the productivity of VB and have the
functionality of C++? SpyWorks contains the low level tools that you
need to take full advantage of Windows. Here are just a few of the
features of this multi-faceted software package. For instance, have you
ever wanted to detect keystrokes on a system-wide basis or detect
when an event occurs in another application or thread using
subclassing or hooks? SpyWorks can help you solve these problems
by letting you tap into the full power of the Windows API without
having to be an expert. SpyWorks lets you export functions from VB
DLL's so that you can create function libraries, control panel applets,
and NT Services. With its ActiveX extension technology, you can call
and implement interfaces that VB5 or 6 do not support. SpyWorks
includes the Desaware API Class Library, which assists programmers
in taking advantage of the hundreds of functions that are built into the
Windows API. SpyWorks is available in either the Professional (Pro)
or Standard edition.

The Professional Edition includes .NET support for keyboard hooks,
window hooks and subclassing (including cross-task subclassing) with
examples in both Visual Basic.NET and C#. Additionally, a WinSock
component with comprehensive VB source code that gives you
complete control for Internet/intranet programming.

Page 179

Other features are the NT Service Toolkit Light Edition . This
application is a subset of the Desaware NT Service Toolkit product. It
allows a developer to create true NT services using Visual Basic. A
background thread component that allows you to easily create objects
that run in a separate background thread.

It also contains extensive sample code and three product updates.

• The Professional Edition includes the Winsock Library, NT
Service support and many other additional features & samples,
plus three free updates. SpyWorks 2.1 (VBX Edition) is included
in the Pro Edition.

• SpyWorks Standard is a subset of Professional. A feature
comparison is available on our web site.

• Supports VB 4, 5 & 6, Windows 95, 98, 2000, NT and ME
depending upon which version (or edition) of SpyWorks.

VERSIONSTAMPER 6.5

Distributing Component-Based Applications? Beware DLL
HELL!

You've distributed your application and it's working fine. But your
end user is still in charge of their system. What happens when they
install a program that overwrites a component that your software needs
to run? Can you verify that your users have the correct files required
by your application? Can you really afford to spend two hours on the
phone trying to figure out exactly what went wrong? Now you can
easily avoid component incompatibilities by adding VersionStamper
to your toolkit. It lets you check the versions of your program's
components on your end user’s system, and correct the problem.

Page 180

You are in control!

DLL Hell is a big problem, and with VersionStamper you can be in
control of how this problem is detected and corrected. You determine
dependency scanning (file size, date, version or other parameter), how
and when the dependency scanning is done (upon start up, at midnight,
at user's discretion), and how you want the problem resolved
(automatically, an email message to your help desk, from a
dependency list on your web site and more). This means you can
handle versioning problems as simply as using a message box to call
tech support, or even automatically updating the invalid components
over the internet or corporate network. Imagine your application
updating itself without user (or programmer) intervention! Imagine the
hours and money saved in tech support calls! You can even use
VersionStamper for incremental updates and bug fixes.

Is This For Real?

No, you don't have to pay a fortune in distribution fees - there are no
run-time licensing fees. VersionStamper comes with a great deal of
sample code. Don't distribute a component-based application without
it!

• Checks the versions of your dependent files and notifies you
or the user of potential problems.

• Internet extensions allow you to update versions across the
Internet/intranets.

• Cool and USEFUL sample programs show you how it works.

Includes VB source code for the VersionStamper components that you
can use in your applications.

Page 181

NT SERVICE TOOLKIT 1.1

Create a fully featured service in minutes using Visual Basic – even
debug your service using the Visual Basic environment! Supports all
NT service options and controls. Adheres to all Visual Basic threading
rules. Background thread support allows easy waiting on system and
synchronization objects. Client requests supported on independent
threads for excellent scalability, with client impersonation available
allowing services to act on behalf of clients in their own security
context. Client requests and service control possible via
COM/COM+/DCOM.

Simulation mode for testing as an independent executable. Create
control panel applets for service control and other purposes.

DESAWARE EVENT LOG TOOLKIT 1.0

Visual Basic allows you to log events to the NT/2000 event log, but
does not allow you to create custom event sources - so every event
belongs to the application VB runtime, descriptions are limited, and
event categories unavailable. Even if you use the API to log events,
creating custom event sources for your application is not supported by
VB, and is difficult with C++.

Desaware's new Event Log Toolkit makes creation of event sources
easy, and provides all the tools needed to create and log custom
events. Now your applications and services can support event logs in a
professional manner, as recommended by Microsoft

Page 182

STORAGETOOLS ver 2.5

StorageTools is your key to the OLE 2.0 Structured Storage
Technology. Structured Storage allows you to create files that organize
complex data easily in a hierarchical system. It is like having an entire
file system in each file. OLE 2.0 takes care of allocating and freeing
space within a file, so just as you need not concern yourself with the
physical placement of files on disk, you can also disregard the actual
location of data in the file. Additionally, with its support for
transactioning you can easily implement undo operations and
incremental saves in your application. StorageTools allows you to
take advantage of the same file storage system used by Microsoft's
own applications. In fact, we include programs (with Visual Basic
source code) that let you examine the structure of any OLE 2.0 based
file so that you can see exactly how they do it!

StorageTools includes documentation and controls to make it easy to
work with the registration database under Windows 3.1, Windows NT
& Windows 95/98 and 2000. For Visual Basic 4-6. We also include a
simple resource compiler (with Visual Basic source code) so that you
can create your own .RES files for use with Visual Basic.

StorageTools version 2.5 also includes the Desaware File Property
component.

StorageTools includes 16 & 32 bit ActiveX/ATL controls, extensive
documentation and sample code.

Page 183

DESAWARE ACTIVEX GALLIMAUFRY Ver. 2

What is it?

gal·li·mau·fry (gàl´e-mô¹frê) noun
plural gal·li·mau·fries
A jumble; a hodgepodge.

[French galimafrée, from Old French galimafree, sauce, ragout :
probably galer, to make merry. See GALLANT + mafrer, to gorge
oneself (from Middle Dutch moffelen, to open one's mouth wide, of
imitative origin).]
(From The American Heritage® Dictionary of the English Language,
Third Edition copyright © 1992 by Houghton Mifflin Company)

What does a Twain control, spiral art program, set of linked list
classes, a quick sort routine, a hex editor and a myriad of other custom
controls have in
common?

They are all part of Desaware's ActiveX Gallimaufry.

You'll find most of these controls useful, the rest entertaining – but we
guarantee that you'll find them all educational, because they come with
complete Visual Basic 6.0 source code.

Curious?

Want to learn some advanced API programming techniques? Visit our
web site for a full description and demo.

THE CUSTOM CONTROL FACTORY V 4.0
The Custom Control Factory is a powerful tool for creating your own
animated buttons, multiple state buttons, toolbars and enhanced button
style controls in Visual Basic and other OLE control clients, without
programming. With 256 & 24 bit color support, automatic 3D
backgrounds, image compression, over 50 sample controls and more.
Plus MList2 - an enhanced listbox control. 16 & 32 bit ActiveX
controls and 16 bit VBXs included.

Page 184

