

The Desaware
NT Service Toolkit
.NET Edition

 Version 2.1

 Windows 2000, XP and all .NET languages

 Desaware, Inc.
by

Rev 2.1.0 (08/06)

Information in this document is subject to change without notice and does not represent a commitment on
the part of Desaware, Inc. The software described in this document is furnished under a license
agreement. The software may be used or copied only in accordance with the terms of the agreement. It
is against the law to copy the software on any medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written
permission of Desaware, Inc.
Copyright © 2000-2006 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the product
and all accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed for use on a single computer. If you wish to transfer the license from one
computer to another, you must uninstall it from one computer before installing it on the next. You may
(and should) make archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software and all other
materials and retain no copies, and the recipient agrees to the terms of this agreement.

You may not make copies of this software for other people. Companies or schools interested in multiple
copy licenses or site licenses should contact Desaware, Inc. directly at (408) 404-4760.

Should your intent be to purchase this product for use in developing a compiled Visual Basic program
that you will distribute as an executable (.exe or .dll) file, review the listing of which files (located
below and in the File Description section of the product manual) can be distributed and or modified. If
Desaware files are included in your executable program, you must include a valid copyright notice on all
copies of the program. This can be either your own copyright notice, or “Copyright © 2000-2006
Desaware, Inc. All rights reserved.”.

You have a royalty-free right to incorporate any of the sample code provided into your own applications
with the stipulation that you agree that Desaware, Inc. has no warranty, obligation or liability, real or
implied, for its performance.

Files: You may include with your program a copy of the files Desaware.ServiceToolkit.Interfaces.dll.
NTServiceToolkitMM.msm, dwSCM.dll, or dwSCMNet.dll You may also distribute EXE, CPL, and
DLL files created using the Desaware service configuration wizard program and Desaware control
applet configuration wizard program. You may not modify the files listed above in any way.

Source Files: Source code for portions of the Desaware NT Service Toolkit are included for educational
purposes only. You may use this source code in your own applications only if they provide primary and
significant functionality beyond that included in the toolkit package. You may not use this source code
to develop or distribute components and tools that provide functionality similar to all or part of the
functionality provided by any of the components or tools included in the NT Service toolkit package.

Please consult the on-line Help file under the topic File Descriptions for additional information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Windows, Windows XP,
Windows 2000, Windows NT and .NET are trademarks of Microsoft Corporation.
Desaware NT Service Toolkit, SpyWorks, StateCoder, VersionStamper, StorageTools, ActiveX
Gallimaufry, Event Log Toolkit, Custom Control Factory, and SpyNotes #2, The Common Dialog Toolkit
are trademarks of Desaware, Inc.

Limited Warranty
Desaware, Inc. warrants the physical medium (CD) and physical documentation enclosed herein to be
free of defects in materials and workmanship for a period of sixty days from the date of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be limited to
replacement of defective CD or documentation and shall not include or extend to any claim for or right
to recover any other damages, including but not limited to, loss of profit, data or use of the software, or
special, incidental or consequential damages or other similar claims, even if Desaware, Inc. has been
specifically advised of the possibility of such damages. In no event will Desaware, Inc.'s liability for
any damages to you or any other person ever exceed the suggested list price or actual price paid for the
license to use the software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically, Desaware, Inc.
makes no representation or warranty that the software is fit for any particular purpose and any implied
warranty of merchantability is limited to the sixty-day duration of the Limited Warranty covering the
physical medium and documentation only (not the software) and is otherwise expressly and specifically
disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from state to
state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws of the State
of California, and any action hereunder shall be brought only in California. If any provision is found
void, invalid or unenforceable it will not affect the validity of the balance of this License and Limited
Warranty, which shall remain valid and enforceable according to its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park Dr. Suite 48, San Jose,
California 95136.

Table of Contents
DESAWARE, INC. SOFTWARE LICENSE..3

LIMITED WARRANTY...4

TABLE OF CONTENTS ..5

BEFORE YOU BEGIN ...13

INTRODUCTION ...14
READING THE DOCUMENTATION ..15
NEW FEATURES FOR VERSION 2.0 ..16

New Service Executable Command Line Options ..16
New IdwServiceControl Methods and Properties ..16
Improved Instrumentation and Diagnostics...17
New Features for Interactive Services ...17
Improved Error Handling ..17
Service Control Features ...17
Other Features...17

WHAT IS AN NT/2000/XP WINDOWS SERVICE? ...18
WHY A SERVICE? ...18
TYPES OF SERVICES ..18

System Monitors...18
Background Tasks..19
Software Agent...20
Resource Pool ..20
Business Objects ..20

HOW SERVICES DIFFER FROM REGULAR EXECUTABLES...20
SERVICES, VB AND .NET ...21
THE DESAWARE NT SERVICE TOOLKIT ..21
LEARNING MORE..23
CREATING A SIMPLE SERVICE ...24
STEP 1 – CONFIGURE THE SERVICE EXECUTABLE...24

Service Executable Name...24
Service Component Name ..24
Version Information...24
Thread Pool Size ..24
Create Remoting Files ...25

Page 5

STEP 2 – CREATE THE ASSEMBLY DLL .. 25
STEP 3 – ADD THE SERVICECONFIGURATION CLASS .. 25
STEP 4 – ADD THE SERVICE CLASS... 29
STEP 5 – TEST AND RUN THE SERVICE.. 32
MIGRATING A SERVICE FROM VB6... 34
STEP 1 – MIGRATE YOUR VB6 PROJECT .. 34
STEP 2 – TURN ON OPTION STRICT ... 34
STEP 3 – REMOVE THE REFERENCE TO EASYSERVLIB .. 34
STEP 4 – ADD A REFERENCE TO DESAWARE.SERVICE-TOOLKIT.INTERFACES 34
STEP 5 – ADD AN ‘ IMPORTS’ STATEMENT TO YOUR FILES .. 34
STEP 6 – SEARCH AND REPLACE... 34
STEP 7 – REMOVE THE SERVICEPROCESSID METHOD .. 35
STEP 8 – MISCELLANEOUS.. 35
THE SERVICE FRAMEWORK MODEL ... 36

CONFIGURING THE SERVICE.. 38
IDWEASYSERVCONFIG METHODS.. 38

AutoStart.. 39
ControlsAccepted... 39
DefaultTimes.. 41
GetDescription... 41
GetVersion... 42
IgnoreStartupErrors .. 42
InteractWithDesktop.. 43
ServiceAccount .. 43
ServiceAccountPassword... 44
ServiceDependencies ... 44
ServiceProcessId ... 45

IMPLEMENTING THE SERVICE CLASS... 46
IDWEASYSERVICE METHODS RELATING TO STATE TRANSITIONS.. 47

OnContinue.. 47
OnPause .. 48
OnStart .. 48
OnStop ... 49
OnShutdown .. 49

IDWEASYSERVICE METHODS RELATING TO OTHER SERVICE CONTROL MANAGER EVENTS ... 50
OnUserControlCode.. 50
OnParamChange... 51
OnHardwareProfileChange .. 51

Page 6

OnDeviceEvent ..52
OnPowerRequest ...52

IDWEASYSERVICE METHODS SPECIFIC TO THE SERVICE FRAMEWORK53
OnTimer...53
WaitComplete...54

IDWEASYSERVICE2 INTERFACE METHODS...54
OnLogout ...54

IDWSERVICECTL - THE SERVICE CONTROL OBJECT...55
IDWSERVICECTL PROPERTIES ..55

InstallParameters (String/string)...55
StartupParameters (String/string) ...55
Timeout (Integer/int)..55
ControlsAccepted (ServiceControls)..56

IDWSERVICECTL METHODS..56
UpdateTransitionTime ...56
StopService...57
SetWaitOperation...57
ClientExecuteBackground..57
ClearWaitOperation ..58
GetInteractiveUser...58
RegisterApplicationObject ...58
RegisterClientObjectName ..59
RegisterDeviceNotification ..60
UnregisterDeviceNotifcation ...60
ReportEvent ...60
ReportEvent2 ...61
Trace ..62
GetStateCoderMessageSource...63

USING THE SERVICE CONFIGURATION PROGRAM ...64
Service Executable Name...64
Assembly Name ..65
Version Information...66
Thread Count ...67
Create Remoting Files ...67
Compile Executable ...69
Compile Completed..69

RUNNING THE SERVICE CONFIGURATION WIZARD IN BATCH MODE70
Command Switches ..70

Page 7

USING THE SERVICE EXECUTABLE LAUNCHER PROGRAM 73

BACKGROUND THREADS AND SYNCHRONIZATION OBJECTS 74
METHODS USED TO IMPLEMENT BACKGROUND THREADS ... 74

Control Object (IdwServiceCtl Interface).. 75
Service Object (IdwEasyService Interface) ... 76

EXPOSING SERVICE OBJECTS... 79
.NET REMOTING VS. COM/DCOM ... 79
.NET REMOTING .. 79

.NET Remoting Configuration File.. 80
THE SERVICE FRAMEWORK OBJECT ARCHITECTURE ... 80

Objects Exposed Only Through .NET Remoting.. 81
Application Objects Exposed Through Both .NET Remoting and COM.............................. 81
Client Objects Exposed Through both .NET Remoting and COM....................................... 82

THE RUNNINGSERVICE OBJECT (COM CLIENTS ONLY)... 83
CREATING THE APPLICATION OBJECT .. 84
CREATING THE CLIENT OBJECT.. 85
THE IDWSERVICECLIENT INTERFACE AND CLIENT OBJECTS.. 86

Service Specific Issues Relating to Client Objects... 87
Object Identifiers ... 90
OnConnect... 90
OnDisconnect .. 90
OnStop ... 91
ExecuteBackground ... 91

ADDITIONAL APPLICATION AND CLIENT OBJECT ISSUES.. 92
Shared Variables ... 92
Service State and the Client and Application Objects ... 92

SECURITY AND IMPERSONATION ... 94
NT/2000/XP SECURITY IN 250 WORDS OR LESS.. 94
IMPERSONATION... 94

Types of Impersonation ... 95
CONFIGURING YOUR SERVICE FOR CLIENT ACCESS... 97

Configuring the Service Access Through .NET Remoting ... 98
Configuring the Client System for Access to .NET Remoting Objects Exposed from the
Service ... 99
Configuring the Service Access Through DcomCnfg .. 100
Configuring the Client System for Access to COM/DCOM Objects Exposed from the
Service ... 102

EXAMPLES... 105

Page 8

MIGRATION FAQ..108
MIGRATION ISSUES RELATING TO THE TRANSITION FROM THE COM EDITION TOOLKIT108

Where is the dwSecurity Object? ...108
Where is the dwBackThread Object?...108
Where is the dwSock Component? ...108

MIGRATION ISSUES RELATING TO THE TRANSITION FROM VB6 ...109
How can the interface names be the same in the .NET edition, even though the interfaces
are different?..109

COMMON ERRORS ..110
INSTALLATION AND REGISTRATION..110

Service Cannot be Deleted Error When Trying to Install or Delete a Service110
Unable to Load Service Configuration Object Error When Trying to Install a Service110

CLIENT OBJECTS...110
Permission Denied Error When Creating the RunningService Object from COM/DCOM110
My Client Object Is Not Receiving an OnStop Method Call ..110
Unable to Access an Object Through .NET Remoting ...111
Unable to Access an Object Through DCOM..111

WHILE RUNNING ..112
The Service Stops Working ..112
The Service Cannot Access Network Resources When Running As a Service112

LICENSING ISSUES ..113

TESTING AND DEBUGGING ..114
TRACING AND LOGGING ...114
TESTING AND DEBUGGING – SIMULATOR MODE ..115
TESTING AND DEBUGGING – WHILE RUNNING AS A SERVICE...116
TESTING COM AND DCOM ...117
THE DWSCM COMPONENT: SERVICE CONTROL MANAGER118
DWSCM ARCHITECTURE ..119
DWSERVICEMANAGER METHODS...120

InitializeSCManager ..120
InitializeSCManager ..120
EnumServicesStatus ...120
EnumServicesStatus ...121
OpenService ...122
GetDisplayNameFromServiceName ..123
GetServiceNameFromDisplayName ..123
CreateService...123

Page 9

LockServiceDatabase () As Boolean.. 124
UnlockLockServiceDatabase () As Boolean .. 124
QueryLockStatus.. 124

DWSERVICEOBJECT METHODS AND PROPERTIES ... 124
StartService.. 124
ControlService ... 125
QueryServiceStatus() As dwServiceStatus ... 126
QueryServiceConfig() As dwServiceConfig... 126
ChangeServiceConfig .. 127
EnumDependentServices ... 128
EnumDependentServices ... 128
DeleteService() .. 128
ServiceName as String... 128
ServiceHandle as Long.. 128
Service As ServiceProcess.ServiceController.. 129

DWSERVICESTATUS PROPERTIES.. 129
DisplayName as String .. 129
ServiceName as String... 129
CurrentState as ServiceStateConstants ... 129
ControlsAccepted as ControlsAcceptedFlags.. 129
Win32ExitCode as Long .. 129
ServiceSpecificExitCode as Long .. 129
CheckPoint as Long... 129
WaitHint as Long... 130

DWSERVICECONFIG PROPERTIES.. 130
ServiceType as ServiceTypes ... 130
StartType as ServiceStartTypes ... 130
ErrorControl as ServiceErrorControlType ... 130
BinaryPathName as String .. 130
LoadOrderGroup as String.. 131
TagId As Long ... 131
Dependencies as String.. 131
AccountName as String ... 131
Password as String .. 131
DisplayName as String .. 131
Description as String ... 132

ENUMERATIONS AND CONSTANTS.. 132
ServiceTypes Enumeration .. 132
ServiceStartTypes Enumeration... 132
ServiceErrorControlTypes Enumeration... 133
ServiceControlRights Enumeration ... 133
ServiceAccessRights Enumeration... 134

Page 10

ServiceControlConstants Enumeration..135
ServiceStateConstants Enumerations...136
EnumServiceStates Enumeration ...136
ControlsAcceptedFlags Enumeration ..136

CREATING CONTROL PANEL APPLETS ...138
BUILDING A CONTROL PANEL APPLET ...138
USING THE CONTROL PANEL APPLET WIZARD PROGRAM ..138

Control Panel Applet Name ...139
Assembly Name ..140
Version Information...140
Description...140
Icon File...141
Compile Applet ..141
Compile Completed..142
System Compatibility ...142

CREATE AN ASSEMBLY DLL FOR YOUR CONTROL PANEL APPLET ..142
CplDblClk ..143
CplExit() ..143
CplGetCount() As Integer ..144
CplInit() As Integer ..144
CplInquire..145
CplNewInquire...146
CplStartWParms ..147
CplStop ..147

USING CONTROL PANEL APPLETS WITH SERVICES ...148
INSTALLING AND TESTING YOUR CONTROL PANEL APPLET...151

Installing the CPL File on Windows 2000/XP ...152
DISTRIBUTING YOUR CONTROL PANEL APPLET ...153
INSTALLING AND DISTRIBUTING YOUR SERVICE ...154
COMPILING YOUR COMPONENT..154
CONFIGURING SECURITY ..154
CONFIGURING REMOTE SYSTEMS TO ACCESS OBJECTS FROM YOUR SERVICE.......................155
SERVICE EXECUTABLE COMMAND LINE OPTIONS..155
REDISTRIBUTABLE COMPONENTS ...156
TECHNICAL SUPPORT..158

FRAMEWORK RESTRICTIONS...159
CONFIGURATION ISSUES ...159

Page 11

OTHER SOURCES OF INFORMATION.. 160
www.desaware.com ... 160
Dan Appleman's Visual Basic Programmer's Guide To The Win32 API........................... 160
Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to
the Perplexed ... 160
msdn.microsoft.com... 161

INDEX .. 162

DESAWARE PRODUCT DESCRIPTIONS... 166

Page 12

Before You Begin
The Desaware NT Service Toolkit is available in three editions.

.NET Version This edition of the toolkit is designed to make it easy to create
powerful services in .NET, providing capabilities beyond those
included in the .NET framework. It also allows for easy migration
from the other editions of the toolkit. This edition is designed for use
with Visual Basic .NET, C# or other .NET languages. It does not
allow creation of services using Visual Basic 6.

COM (Full)
Version

The COM based edition of the toolkit allows creation of full featured
services using Visual Basic 6.

Demo Version
(available for
both COM and
.NET editions)

Includes all features described in this documentation except for the
service configuration wizard program, the service executable launcher
program, and the control panel applet wizard program. This means
you can experiment with all of the sample services and develop your
own – as long as they use the EasySvnt.exe service executable we
provide, and use a VB component class named dwEasyServ (thus you
can only experiment with one service at a time). You cannot create or
distribute your own services with this version.

The demo version has an expiration date. Once it expires you can
download a new version from Desaware’s web site.

Page 13

Introduction
The Desaware NT Service Toolkit is designed to make it easy to create
reliable and supportable 2000/XP Windows services using Visual
Basic .NET, C# and other .NET languages. It provides numerous
features beyond those offered by the .NET framework, leading to
significant cost savings.

The Desaware NT Service Toolkit for .NET offers the following
unique features:

• Built-in service simulator makes it possible to test and debug
services without actually installing them as a service. This not
only speeds development, but is especially critical for testing
startup and shutdown scenarios that are difficult to debug.

• Create full featured control panel applets using Visual Basic
.NET, C#, and other .NET languages.

• Services created with this toolkit are entirely self-installing
using the command line. There is no need for a separate
“installer” tool.

• Command line installation allows specification of user,
password and install time parameters – ideal for supporting
customized automated installations during deployment.

• Services may automatically and simultaneously expose
internal objects via both .NET remoting and COM/DCOM.
Support for both remoting schemes is ideal for incremental
migration – you can move your service to .NET without
migrating all of your clients.

• Objects exposed via both COM and .NET remoting
automatically receive service start and stop notifications
directly from the framework.

• The service framework is fully instrumented for tracing and
debugging, essential for rapid solution to problems both
during development and after distribution.

• A high degree of compatibility with the COM version of the
toolkit makes migration of services to .NET remarkably easy.

Page 14

• Built in timer, support for background waits on .NET
synchronization (WaitHandle) objects, and asynchronous
operations on remotable objects created by clients. Built in
synchronization makes it easy to avoid many of the
synchronization problems associated with multithreaded
applications.

• COM interop supported using a private thread-pool for
maximum scalability regardless of whether client access is
via COM or .NET remoting.

• Interactive service features including the ability to detect the
logged on user, and when a user is logging off the system.

• Integration with Desaware’s StateCoder™ makes it easy to
create sophisticated and scalable state machine based
services.

In addition to the above features (which are unique to the toolkit and
represent capabilities beyond the simple framework included with
.NET), this toolkit supports the following essential service tasks:

• True 2000/XP service allows detection and response to all
service handler requests.

• Supports latest Windows 2000/XP features.
• Service controlled state transition timeouts (start, stop, pause,

continue).
• Support for impersonation of clients (act on behalf of clients).
• Launch arbitrary background threads for asynchronous

operations.

Reading the Documentation
This manual is intended to simultaneously support two audiences,
readers using the toolkit for the first time, and those who are migrating
from the COM version of the toolkit.

Information relating to migration from VB6 COM based services will
appear in shaded blocks.

Page 15

New Features for Version 2.0
If you are migrating your VB6 COM service directly from version 1.1
of the Desaware NT Service toolkit, here is a list of the features added
to the toolkit for version 2.0. These features are supported both in the
2.0 COM edition toolkit, and in this .NET edition toolkit.

New Service Executable Command Line Options
-User and -Password allow you to specify the account in which the
service will run. This setting overrides that provided in the Service
Configuration file, and is ideal for cases where the account must vary
from system to system. These options are not supported for services
that are set to interact with the desktop.

-Params allows you to set parameters during installation which can be
read at any time by the service when it runs.

-Silent prevents any message boxes from being displayed during
installation operations, improving support for remote and automated
installs.

New IdwServiceControl Methods and Properties
StartupParameters – Allows you to read parameters set during
manual startup of a service via the control panel or Service Control
Manager.

InstallParameters – Allows you to read parameters specified in the
command line when the service is installed.

Trace – Allows you output arbitrary text from your service component
to the framework tracing system for diagnostic purposes (see
following section).

GetInteractiveUser – Obtains the account information for the
currently logged on user.

GetStateCoderMessageSource – Obtain a StateCoder message
source for use when implementing state machines using Desaware’s
StateCoder in a service. This message source can notify your state
machine when service based events occur.

Page 16

Improved Instrumentation and Diagnostics
Framework logging – Definable trace levels control logging of
detailed information about the operation of the framework to help
resolve configuration issues.

New Features for Interactive Services
New IdwEasyService2 interface provides an OnLogout method that
allows you to determine when an interactive user has logged off the
system.

New features allows you to determine if an interactive user is logged
on and retrieve their account name and domain in most cases.

Improved Error Handling
Robust trapping and detection of runtime errors that occur in your
Visual Basic component allow cleaner shutdown of services when
errors occur. Improved diagnostics allow reporting of where and when
errors occur, making debugging of services much easier.

Service Control Features
New Visual Basic classes demonstrate how to control services
(including starting, stopping and sending information to running
services). Full source code for these classes is included.

Other Features
Improved and earlier detection and handling of System Shutdown.

Improved default security handling reduces the amount of
configuration needed in remote and DCOM based scenarios.

Page 17

What is an NT/2000/XP Windows Service?
A Windows service is a regular Windows executable. In most ways it
works the same way as a standard application. But there are a few
important differences both in the way they work and how they are
built internally.

Why A Service?
Services are intended to be, in a sense, a part of the operating system.
An operating system provides services to applications. Services define
additional areas of functionality that extend the capability of the
operating system. For example: the event log, login program,
telephony and web server are all services. Services can be
automatically started by the operating system when a system is started.
Developers create services for many different reasons. Ultimately, a
service has only three real advantages over a regular executable:

• A service can be configured to start automatically on system
boot, and can have its operation controlled by the system
(either locally or remotely).

• A service can run without a user logging on, and can continue
running as users log on and off a system.

• A service can run under the security context of your choice,
allowing it to perform operations independently of who is
logged on, or which client is accessing it.

Yet these advantages allow a wide variety of operations that are best
performed in services.

Types of Services
Windows services tend to fall into certain categories. Keep in mind
that a single service might actually fall into multiple categories.

System Monitors
As a multi-tasking system, there are many things going on at any
given time while Windows is running. This is especially true on
servers, where client systems might be modifying files, the registry, or
performing a wide array of other tasks.

Page 18

Windows supports a variety of synchronization objects that can be
used to monitor these tasks. These objects can be used to detect
changes to files or directories, changes to the registry, the termination
of running applications, and many more events.

Managing large numbers of synchronization objects and background
threads can, however, be a very complex task – especially on server
based applications where you have multiple clients. Not only do you
have the normal array of synchronization issues involved in any
multithreaded application, but services have unique problems owing to
the fact that they may be paused or shutdown.

The Desaware NT Service Toolkit addresses this issue in two ways.
First, it provides automatic monitoring of any synchronization objects
you choose on a background thread that it both manages, and
synchronizes to the primary service thread. Second, it provides
integration with Desaware’s StateCoder which provides an effective
way to process messages based on synchronization objects, and
service messages provided by the service framework.

Background Tasks
Consider a business object that runs on a server. If you implement it as
a web service or remotable object, the server will create an object on
receipt of a client request, and free it once all clients are finished with
the object.

But what if the business object has a long initialization process that it
must go through before it can respond to a client request? This is not at
all uncommon on corporate systems. To go through the initialization
each time a request is received is prohibitive.

A service can solve this problem in two ways. First, since a service
can be configured to launch automatically when a system is started,
you can implement your business objects in the service and simply
perform the initialization when the system boots at a more convenient
time. An alternate approach is to have the service launch a separate
server process and hold a reference to it (keeping it open), then
monitor the server. If the EXE server is terminated (due to a crash or
error), the service can detect that condition and automatically restart
the server process.

Services are also ideal for scheduled operations that run in the
background. Built-in waitable timer support allows services you create
to easily perform operations on a scheduled or periodic basis.

Page 19

Software Agent
The Desaware NT Service Toolkit allows you to expose client objects
from your service that are accessible through .NET remoting, COM or
DCOM. These objects can work in two ways.

Normally, they run under the same account as the service itself (you
can, of course, decide the account under which the service runs). Let's
say you have a critical operation that you don't want to allow users to
access directly. Since the client objects run in the service account, you
can have it act as an agent for the user - performing operations that the
user is not allowed to do.

At other times, however, you might want the client object to perform
operations as if it were logged in to the user's account. Perhaps to
allow it to access information that is personal to the user, or perhaps to
prevent access to resources that the user does not have permission to
touch. You can use a technique called impersonation to act as the user
in these situations. You can turn impersonation on and off on a line by
line basis.

Resource Pool
Another common use for services is to make it easy for clients to share
information, or to control access to a limited set of resources.

The Desaware NT Service Toolkit allows you to define an application
object that is global to all clients using the service (even though the
client objects may be running in separate threads). This makes it easy
for clients to share information, for the service to hold information for
clients, or for clients to communicate with each other.

Business Objects
The Desaware NT Service Toolkit takes advantage of .NET’s strength
in creating components - in fact, all you need to do to create your
service is to create a new assembly and add a few predefined classes.
You'll find it easy to incorporate your existing business objects into
services, or to call them from your service.

How Services Differ from Regular Executables
When a regular application is launched, it is initially assigned a single
thread. The application can create additional threads, but these threads
remain entirely under the control of the primary application.

Page 20

A service application uses at least two threads. The primary thread of
the service belongs to the service executable (and it can create
additional threads). In addition, a handler thread is used by the
operating system to control the service and notify it of system requests
including instructions to pause, stop or resume operation.

Services, VB and .NET
Traditionally, the dual thread architecture imposes a specific set of
requirements on application programmers using C++ in terms of the
design of the service and synchronization between the primary service
thread and the handler thread. Unfortunately the service framework
provided with .NET simply maps those requirements to the .NET
programmer, making thread synchronization a concern and potential
source for subtle errors in all but the most simple services.

The earlier (COM based) version of this toolkit included a
sophisticated thread management scheme to assure synchronization
between theses threads. This was necessary because VB6 uses the
STA (Single Threaded Apartment) model of threading, and
simultaneous access to COM objects from different threads is simply
not allowed.

This architecture has been preserved for the .NET edition. By
providing automatic thread synchronization for most tasks, the
framework eliminates many potential sources of bugs, and simplifies
the design requirements, thus reducing development cost.

The Desaware NT Service Toolkit
This toolkit provides a framework that appears to the operating system
as a 100% standard service, and simultaneously appears to a .NET
component as a standard client application.

The approach follows from the following chain of reasoning:

• The .NET framework for creating services using Visual Basic
.NET and C# is limited in features and is risky to use because
of threading issues.

• Visual Basic .NET and C# are outstanding tools for creating
components.

• A service executable can both use and expose .NET
components.

Page 21

• .NET components used by a service can provide part of the
functionality of a service.

What would happen then, if you increased the proportion of service
functionality provided by the .NET object to the point where virtually
all of the service was, in fact, implemented by that object?

You’d have the Desaware NT Service Toolkit.

An executable file is configured using a utility that we provide. This
service executable contains minimal information about the service. It
supports the primary thread, handler thread, additional threads used to
wait on NT synchronization objects, and additional threads to support
client objects.

Your service functionality is defined in a component that you create
using Visual Basic .NET, C# (or other .NET languages) which is
loaded by the service executable. Your component contains at least
two objects, one that is used to configure the service, the other that
implements the service itself. These objects implement two standard
interfaces that are defined by the toolkit, IdwEasyServConfig for
configuration, and IdwEasyServ to control the service itself. Your
component can be easily debugged using the Visual Studio .NET
development environment either while running as a service or when
running under the built in simulator. In addition, you can expose an
application object that is shared by all service clients, and additional
client objects.

If this all sounds confusing, don't worry. The tutorial that follows will
walk you through the process of building a service, and in the process
help you become familiar with the toolkit framework and its features.

Page 22

Learning More
The documentation provided here is intended to address the needs of
most programmers who wish to write services using the framework.
However, writing services touches on virtually every aspect of
Windows programming including but not limited to, NET remoting, to
COM and DCOM to security to the service API itself. A document
that covered everything you could possibly need to know would fill
several volumes, and be nearly impossible to navigate. This manual
will discuss the use of a variety of technologies in the context of
services and the service framework, but will not discuss those
technologies at length. Thus, for example, we’ll show you how to
expose an object so it can be accessed through .NET remoting or
DCOM, and mention some of the issues that relate to use of remoting
and DCOM in services. But you’ll have to look elsewhere for in-depth
information on configuring remoting and DCOM and how to
configure them for use in your enterprise.

At a bare minimum, we will assume that you already know the
following:

• You know Visual Basic .NET or C# programming at least on
an intermediate level.

• You know how to create .NET assembly DLL’s and
configure their properties.

• You have a fundamental understanding of concepts including
threading, use of API functions, and process spaces.

If you are moving to .NET from VB6, we strongly encourage you to
read at least the first two parts of Dan Appleman’s book “Moving to
VB.Net: Strategies, Concepts and Code”. It will help you to
understand and take full advantages of the features of this toolkit. You
can also find additional articles on related subjects such as multi-
threading on Desaware’s web site at www.desaware.com.

Page 23

Creating A Simple Service
There are five steps in creating and testing a service using the
Desaware NT Service Toolkit.

Step 1 – Configure the Service Executable
The Service Executable is created using the Desaware NT Service
Configuration Wizard program. This wizard will prompt you for the
following information:

Service Executable Name
This is the name of the service executable file. It can be any name you
choose.

Service Component Name
This is the name of the .NET assembly DLL that the service will load.
This name should also represent the root namespace of the assembly
you will create. If you decide later that you want to change the
assembly name, you will have to run this configuration program again.

You should choose an assembly name that is unique – duplication of
assembly names used by this framework can cause services to fail to
work properly. We recommend including your company name or
initials in the name. For example: most Desaware components include
the prefix “dw”.

Version Information
This is where you set the version information for the service
executable. You can set most standard Windows version information
fields.

Thread Pool Size
If your service will expose objects to COM or DCOM clients, those
objects will be created on a thread pool so that their operation will not
interfere with the primary service. You can set the size of the thread
pool with this option. Set the Thread Pool size to 1 if you do not plan
to expose objects to COM or DCOM clients.

Page 24

Create Remoting Files
This option will cause your service to create default remoting
configuration files for your service and for clients accessing the
service through .NET remoting. You will need to modify these files to
suit your own needs as described later in this documentation and in the
.NET documentation.

This option will also create a VBR file which clients can use to access
objects exposed by your service through DCOM. You’ll need a VBR
file which is used by the clireg32 application to create the necessary
registry entries for accessing your service objects remotely. The
configuration program will create a VBR file for you automatically
upon request.

Step 2 – Create the Assembly DLL
Create a new Class Library project that has the project name that you
specified earlier when creating the service executable.

Using the Add References dialog, add a reference to the
“Desaware.ServiceToolkit.Interfaces” assembly. This assembly should
appear in the .NET tab of the Add References dialog. This assembly is
installed into the GAC (Global Assembly Cache) and is located in the
NT Service Toolkit’s “bin” directory on your system. This assembly
must be distributed with your service. A merge module for this
assembly is provided (also in the “bin” directory) and may be used for
the distribution of this file.

Step 3 – Add the ServiceConfiguration Class
Create a new class and name it “ServiceConfiguration”.

Add the following code to the class (the easiest way is to add the
ServiceConfiguration class, ServiceCfg.vb or ServiceCfg.cs from the
NT Service Toolkit’s "Template" directory).

The ServiceConfiguration class implements the IdwEasyServConfig
interface which is used by the service to retrieve configuration
information from your DLL. The majority of these functions can be
left empty. The important ones are:

ControlsAccepted Determines whether your service accepts
Pause, Continue, Stop and other service
commands.

Page 25

GetDescription This allows you to specify a name and
description (Windows 2000 and XP) for your
service. The service name and description
appear in the service’s control panel applet.

GetVersion This allows the service executable to obtain
the current version number from your
component.

VB .NET
Imports Desaware.ServiceToolkit

Public Class ServiceConfiguration
 Implements IdwEasyServConfig

Private Function IdwEasyServConfig_AutoStart() _
 As Boolean Implements IdwEasyServConfig.AutoStart

End Function

Private Function _
 IdwEasyServConfig_ControlsAccepted() As _
 ServiceControls Implements _
 IdwEasyServConfig.ControlsAccepted
 Return ServiceControls.svcStop
End Function

Private Sub IdwEasyServConfig_DefaultTimes(ByRef _
 DefaultStartTime As Integer, ByRef _
 DefaultStopTime As Integer, _
 ByRef DefaultPauseTime As Integer, _
 ByRef DefaultContinueTime As Integer) Implements _
 IdwEasyServConfig.DefaultTimes

End Sub

Private Function IdwEasyServConfig_GetDescription _
 () As String Implements _
 IdwEasyServConfig.GetDescription
 Return "Your service display name here" +
vbNullChar + _
 "Your service description here"
End Function

Private Sub IdwEasyServConfig_GetVersion(ByRef _
 MajorVersion As Integer, ByRef MinorVersion As _
 Integer) Implements IdwEasyServConfig.GetVersion
 MajorVersion = System.Diagnostics.

Page 26

 FileVersionInfo.GetVersionInfo(_
 System.Reflection.Assembly.GetExecutingAssembly.
 Location).FileMajorPart
 MinorVersion = System.Diagnostics.FileVersionInfo.
 GetVersionInfo(_
 System.Reflection.Assembly.GetExecutingAssembly.
 Location).FileMinorPart
End Sub

Private Function _
 IdwEasyServConfig_IgnoreStartupErrors() As _
 Boolean Implements _
 IdwEasyServConfig.IgnoreStartupErrors

End Function

Private Function _
 IdwEasyServConfig_InteractWithDesktop() As _
 Boolean Implements _
 IdwEasyServConfig.InteractWithDesktop

End Function

Private Function _
 IdwEasyServConfig_ServiceAccount() As _
 String Implements IdwEasyServConfig.ServiceAccount

End Function

Private Function _
IdwEasyServConfig_ServiceAccountPassword() As _
 String Implements _
 IdwEasyServConfig.ServiceAccountPassword

End Function

Private Function _
 IdwEasyServConfig_ServiceDependencies() As _
 String Implements _
 IdwEasyServConfig.ServiceDependencies

End Function
End Class

C#

First, add the following line at the top of the configuration file:
using Desaware.ServiceToolkit;

Page 27

Then add the following class to the file:

public class ServiceConfiguration: IdwEasyServConfig
{

public bool AutoStart()
 {
 return false;
 }

public ServiceControls ControlsAccepted()
 {
 return ServiceControls.svcStop;
 }

public void DefaultTimes(ref int DefaultStartTime,
 ref int DefaultStopTime, ref int DefaultPauseTime,
 ref int DefaultContinueTime)
 {
 }

public string GetDescription()
 {
 return "Your service display name\0
 Your Service Description";
 }

 public void GetVersion(ref int MajorVersion,
 ref int MinorVersion)
 {
 MajorVersion = System.Diagnostics.
 FileVersionInfo.GetVersionInfo(
 System.Reflection.Assembly.
 GetExecutingAssembly().Location).
 FileMajorPart;
 MinorVersion = System.Diagnostics.
 FileVersionInfo.GetVersionInfo(
 System.Reflection.Assembly.
 GetExecutingAssembly().Location).FileMinorPart;
 }

public bool IgnoreStartupErrors()
 {
 return false;
 }

public bool InteractWithDesktop()
 {
 return false;
 }

Page 28

public string ServiceAccount()
 {
 return null;
 }

public string ServiceAccountPassword()
 {
 return null;
 }

public string ServiceDependencies()
 {
 return null;
 }
}

Note: Be sure to verify the return values for each interface method
you implement. If you use the Visual Studio wizard to add
interface implementation, you’ll find the default return values it
chooses are often incorrect.

Step 4 – Add the Service Class
Create a new class and name it “Service”. Add the following code to
the class (the easiest way is to add the Service class, Service.vb or
Service.cs from the NT Service Toolkit’s “Template” directory):

VB .NET
Imports Desaware.ServiceToolkit

Public Class Service
 Implements IdwEasyService

Private Function IdwEasyService_OnContinue(_
 ByVal ControlObject As IdwServiceCtl) As Integer _
 Implements IdwEasyService.OnContinue

End Function

Private Function IdwEasyService_OnDeviceEvent(_
 ByVal ControlObject As IdwServiceCtl, ByVal _
 EventType As Integer, ByVal EventData As Integer) _
 As Boolean Implements IdwEasyService.OnDeviceEvent

End Function

Private Function _
 IdwEasyService_OnHardwareProfileChange(_
 ByVal ControlObject As IdwServiceCtl, ByVal _
 ChangeType As Integer, ByVal ChangeData As _
 Integer) As Boolean Implements _

Page 29

 IdwEasyService.OnHardwareProfileChange

End Function

Private Sub IdwEasyService_OnParamChange(ByVal _
 ControlObject As IdwServiceCtl) Implements _
 IdwEasyService.OnParamChange

End Sub

Private Function IdwEasyService_OnPause(ByVal _
 ControlObject As IdwServiceCtl) As Integer _
 Implements IdwEasyService.OnPause

End Function

Private Function IdwEasyService_OnPowerRequest(_
 ByVal ControlObject As IdwServiceCtl, ByVal _
 APMMessage As Integer, ByVal Flags As Integer) _
 As Boolean Implements IdwEasyService.OnPowerRequest

End Function

Private Function IdwEasyService_OnShutdown(ByVal _
 ControlObject As IdwServiceCtl, ByRef StopPending _
 As Boolean) As Integer Implements _
 IdwEasyService.OnShutdown

End Function

Private Function IdwEasyService_OnStart(ByVal _
 ControlObject As IdwServiceCtl) As Integer _
 Implements IdwEasyService.OnStart

End Function

Private Function IdwEasyService_OnStop(ByVal _
 ControlObject As IdwServiceCtl) As Integer _
 Implements IdwEasyService.OnStop

End Function

Private Sub IdwEasyService_OnTimer(ByVal _
 ControlObject As IdwServiceCtl) Implements _
 IdwEasyService.OnTimer

End Sub

Private Sub IdwEasyService_OnUserControlCode(ByVal _
 ControlObject As IdwServiceCtl, ByVal ControlCode _
 As Short) Implements _
 IdwEasyService.OnUserControlCode

End Sub

Page 30

Private Sub IdwEasyService_WaitComplete(ByVal _
 ControlObject As IdwServiceCtl, ByVal ThreadID As _
 Integer, ByVal CompletionType As Integer, ByVal _
 ObjectIndex As Integer) Implements _
 IdwEasyService.WaitComplete

End Sub
End Class

C#

First, add the following line at the top of the configuration file:
using Desaware.ServiceToolkit;

Then add the following class to the file:
public class Service: IdwEasyService
{
public int OnContinue(IdwServiceCtl ControlObject)
 {
 return 0;
 }

public bool OnDeviceEvent(IdwServiceCtl
 ControlObject, int EventType, int
 EventData)
{
 return false;
 }

public bool OnHardwareProfileChange(IdwServiceCtl
 ControlObject, int ChangeType, int ChangeData)
{
 return false;
 }

public void OnParamChange(IdwServiceCtl
 ControlObject)
 {
 }

public int OnPause(IdwServiceCtl ControlObject)
 {
 return 0;
 }

public bool OnPowerRequest(IdwServiceCtl
 ControlObject, int APMMessage,
 int Flags)
 {
 return false;

Page 31

 }

public int OnShutdown(IdwServiceCtl ControlObject,
 ref bool StopPending)
 {
 return 0;
 }

public int OnStart(IdwServiceCtl ControlObject)
 {
 return 0;
 }

public int OnStop(IdwServiceCtl ControlObject)
 {
 return 0;
 }

public void OnTimer(IdwServiceCtl ControlObject)
 {
 }

public void OnUserControlCode(IdwServiceCtl
 ControlObject, short ControlCode)
 {
 }

public void WaitComplete(IdwServiceCtl
 ControlObject, int ThreadID, int CompletionType,
 int ObjectIndex)
 {
 }
}

Step 5 – Test and Run the Service
You’ll typically want to test the service as a standalone executable
before installing it as a service. This is because it is much easier to
install and test standalone executables. To do so, just do the following:

• Be sure that your service executable is in the same directory
as your component build directory (the destination directory
for the built DLL).

• Register the service executable by running the program in a
command line using the parameters “–RegServer”.

Page 32

• In your Visual Studio project, select the Debug configuration
as the Active configuration. Bring up the Property Pages for
your project and select the Configuration Properties –
Debugging set. Under ‘Start Action’, set your service
executable as the external program to debug. Then set the
command line arguments to –Sim.

• Start debugging under Visual Studio.
The service will begin to run – if you run our Beeper Service sample,
you should hear periodic beeps as the built-in timer executes. The
service simulator window allows you to exercise the service using
standard service controls.

To install as a service, all you need to do is run the executable with the
parameter “–i”.

That’s all it takes to create a basic service. Everything else builds on
this basic framework.

Page 33

Migrating a Service from VB6
Migrating an existing VB6 service to VB .NET is a relatively simple
process. Simple, in that the two frameworks are remarkably similar.
However, migration of any VB6 project to .NET is rarely trivial, so
your own code may require substantial changes that have nothing to
do with services at all.

Step 1 – Migrate Your VB6 Project
Open the VB6 ActiveX DLL project that contains your service
component in Visual Studio .NET. This will bring up the VB .NET
upgrade wizard. Have it save the resulting project in a directory of
your choice.

Step 2 – Turn on Option Strict
Change the line at the top of all your code files from Option Strict Off
to Option Strict On. You don’t have to do this for the toolkit to work,
but you want to for numerous reasons relating to code reliability.

Step 3 – Remove the Reference to EASYSERVLib
In the References tab of your solution explorer, or project references
dialog, you’ll see that your project has a reference to EASYSERVLib
(Interop.EASYSERVLib.dll). You should remove this reference.

Step 4 – Add a Reference to Desaware.Service-
Toolkit.Interfaces
This is the .NET assembly that defines the .NET interfaces that you
will be using that replace the old COM interfaces.

Step 5 – Add an ‘ Imports’ Statement to Your Files
Add the following line to your service configuration class, service
class, and any application or client classes if present:
Imports Desaware.ServiceToolkit

Step 6 – Search and Replace
You can use the global search and replace to clean some of the COM
interface artifacts.

Page 34

Delete all occurrences of “EASYServLib.” by replacing it with an
empty text.

Replace all occurrences of enumServiceControls with
ServiceControls.

Fix the ServiceControl enumeration fields. If you see a field beginning
with __Midl, delete everything except the final value and add
ServiceControls.

For example: Replace __MIDL___MIDL_itf_EasyServ_0000_
0001.svcStop with ServiceControls.svcStop

Step 7 – Remove the ServiceProcessId Method
Remove the ServiceProcessId function from your service
configuration file. It is not used in the .NET edition of the toolkit.

Step 8 – Miscellaneous
There are a number of service control object methods that have
different parameters with the .NET version of the toolkit. These will
appear as compilation errors. Refer to the migration notes for each
method.

Migrated classes will have a ProgID attribute. You can leave this in
place or delete it as you wish.

You should, of course, set the assembly attributes to suit the needs of
your service.

Page 35

The Service Framework Model
Figure 1 depicts an outline of the core section of the service
framework (you’ll see a more complete illustration of the framework
later when you learn about the features of the framework).

The service executable uses your ServiceConfiguration object to
obtain configuration information for the service. It uses your Service
object to notify your service of key events in the lifetime of the
service.

At the same time, your Service object has access to the framework’s
ServiceControl object which offers extended functionality to your
service component.

Page 36

Service Framework
Executable

IdwEasyServConfig

IdwEasyService

IdwServCtl

S
er

vi
ce

C
on

fig
ur

at
io

n
S

er
vi

ceS
er

vi
ce

C
on

tro
l

Your VB Service
Component

Figure 1

Core Section of the Service Framework

In each case, communication between the component and the service
takes place on a private interface that is defined in the file
Desaware.ServiceToolkit.Interfaces.dll which was installed when you
installed the Toolkit (you will need to distribute this file with your
service as well). Use of private interfaces ensures maximum
performance. The next few sections cover each of these interfaces in-
depth, and describe how each of these objects interacts with the others.

Page 37

Configuring The Service
The ServiceConfiguration class is used to provide to the service
executable the information that it needs to configure the service. The
object is created by the service executable both during registration,
and when the service is about to run. NOTE: If you had successfully
installed a service and you make any ServiceConfiguration changes,
you must uninstall and then reinstall the service in order for those
changes to take effect.

Refer to the MSDN documentation for services for a more in-depth
explanation of the various service configuration parameters.

The object should implement no methods other than those defined by
the IdwEasyServConfig interface. The interface is implemented by the
object by adding the following line to the class module:

VB
Public Class ServiceConfiguration
Implements IdwEasyServConfig

C#
public class ServiceConfiguration: IdwEasyServConfig

Summary

Class name: ServiceConfiguration

Implements: IdwEasyServConfig

Rules: Do not add public methods or properties other than
those required by the IdwEasyServConfig interface.

All methods of the interface must be implemented.
Empty method declarations are sufficient except for the
GetDescription, GetVersion and ControlsAccepted methods.

IdwEasyServConfig Methods
The IdwEasyServConfig interface includes the following methods. All
must be implemented in the function, however only the
GetDescription, GetVersion and ControlsAccepted methods require
that you include any code in the function.

Page 38

AutoStart
Return Type: Boolean / bool

The service framework supports two options for service startup:
Automatic startup after the system starts, and startup on demand (via
the service control manager). These correspond to the
SERVICE_AUTO_START and SERVICE_DEMAND_START
options. There are three other startup options that are not supported by
this framework. Two of them are usable only by system devices or
drivers. The final, SERVICE_DISABLED, can be handled by
manually disabling the service after installation (it was a consensus
amongst our developers that installing a disabled service was rather
pointless).

The default for the service framework is “start on demand”.

If you return True as the result of this method call, your service will be
installed to start automatically when the system starts. To do so,
simply add this line to the method:

VB: Return(True)
C#: return(true);

Important Notes: On a system using NT 4.0 Service Pack 5 or later,
returning True may cause your Service to fail on system start up. If the
Event Log displays the following two error messages - “Timeout
(120000 milliseconds) waiting for service to connect.” and “The
service did not respond to the start or control request in a timely
fashion.”, then you will need to add ONE of the following lines of
dependencies as part of the return string for the IdwEasyServConfig_
ServiceDependencies function:

"Browser", "ProtectedStorage", "Replicator",
"RasMan" or "RasAuto"

ControlsAccepted
Return Type: ServiceControls

Every service can be controlled to some degree by the system through
the service control manager. The service control manager can be
accessed via the control panel or system administration tools. You can
decide which controls your service will accept from the service control
manager.

Page 39

The service framework includes an enumeration named
ServiceControls that defines the possible ways that the service control
manager can interact with your service, and allows you to decide
which controls to accept.

svcStop = 1 Service accepts Stop commands.

svcPauseAndContinue = 2 Service accepts Pause/Continue
commands.

svcShutdown = 4 Service accepts Shutdown.

svcParamChange = 8 Service accepts parameter changes
(Win2K only).

svcHardwareProfile = 0x20 Service accepts hardware profile
changes (Win2K only).

svcPowerEvent = 0x40 Service accepts power events
(Win2K only).

To allow your service to accept commands from the service control
manager, return the allowed commands by using the Or operator to
combine values from the ServiceControls enumeration.

For example, to accept the Stop, Pause and Continue commands, you
would add the following line to the ControlsAccepted method:

VB: Return(ServiceControls.svcStop Or
ServiceControls.svcPauseAndContinue)

C#: Return(ServiceControls.svcStop |
ServiceControls.svcPauseAndContinue);

We strongly recommend that every service you implement at least
accept the svcStop command. Services that do not accept this
command will have no way to perform internal cleanup, and will
continue to run until you shut down your system.

You can change the commands accepted by the service while it is
running using the ControlsAccepted property of the ServiceControl
object provided by the service framework.

Page 40

DefaultTimes
VB: DefaultTimes(ByRef DefaultStartTime As Integer, ByRef

DefaultStopTime As Integer, ByRef DefaultPauseTime As
Integer, ByRef DefaultContinueTime As Integer)

C#: void DefaultTimes(ref int DefaultStartTime, ref int
DefaultStopTime, ref int DefaultPauseTime, ref int
DefaultContinueTime)

When the service control module sends commands to the service, it
allows a certain amount of time for the service to respond that it has
completed the specified task before it assumes that an error occurred.
The time can be specified by the service.

This method allows you to set the default timeout value for the Start,
Stop, Pause and Continue commands in milliseconds. The service can
extend the time using the Service Control object – this only sets the
initial default value – the amount of time that that the system will
allow for you to respond to the various commands the first time they
are called.

The default timeouts if you do not add code to this method is 15
seconds each. The minimum timeout value is 2 seconds. If you specify
any time less than 2000, the number will internally be set to 2000.

GetDescription
Return Type: String / string

This method allows your service to specify its display name and
description. These strings will appear in system utilities that control
services. Choose any descriptive strings that are no longer than 255
characters.

NOTE: Although the function name would indicate that this function
sets the Description for your service, this function actually sets the
Display Name for your service. NT 4.0 only supports service Display
Names, Windows 2000/XP supports both service Display Names and
Descriptions.

Set the display name using the following code:

VB: Return("Place your display name here")
C#: return("Place your display name here");

Page 41

Set the display name and description by appending the description and
using a null character to separate the two strings.

VB: Return("Place your display name here" + _
 vbNullChar + "Place your description here"

C#: return("Place your display name here\0Place your
description here");

GetVersion
VB: GetVersion(ByRef MajorVersion As Integer, ByRef

MinorVersion As Integer)

C#: void GetVersion(ref int MajorVersion, ref int MinorVersion);

This method allows the service framework to obtain the version
number of the service from the component. Add the following code to
this method (VB & C# code is identical except for the trailing
semicolon):
MajorVersion =
System.Diagnostics.FileVersionInfo.GetVersionInfo
(System.Reflection.Assembly.GetExecutingAssembly.
Location).FileMajorPart
MinorVersion =
System.Diagnostics.FileVersionInfo.GetVersionInfo
(System.Reflection.Assembly.GetExecutingAssembly.
Location).FileMinorPart

These values are displayed when you use the “–v” extension to display
the version of an installed version.

IgnoreStartupErrors
Return Type: Boolean/bool

A service can specify how the system should react when the service
does not start correctly. The service framework supports two options:
the normal response is for the system to log the error and display a
warning message box indicating that a service failed to load. If you
return True as a result to this method, the system will still log the
error, but will not display a message box. To ignore errors, use the
following code:

VB: Return(True)
C#: return(true);

Page 42

InteractWithDesktop
Return Type: Boolean/bool

This method allows you to indicate that this service is able to interact
with the desktop of the user who is currently logged on. The default is
that the service may not interact with the desktop. To enable
interaction, use the following code:

VB: Return(True)
C#: return(true);

Refer to the MSDN documentation for more information on use of
interactive services. Additional limitations apply to interactive services
including:

• You cannot set an account for the service when running it as
an interactive service.

• If the registry key HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Control\Windows has the value NoInter-
activeServices set to any non-zero value, the service will not
be allowed to run interactively even if you return True from
this method.

Microsoft discourages use of interactive services.

Interactive services are known to pose a potential security risk – refer
to the latest information on MSDN for details.

When a service is configured to interact with the desktop, the
GetInteractiveUser method of the IdwServiceCtl interface is enabled
(in Windows 2000/XP). Interactive services may also implement the
IdwEasyService2 interface to detect when an interactive user logs out.

ServiceAccount
Return Type: String/string

This method allows you to set an account other than LocalSystem for
your service. The majority of services run in the LocalSystem account
because this account has the necessary privileges to perform a variety
of operations on a system, to log on as a different user, and to
impersonate users or clients accessing the service remotely . However,
the LocalSystem account does not have the ability to access most
network resources.

Page 43

If you wish your service to log on as a specific user, return the user
account name as a result of the following method:

VB: Return("domain\userid")
C#: return("domain\\userid");

Important Notes:

• Returning a result from this method will cause an error if you
returned True for the IdwEasyServConfig_InteractWithDesk-
top method.

• The user account must have the privilege “Log in as a
Service” enabled (set privileges using system administration
tools).

• You can also change the service log on parameters using the
system administrative tools.

• You must include the domain name, or “.” to indicate that the
account is on the local system.

• The user account specified here can be overridden during
installation using the -User command line option.

If you specify an invalid user ID or password, or the account does not
have permission to log on as a service, an error will occur when the
service is being installed.

ServiceAccountPassword
Return Type: String/string

If you specify a service account, this method will be called to obtain
the password for the user.

VB: Return("password")
C#: return("password");

• The password specified here can be overridden during

installation using the -Password command line option.
• The password is not tested for validity at install time.

ServiceDependencies
Return Type: String/string

Page 44

Services are often dependent on other services running. It is especially
important that Windows know about these dependencies for services
that are configured to run when the system starts. You can use this
method to specify a list of dependencies for your services. To do so,
return as a result the list of services separated by semicolons.

If you have services grouped, you can use the + symbol as a prefix for
a group name (refer to MSDN for information on service groups). Use
the short form name of the service to specify services in this list. The
short form name of the service is located in the subkeys of the
registry’s \HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Ser-
vices key.

The service framework is dependent upon the Remote Procedure Call
Service (RPCSS), which is automatically added to the dependency list
regardless of whether you specify it or not. Thus for most services you
need not return any result for this method. Refer to the
IdwEasyServConfig_AutoStart function for important information on
setting the Service Dependencies when automatically starting a service
on system start up.

To specify dependencies, use code such as this:

VB: Return("FirstService;SecondService")
C#: return("FirstService;SecondService");

Note: Service dependencies are not used during system shutdown. In
other words, you have no control over what order services are
unloaded during shutdown, and services critical to your service may
already be stopped by the time your service shutdown code is called.

ServiceProcessId
This method is used in the COM version of the toolkit and is not part
of the IdwEasyServConfig interface in the .NET edition.

Page 45

Implementing the Service Class
The Service class is your primary class for implementing the
functionality of the service. The object is created when the service
begins to run. The framework releases its reference to your service
object when the service stops. You should perform any necessary
cleanup during the OnStop method rather than relying on finalizers.

Please refer to the MSDN documentation for services for a more in-
depth explanation of the various service controls and possible
responses.

The object may implement other methods than those defined by the
IdwEasyService interface. The interface is implemented by the object
by adding the following line to the class module:

VB: Public Class Service

 Implements IdwEasyService

C#: public class Service: IdwEasyService

Summary:

Class Name: Service

Implements: IdwEasyService

Rules: All methods of the interface must be implemented.
 Empty method declarations are sufficient for all

methods (though such a service wouldn’t be
particularly useful).

 Do NOT pass references to this object to clients outside
of the service component.

Privacy
Issues:

Do not expose this object via Remoting.

Optional: The Service object may also Implement the
IdwEasyService2 interface. This interface, used by services that are
configured to interact with the desktop, can be used to determine when
a user logs off the system.

Method calls by the framework onto your service object through this
interface are automatically synchronized. Thus you need not worry
about multithreading issues when dealing with these methods.

Page 46

IdwEasyService Methods Relating to State
Transitions

The IdwEasyService interface includes methods that are called from
the service control manager. These methods all exhibit similar
behavior, and can be discussed as a group.

Each of these methods has a single ControlObject parameter that
exposes an interface called IdwServiceCtl. The ControlObject object,
is an object exposed by the framework to allow your service to interact
with the framework.

These methods reflect requests from the service control manager for
the service to change its state in some way. The service control
manager will expect the service to respond within a certain time, or
will assume that the service has failed. Before these methods are
called, the service framework notifies the system that the service will
be done or will provide updated information within a time specified by
one of the default timeout values set originally by the
IdwEasyServConfig_DefaultTimes method in the ServiceCon-
figuration object.

If you expect your service to be finished with the operation within that
time, you need take no further action beyond responding to the state
transition as appropriate for your individual service.

If you would like additional time for the state transition, you can use
the UpdateTransitionTime method of the ControlObject object to
specify the amount of time you expect your service to take.

If you would like to delay the handling of this request (for example, if
you are waiting for an external event from a background operation or
other object to occur), you can return the amount of time (in
milliseconds) that you would like to defer handling of the request.
After that time, the method will be called again and you will have 500
ms to either request more time using the UpdateTransitionTime
method, defer handling of the method again, or indicate completion of
the state transition by returning zero.

OnContinue
VB: OnContinue(ByVal ControlObject As IdwServiceCtl) As Integer

C#: int OnContinue(IdwServiceCtl ControlObject)

Page 47

Called when the service control manager “Continue” request is
received. This request will only be sent if the service is configured to
accept pause and continue requests. The service framework notifies
the system that the service is in SERVICE_CONTINUE_PENDING
state before calling this method. After you return zero from this
method, the framework will place the service in the SERVICE_
RUNNING state.

Refer to the description under IdwEasyService methods relating to
service control manager events for a description of how to use this
method.

OnPause
VB: OnPause(ByVal ControlObject As IdwServiceCtl) As Integer

C#: int OnPause(IdwServiceCtl ControlObject)

Called when the service control manager “Pause” request is received.
This request will only be sent if the service is configured to accept
pause and continue requests. The service framework notifies the
system that the service is in SERVICE_PAUSE_PENDING state
before calling this method. After zero is returned from this method, the
framework will place the service in the SERVICE_PAUSED state.

Refer to the description under IdwEasyService methods relating to
service control manager events for a description of how to use this
method.

OnStart
VB: OnStart(ByVal ControlObject As IdwServiceCtl) As Integer

C#: int OnStart(IdwServiceCtl ControlObject)

Called when the service control manager is about to start the service.
The service framework notifies the system that the service is in
SERVICE_START_PENDING state before calling this method. After
you return zero from this method, the framework will place the service
in the SERVICE_RUNNING state.

Refer to the description under IdwEasyService methods relating to
service control manager events for a description of how to use this
method.

Page 48

OnStop
VB: OnStop(ByVal ControlObject As IdwServiceCtl) As Integer

C#: int OnStop(IdwServiceCtl ControlObject)

Called when the service control manager “Stop” request is received.
This request will only be sent if the service is configured to accept
stop requests. The service framework notifies the system that the
service is in SERVICE_STOP_PENDING state before calling this
method. After you return zero from this method, the framework will
place the service in the SERVICE_STOPPED state.

Refer to the description under IdwEasyService methods relating to
service control manager events for a description of how to use this
method.

OnShutdown
VB: OnShutdown(ByVal ControlObject As IdwServiceCtl, ByRef
StopPending As Boolean) As Integer

C#: int OnShutdown(IdwServiceCtl ControlObject, ref bool
StopPending)

This notification differs slightly from the others. Called when the
service control manager “Shutdown” request is received. This request
will only be sent if the service is configured to accept shutdown
requests.

The service framework calls this method immediately upon receipt of
a shutdown notification.

It is strongly recommended that you perform any cleanup operations
and return a zero value from this method as quickly as possible.

You can delay the system shutdown by returning a time delay in
milliseconds as a result of this method and setting the StopPending
parameter to True (you MUST do both to delay shutdown). In that
case, the service framework will place the service in the
SERVICE_STOP_PENDING state and proceed to call this method
again after the delay you specified. At that time, you can continue as
with any of the other state transition functions, calling either
UpdateTransitionTime or returning additional delay values.

Page 49

Depending upon your system configuration, the system may shut
down regardless of what you do here. You can extend the time until
the system shuts down all services by changing the setting of the
WaitToKillService registry value located under the HKEY_LOCAL_
MACHINE/SYSTEM/CurrentControlSet/Control registry key. The
default timeout value is 20 seconds.

Version 2.0 of the toolkit provides earlier and more reliable detection
of system shutdown, especially with interactive services.

Be aware that during system shutdown other services will be shutting
down at the same time as yours. This means that critical services that
your service may be dependent upon may already be shut down by the
time your OnShutdown method is called. These services may include
the event logging service, messaging, transactioning, etc. You should
therefore use additional error checking during the OnShutdown
method to catch errors that might not occur under normal
circumstances.

You should reduce to an absolute minimum the work done during the
Shutdown event. If you find your design requires extensive work
during shutdown, consider redesigning your application to store
information regarding pending work to be done next time the service
initializes, on disk or in the registry.

Remember that in extreme situations (power loss, or major system
errors), no shutdown notification will arrive. Also be sure to upgrade
to the latest service pack of your operating system (especially NT and
2000), since there are a number of outstanding bugs on earlier OS
versions that cause shutdown notification to services to fail under
certain conditions.

Refer to the description under IdwEasyService methods relating to
service control manager events for a description of how to use this
method.

IdwEasyService Methods Relating to Other Service
Control Manager Events

OnUserControlCode
VB: OnUserControlCode(ByVal ControlObject As IdwServiceCtl,

ByVal ControlCode As Integer)

Page 50

C#: void OnUserControlCode(IdwServiceCtl ControlObject, int
ControlCode)

Called when the service control manager “UserControl” request is
received. This allows your service to receive control code (which have
a value from 128 to 255) from the service control manager. The
meanings of these control codes are defined by your service.

Refer to the description under IdwEasyService methods relating to
Service Control Manger events for a description of how to use this
method.

OnParamChange
 (Not available in Windows NT)

VB: OnParamChange(ByVal ControlObject As IdwServiceCtl)

C#: void OnParamChange(IdwServiceCtl ControlObject)

Services are encouraged to store any startup parameters in the registry
at location HKEY_LOCAL_MACHINE\System\CurrentControlSet\
Services\ service name\Parameters.

If your service can reload its configuration settings from these
parameters while running, you can specify that your service can accept
Parameter change events (use the ServiceConfiguration_Controls-
Accepted method, or ControlObject’s IdwServiceCtl Controls-
Accepted property to specify which Service Control Manager events
your service will accept).

On receipt of this method, you should reload your service
configuration based on the current registry settings.

OnHardwareProfileChange
 (Not available in Windows NT)

VB: OnHardwareProfileChange(ByVal ControlObject As
IdwServiceCtl, ByVal ChangeType As Integer, ByVal
ChangeData As Integer) As Boolean

C#: bool OnHardwareProfileChange (IdwServiceCtl ControlObject,
int ChangeType, int ChangeData)

Page 51

If your service wishes to be notified when the current hardware profile
changes, you can specify that your service can accept Hardware
Profile change events. Use the ServiceConfiguration_ Controls-
Accepted method, or ControlObject’s IdwServiceCtl Controls-
Accepted property to specify which Service Control Manager events
your service will accept.

Refer to the MSDN documentation for the WM_DEVICECHANGE
message for information on the ChangeType and ChangeData
parameters (ChangeType corresponds to the wParam value,
ChangeData to the lParam value).

Return True from this function to deny the request for a hardware
profile change.

OnDeviceEvent
(Not available in Windows NT)

VB: OnDeviceEvent(ByVal ControlObject As IdwServiceCtl, ByVal
EventType As Integer, ByVal EventData As Integer) As Boolean

C#: bool OnDeviceEvent (IdwServiceCtl ControlObject, int
EventType, int EventData)

If your service wishes to be notified when a specified device or set of
devices change, you can specify that your service can accept device
change events. Use the RegisterDeviceNotification method of the
ControlObject’s IdwServiceCtl interface to accomplish this.

Refer to the MSDN documentation for the WM_DEVICECHANGE
message for information on the EventType and EventData parameters
(EventType corresponds to the wParam value, EventData to the
lParam value).

Return True from this function to deny the request for a hardware
profile change.

OnPowerRequest
(Not available in Windows NT)

VB: OnPowerRequest(ByVal ControlObject As IdwServiceCtl, ByVal
APMMessage As Integer, ByVal Flags As Integer) As Boolean

C#: bool OnPowerRequest (IdwServiceCtl ControlObject, int
APMMessage, int Flags)

Page 52

If your service wishes to be notified when a power management event
occurs, you can specify that your service can accept power
management change events. Use the ServiceConfiguration_
ControlsAccepted method, or ControlObject’s IdwServiceCtl
ControlsAccepted property to specify which service control manager
events your service will accept.

Refer to the MSDN documentation for the WM_POWERBROAD-
CAST message for information on the APMMessage and Flags
parameters (APMMessage corresponds to the wParam value, Flags to
the lParam value).

Return True from this function to deny the request for a power
management related change.

IdwEasyService Methods Specific to the Service
Framework

The following methods reflect feature extensions provided by the
framework to authors of services using this Toolkit.

OnTimer
VB: OnTimer(ByVal ControlObject As IdwServiceCtl)

C#: void OnTimer(IdwServiceCtl ControlObject)

The Service class is designed ideally to operate in a way similar to a
form – as an event driven component. The framework provides a built
in timer that calls the OnTimer method periodically while the service
is running.

The timer is initially enabled with a 1 second interval.

You can set the timer value at any time using the Timeout property of
the ControlObject object. Setting the TimeOut property to zero turns
the timer off.

This method will only be called while the service is in the running
state (it will not be called during state transitions).

The accuracy of this timer is not guaranteed and cannot be used for
real time applications.

When this method is called, no further OnTimer events will be
received until you return from the function.

Page 53

Remember: calls to this method by the framework are synchronized by
the framework with the other methods on the IdwEasyService
interface.

Note: Do not allow the code in this event to take longer than the
default Pause or Stop times set in the IdwEasyServConfig_
DefaultTimes method of the service configuration object. If calls to
this method take longer than those times, and a Stop or Pause
operation arrives during this method call, it is possible that the service
control manager will decide that your service is not responding before
you have a chance to receive and respond to the OnStop or OnPause
methods. This is a consequence of the automatic synchronization, that
prevents the OnStop or OnPause method call from occurring until you
exit this method call.

WaitComplete
VB: WaitComplete(ByVal ControlObject As IdwServiceCtl, ByVal

ThreadID As Integer, ByVal CompletionType As Integer, ByVal
ObjectIndex As Integer)

C#: void WaitComplete(IdwServiceCtl ControlObject, int ThreadID,
int CompletionType, int ObjectIndex)

This method is called when a background thread wait operation is
complete. Refer to the section on Background Threads and
Synchronization Objects for a detailed explanation of this method.

IdwEasyService2 Interface Methods
The IdwEasyService2 interface may be optionally implemented by a
service object that is configured to interact with the desktop.

OnLogout
VB: OnLogout(ByVal ControlObject As IdwServiceCtl)

C#: void OnLogout(IdwServiceCtl ControlObject)

This method is called when an interactive user logs off the system.

Note: On some systems, this event may be raised more than once
when a user is logging off the system.

Page 54

IdwServiceCtl - The Service Control Object
So far the two interfaces that have been described,
IdwEasyServConfig and IdwEasyService, have both been used by the
service framework to communicate with your service component. It
should be no surprise that communication is equally important in the
other direction.

The service framework exposes a component called the
ServiceControl object that implements an interface called
IdwServiceCtl. This object is passed to your service component at
various times, and you may hold a reference to it if necessary for your
application.

Summary:
Class Interface: IdwServiceCtl
Rules: Do NOT pass references to this object to

clients outside of the service component.

IdwServiceCtl Properties
The following properties are exposed by the service control object.

InstallParameters (String/string)
This property can be used to retrieve the string set via the -Params
option during installation.

StartupParameters (String/string)
This property can be used to retrieve the startup parameters string set
via the service control manager (using the control panel applet or
programmatic startup).

Timeout (Integer/int)
This value indicates the interval of the built in timer in milliseconds.
Your service object’s IdwEasyService_OnTimer method will be called
each time this interval expires. The initial value is set to 1000. You
can set this value to zero to disable the timer. Refer to the description
of the IdwEasyService_OnTimer method for more information.

Page 55

ControlsAccepted (ServiceControls)
This property allows you to specify the service control manager events
that your service should receive. This can be a combination of one or
more of the following enumerated constants:

SvcStop = 1 Service accepts Stop commands.

SvcPauseAndContinue = 2 Service accepts Pause/Continue
commands.

SvcShutdown = 4 Service accepts Shutdown.
SvcParamChange = 8 Service accepts parameter changes

(Not available in NT 4).
SvcHardwareProfile = 0x20 Service accepts hardware profile

changes (Not available in NT 4).
SvcPowerEvent = 0x40 Service accepts power events (Not

available in NT 4).

When the service is in the running, stopped or paused state, the system
will be notified about changes to this property immediately. If the
service is in a state of transition, the system will not be notified until
shortly before the next state transition method is called, or (if changed
during the state transition event) until you either return from the state
transition, or use the UpdateTransitionTime method on the service
control object to request additional time.

Refer to the description of the IdwEasyServConfig_ControlsAccepted
method for more information.

IdwServiceCtl Methods
The following methods are exposed by the service control object.

UpdateTransitionTime
VB: UpdateTransitionTime(ByVal Timeout As Integer)

C#: void UpdateTransitionTime (int Timeout)

During a state transition, you can call this method to request additional
time to complete the state transition. The system expects your service
to complete its state transition in a specified time or it will assume that
an error has occurred in the service. The timeout parameter specifies
the additional time requested in milliseconds.

Page 56

Refer to the description of the IdwEasyService interface for additional
information on timing during state transitions.

StopService
Warning! Avoid use of this method!

Normally services are controlled through the service control manager.
In the unlikely event that a service must stop itself, it should do so
using the service control manager API functions.

The StopService method is intended to allow your service to exit in as
clean a way as possible if it has determined an internal failure
condition so serious that it cannot continue. The method causes a hard
stop and exit of the service with minimal cleanup.

SetWaitOperation
VB: SetWaitOperation(ByVal WaitHandles As WaitHandle(), ByVal

bWaitAll As Boolean, ByVal Timeout As Integer) As Integer

C#: int SetWaitOperation(WaitHandle[] WaitHandles, bool bWaitAll,
int Timeout)

This method is used to create a background thread and start a wait
operation on one or more synchronization objects. Refer to the section
on Background Threads and Synchronization Objects for a detailed
explanation of this method.

Those migrating services from the COM edition of the toolkit will
notice that the first parameter of this method has changed from an
array of 32 bit handles (referring to Windows synchronization objects)
to a .NET array of System.Threading.WaitHandle objects. Refer to the
Launcher sample application for an example of how to create a class
(GenericWaitHandle) that wraps a system handle.

ClientExecuteBackground
VB: ClientExecuteBackground(ByVal ServiceClient As

IdwServiceClient)

C#: void ClientExecuteBackground (IdwServiceClient ServiceClient)

This method is used to start a background execution on a client object
identified by the client identifier specified by the identifier parameter.
Read the section on exposing service objects for additional
information on this method.

Page 57

The COM edition used 32 bit values to identify clients because of the
requirement under COM to be able to identify a client object without
actually holding a reference to it (and marshaling it between threads).
Under .NET, this is not necessary, so an actual reference to the client
object, which implements the IdwServiceClient interface, is used.

ClearWaitOperation
VB: ClearWaitOperation(ByVal WaitThreadId As Integer)

C#: void ClearWaitOperation(int WaitThreadId)

This method is used to terminate a wait operation in progress. Refer to
the section on Background Threads and Synchronization Objects for a
detailed explanation of this method.

GetInteractiveUser
Not available in NT 4

VB: GetInteractiveUser(ByRef domain As String) As String

C#: string GetInteractiveUser(ref string domain)

This function returns the user name of the user currently logged on.
The Domain parameter returned will be set to the name of the domain
of the user currently logged on. If the user does not belong to a
domain, it returns the name of the current computer in this parameter.
This method is only enabled for services that are configured to interact
with the desktop.

This function uses current system security settings to determine the
interactive user. It is not guaranteed to work in all system
configurations.

RegisterApplicationObject
VB: RegisterApplicationObject(ByVal AppObject As

MarshalByRefObject)

C#: void RegisterApplicationObject (MarshalByRefObject
AppObject)

Page 58

This method allows you to set an object to be the shared application
object for your service when accessed remotely. The service
framework will make this object accessible to all clients of the service,
making it possible for them to communicate both with the service and
with each other.

Refer to the section on Exposing Service Objects for a detailed
explanation of this method.

This method exposes the object for access both by COM/DCOM and
.NET remoting clients.

Under .NET remoting, the object is registered as a Singleton object
with the name Application.Soap.

Under COM/DCOM the object can be referenced using the GetApp-
Object method of the application’s RunningService object.

You must use a configuration file, or your own code, to register an
appropriate channel in order for the object to be available through
.NET remoting.

RegisterClientObjectName
VB: RegisterClientObjectName(ByVal ClientObjectName As String)

C#: void RegisterClientObjectName (string ClientObjectName)

This method allows you to specify the name of the object that the
framework should create when users request client objects via COM or
DCOM. The ClientObjectName parameter should be the class name of
a MarshalByRef based class which you wish to expose to
COM/DCOM clients.

If you do not specify a client object name using this method, your
service will not expose objects through COM. If you do specify an
object name, the service will expose the RunningService object which
will inherit the public methods and properties of the object whose
name you specify here.

You need only use this method if you wish to expose objects to COM
or DCOM based clients. Only one client object can be exposed
through COM or DCOM (though they can create and expose others).

To expose objects for access via .NET remoting, configure the
remoting configuration file for your service to specify those objects
you wish to expose.

Page 59

Refer to the section on Exposing Service Objects for a detailed
explanation of this method.

RegisterDeviceNotification
VB: RegisterDeviceNotification(ByVal NotificationFilter As Integer)

As Integer

C#: int RegisterDeviceNotification (int NotificationFilter)

This method wraps the RegisterDeviceNotification API call that
allows you to obtain notifications when devices are added, removed or
reconfigured on a system. The NotificationFilter parameter should be a
pointer to a block of memory containing a description of the device or
type of device to detect (see the API declaration description in MSDN
for details on the format of this memory block).

The method automatically arranges events to be processed by the
IdwEasyService_OnDeviceEvent method of your service object.

The return value is a handle to the notification object which can be
used to unregister the device notification using the UnregisterDevice-
Notification method. The method will raise an error if the operation
fails.

You are encouraged to call UnregisterDeviceNotification when your
service stops. The framework will attempt to do so if you do not.

Do not use the UnregisterDeviceNotification API with handles
returned from this method.

UnregisterDeviceNotifcation
VB: UnregisterDeviceNotification(ByVal DeviceNotificationHandle

As Integer)

C#: void UnregisterDeviceNotification (int DeviceNotificationHandle)

This method terminates device notification. The DeviceNotification-
Handle parameter is the handle to the device notification object
returned by the RegisterDeviceNotification method.

ReportEvent
VB: ReportEvent(ByVal EventType As EventReportTypes, ByVal

EventString As String, ByVal BinaryData As Byte())

Page 60

C#: void ReportEvent (EventReportTypes EventType, string
EventString, Byte[] BinaryData)

This method adds an event to the application event log.

The EventReportTypes parameter can be one of the following three
values:

svcEventlogError = 1 Records the event as a service error.
svcEventlogWarning = 2 Records the event as a service

warning.
svcEventlogInformation = 4 Records the event as an information

notification only.

The EventString string is text that is written directly into the event log
for the event. The BinaryData parameter is a byte array that contains
any arbitrary data you wish to include with the event.

More sophisticated event logging is possible using the ReportEvent2
function or API techniques and language independent message files
for those who require advanced logging or the ability to categorize
events, or filter based in types of events.

ReportEvent2
VB: ReportEvent2(ByVal Source As String, ByVal EventType As

EventReportTypes, ByVal Category As Short, ByVal EventId As
Integer, ByVal EventString As String, ByVal BinaryData As
Byte())

C#: void ReportEvent2 (string Source, EventReportTypes EventType,
short Category, int EventId, string EventString, Byte[]
BinaryData)

This method adds a detailed event to the application event log, for use
with Desaware’s Event Log Toolkit or other custom event sources.

The Source parameter contains the Event source name (assumed to be
on the local system).

The EventReportTypes parameter can be one of the following three
values:

svcEventlogError = 1 Records the event as a service error.

Page 61

svcEventlogWarning = 2 Records the event as a service

warning.
svcEventlogInformation = 4 Records the event as an information

notification only.

The Category parameter contains the category number of the event.

The EventId parameter contains the event identifier (including the
facility, severity and event code number).

The EventString parameter is optional and is a variant containing
either a single string or a string array (zero based) containing the event
string parameters.

The BinaryData parameter is optional and is a variant containing a
byte array (zero based) containing any binary data.

You can create custom, multilingual or self-installing event sources
using Desaware’s Event Log Toolkit.

Trace
VB: Trace(ByVal message As String, ByVal level As Integer)

C#: void Trace (string message, int level)

This method sends the specified string to all active trace listeners.
These messages will be combined with any messages produced by the
framework. The TraceLevel parameter is used to specify the severity
of the error, with 1 being most severe and 4 least severe. Whether the
message is actually logged will depend on the current trace level as set
in the service’s configuration file. Refer to the section on Testing and
Debugging for more information on the tracing and logging
capabilities of the framework.

Messages reported using this method will be written under the tracing
category “EasySvNT”.

In the COM version of the toolkit, all tracing goes to a log file. The
.NET version uses the .NET framework capabilities. You can specify
output to a log file, event log, or any other trace listener. Also, in the
COM version, the tracing goes to a log file located in the same folder
as your Service Executable. In the .NET version, if you output to a log
file, you would need to include the path of the log file.

Page 62

GetStateCoderMessageSource
VB: GetStateCoderMessageSource () As Object

C#: object GetStateCoderMessageSource ()

One of the new features of the .NET edition of the NT Service Toolkit
is integration with Desaware's StateCoder for .NET. StateCoder allows
you to implement sophisticated state machines in .NET, and is largely
self-synchronizing, thereby helping to eliminate potentially subtle
threading problem when using multithreading and asynchronous
operations. StateCoder state machines use message sources to provide
synchronized input to state machines. Message sources can reflect
virtually any kind of event or information, from simple timeouts or
end of asynchronous operations, to MSMQ message and system
events.

The IdwServiceCtl.GetStatecoderMessageSource function allows you
to obtain a StateCoder message source for use when implementing
state machines in a service. This message source can notify your state
machine when service based events occur. The SCMessageType
enumeration defines the type of service based event that has occurred.
These events correspond to the implemented methods in the
IdwEasyService interface. This allows you, for example, to have your
state machine receive a message when the service is paused, or
stopped.

Refer to the StateCoder documentation for further information on
StateCoder message sources.

Page 63

Using the Service Configuration Program
The Desaware NT Service Configuration Wizard program creates a
custom Service Executable specifically for your Visual Basic project.
This Wizard guides you through a series of steps requesting
information regarding your Visual Basic service. The following
describes each step.

Service Executable Name
This is the first step in the Wizard. Enter the name of the service
executable file. It can be any name you choose. If you select an
existing service executable file, this wizard will extract the service
information from that executable and initialize the remaining steps of
the wizard with that information. You can use the Browse button to
navigate your file system to specify a file name for your service
executable.

Tip: You can create a service executable file that contains some
default information (such as version information) for your company or
product and use it as a template file. Each time you need to create a
new service executable, select the template file to initialize this
Wizard with the version information, etc., then change the service
executable file name to the name you want to give for your service.

Page 64

Figure 2

NT Service Configuration Wizard
Assigning Executable Name & Location

Assembly Name
Enter the full Assembly name of the .NET DLL that contains the
Service and ServiceConfiguration objects with which your service will
communicate. If you decide later that you will want to change the
assembly name, you will have to run this configuration program again.

It is important that you should choose an assembly name that is unique
– the duplication of assembly names used by this framework can cause
services to fail to work properly. We recommend including your
company name or initials in the name. For example: most Desaware
components include the prefix “dw”. The assembly name length can
be up to 18 characters.

You must also choose the target .NET framework for your service.

Page 65

Version Information
Enter the version resource information for your service executable file.
The Service Configuration Wizard writes the same version resource
information to your service executable as other Windows applications.
You must enter information in the “Company Name” and “File
Version” fields. The “File Version” field must contain a valid version
number in “#.#.#.#” format, for example “1.0.0.1”. If you select an
existing service executable file to compile, its file version will
automatically be incremented by 1 revision where revision is the
fourth version number field in the version format.

Figure 3

NT Service Configuration Wizard
Specifying Version Resources

Page 66

Thread Count
Enter the number of threads to allocate from the Thread Pool for COM
client access. If your service will expose client objects for use by
COM clients using the service, those objects will be created on a
thread pool so that their operation will not interfere with the primary
service. The thread count must be in the range from 1 to 32.

If you are only exposing objects via .NET remoting, or not exposing
objects you should set a thread count of 1. Otherwise, if your service
will expose client objects for use by COM, we suggest setting a thread
count of 4.

Create Remoting Files
This step allows you to create remoting or remote automation files for
accessing objects exposed by your service.

The Generate VBR file for DCOM checkbox allows you to create a
VBR file which is used by the clireg32 application to create the
necessary registry entries for accessing your service objects remotely
via COM or DCOM. The VBR file will be created in the same
directory and have the same base name as your service executable.

To create a VBR file, check the Generate VBR file for DCOM
checkbox and enter the description of the service object for your
service in the Service Object Description text box.

If you are exposing service objects for DCOM, you must use the
Service Configuration Wizard to create a corresponding VBR file for
your Service EXE each time you recompile your Service EXE. The
previous VBR file will only work with the previous Service EXE.

This is required because the VBR files contain GUIDs for the exposed
RunningService object of your Service EXE. But, each time you
recompile your Service EXE file, a new set of GUIDs are generated
for the exposed RunningService object, therefore a new VBR file
should also be created.

Page 67

The Service Configuration Wizard will check the output folder of your
Service EXE for a VBR file having the same name as your Service
EXE (except with a .VBR extension). If the .VBR file exists, it will
initialize the Generate VBR file for DCOM checkbox to the checked
state and read the .VBR file’s APPDESCRIPTION field into the
Service Object Description text box. If you are exposing service
objects for DCOM and you are creating your Service EXE in batch
mode. Be sure a copy of the corresponding VBR file is present in the
same folder as your output Service EXE file. Otherwise, a new VBR
file will not be generated for the new Service EXE.

The Generate Service Config file for Remoting checkbox allows you to
create default remoting configuration files which you can use as a
template to specify which objects in your service you wish to remote
as client activated objects. A remoting file will be created for the
server (running the service). In most cases, you can also use the
generated remoting file as a template file for the clients accessing the
service.

To create remoting configuration files, check the Generate Service
Config file for Remoting checkbox and enter the listening port number
in the Listening port number text box. If your service will expose a
client object, enter the name of the client object in the Exposed client
name text box. NOTE: You may need to make additional
modifications to the generated remoting configuration file before it
can be used for your particular configuration. Refer to the MSDN
documentation on .NET remoting for more details.

Page 68

Figure 4
Remote Automation Dialog Box

Compile Executable
The Service Configuration Wizard is now ready to compile your
service executable file. Select the Next button to start compilation, or
the Back button to make any changes.

Compile Completed
The Service Configuration Wizard has finished compiling your service
executable. This step displays whether the compilation was successful
or not. After a successful compilation, you need to install your service
executable before you can run it. If you would like to run your service
executable in our Service Simulator, you need to register your service.
Be sure that your .NET assembly containing the service objects is
located in the same folder as your service executable prior to installing
or registering your service executable. The file Desaware.Service-
Toolkit.Interfaces.dll must be installed in either the same directory or
the Global Assembly Cache. You can use the Service Executable
Launcher utility to install, uninstall, register, and unregister your
service executable.

Page 69

Running the Service Configuration Wizard in
Batch Mode

The Desaware NT Service Configuration Wizard program supports
batch commands so you can build your Service Executable as part of
an automated build script. You can use the batch command line
switches to update an existing Service Executable (or create a new
Service Executable based upon an existing one). The following
describes the batch command switches.

Command Switches

/batchbuild This switch is necessary in order to run the NT
Service Configuration Wizard in batch mode.

/infile=filename This switch is necessary. The filename variable
represents the existing Service Executable that
the newly compiled Service Executable will be
based on.

 The newly compiled Service Executable will use
the same Service Assembly, retain the same
Version Resource, and Thread Pool settings as
the existing file. The filename variable should
also include the path.

/outfile=filename This switch is optional. The filename variable
represents the path and file name for the newly
compiled Service Executable file. If omitted, the
newly compiled Service Executable file will
replace the file specified by the /infile switch.

/fileversion=x.x.x.x This switch is optional. This switch sets the file
version number of the newly compiled Service
Executable file to the specified version number.
If omitted, the file version number will not
change. If the /fileversion switch is specified
without any version number, the file version
number will increment by 0.0.0.1 from the file
version number of the file specified by the /infile
switch.

Page 70

/productversion=x This switch is optional. This switch sets the
product version number of the newly compiled
Service Executable file. If omitted, the product
version number will not change. If the
/productversion switch is specified without any
other string, it will increment by 0.0.0.1 from the
product version number of the file specified by
the /infile switch. If the /productversion switch
specifies a valid version number, it sets the
product version number of the newly compiled
Service Executable file to that valid version
number. If the /productversion switch is set to
“fileversion”, it sets the product version number
of the newly compiled Service Executable file to
the same as the file version number.

/logfile=filename This switch is optional. This switch sends the
batch results from running the Desaware NT
Service Configuration Wizard program to the
specified log file. The filename parameter should
include both the path and file name of the path.
The results will be appended if the file already
exists. If omitted, the batch results will default to
current folder's NTServiceWizard.log file.

Here are some sample batch command lines and their results.

The following batch command line rebuilds the existing beeper2.exe
file. The newly compiled file’s file version number is set to 2.0.1.0.
The newly compiled file’s product version number is set to the same
as the file version number (2.0.1.0), and the build results are logged to
the beeperror.log file.

NTServiceWizard.exe /batchbuild /fileversion=2.0.1.0
/infile=c:\ntservtk\samples\beeper\beeper2.exe
/logfile=c:\ntservtk\samples\beeper\beeperror.log
/productversion=fileversion

The following batch command line rebuilds the existing beeper2.exe
file as beeper3.exe. The newly compiled file’s file version number and
product version number are incremented by 0.0.0.1. The build results
are logged to the NTServiceWizard.log file.

Page 71

NTServiceWizard.exe /batchbuild /fileversion /productversion
/infile=c:\ntservtk\samples\beeper\beeper2.exe
/outfile=c:\ntservtk\samples\beeper\beeper3.exe

Page 72

Using the Service Executable Launcher Program
The Desaware NT Service Executable Launcher program helps you
install, uninstall, register, and unregister your service executable.. To
use the Service Executable Launcher, just drag and drop your service
executable from Windows Explorer onto any of the command buttons.

The command described on each command button will be
implemented on the dropped files. You may also drop the files on the
text box or use the Browse button to select one or more files. This will
put the file names and paths into the text box. Afterwards, you may
click on any of the command buttons to implement that command on
all of the files in the text box.

To install or register your service with additional parameters, just fill
in the appropriate User, Password, or Params text boxes prior to
running the Install Service or Register for Simulator commands.
NOTE: If you had successfully installed a service and you make any
service configuration changes, you must uninstall and then reinstall
the service in order for those changes to take effect.

The Register ActiveX Component and Unregister ActiveX DLL
buttons provide a convenient way to register or unregister COM
components and are not used with your .NET service objects.

Figure 5

NT Service Executable Launcher Utility

Page 73

Background Threads and Synchronization
Objects

Windows supports a wide variety of synchronization objects. These
are objects that allow you to wait for something to occur. This can
vary from waiting for a process or thread to end, waiting for a timer, to
waiting for a change to the registry or a file. You can also wait on
objects such as mutexes, events and semaphores that are used to
synchronize threads and processes. Each of these objects can be in a
non-signaled or signaled state.

The .NET framework contains managed wrappers for many of these
synchronization objects in the System.Threading namespace.
Synchronization objects in .NET inherit from the System.Threading.-
WaitHandle object.

An in-depth discussion of synchronization objects is beyond the scope
of this manual. You can find an extensive discussion of
synchronization objects in MSDN both under the Platform SDK (for
API functions) and the documentation for the System.Threading
namespace.

There are two ways to use synchronization objects. The best way is to
suspend the thread until the object is signaled. This approach is
extremely efficient because it uses almost no system resources.
Unfortunately, it does have the side effect of freezing the thread – a
serious problem if your application has only one thread.

The alternate approach is to use the wait functions with very short
timeouts, and check afterwards if they returned due to an event being
signaled or due to a timeout. In effect, you end up polling the objects –
a very inefficient approach.

One of the most important tasks often handled by services is to
monitor system events. Thus being able to wait efficiently for a
synchronization object to be signaled is extremely important. The
service framework has the ability to automatically create background
threads for this purpose.

Methods Used to Implement Background Threads
The following methods are used to control background thread in the
NT service framework.

Page 74

Control Object (IdwServiceCtl Interface)
The following two methods are exposed on the IdwServiceCtl
interface of the control object, allowing your service to create or
terminate background threads:

VB: SetWaitOperation(ByVal WaitHandles As _
 WaitHandle(), ByVal bWaitAll As Boolean, ByVal _
 Timeout As Integer) As Integer
C#: int SetWaitOperation(WaitHandle[] WaitHandles,

bool bWaitAll, int Timeout)

This method takes an array of synchronization objects, creates a
background thread, and performs an efficient wait for a specified wait
condition.

The WaitHandles() array is an array of WaitHandle variables. The
array should be declared for the exact number of object handles you
will use. You then assign each of the object handles to entries in the
array. For example: to wait on a single object, you would use the
following code:

VB
Dim ObjectList(0) As WaitHandle
ObjectList(0) = yourhandle
' Handle to your synchronization object
ThreadId = ControlObject.SetWaitOperation(_
ObjectList, False, timeoutvalue)

C#
WaitHandle[] ObjectList = new WaitHandle[0];
WaitHandle[0] = yourhandle;
ThreadId = ControlObject.SetWaitOperation(
ObjectList, false, timeoutvalue);

The bWaitAll parameter determines whether you want to wait until all
of the objects are signaled, or until any one of the objects is signaled.
When True, the function will wait until they are all signaled (in which
case they must all be in the signaled state at the same time for the wait
condition to be satisfied – if one becomes signaled and then
unsignaled and then the rest of the objects become signaled, the wait
condition will not be satisfied).

Page 75

The Timeout parameter allows you to set an overriding timeout value
in milliseconds. The wait condition will be automatically satisfied
when the timeout expires regardless of the state of the objects.

This method returns the thread identifier which you can later use to
identify the background thread.

The number of background threads you can create is not limited by the
framework, but may be limited by the system.

When the wait condition is satisfied, the IdwEasyService_-
WaitComplete method will be called on the IdwEasyService interface
of your service object.

If an error occurs in setting the wait condition (such as specifying an
invalid synchronization handle), it will be reported by the framework
calling the IdwEasyService_WaitComplete method with the
CompletionType value set to –1. The error cannot be reported
immediately because it does not actually occur until the new thread is
created and the wait operation is attempted.

VB: ClearWaitOperation(WaitThreadId As Integer)
C#: ClearWaitOperation(int WaitThreadId)

This method is used to terminate a wait operation in progress. The
WaitThreadId parameter is the thread identifier obtained previously
using the SetWaitOperation method.

You do not need to use this method on threads that have terminated
due to a successful wait or timeout (i.e. those threads that have called
the IdwEasyService_WaitComplete method on your service object).

It is recommended that you clear any pending wait operations when
you are notified that the service is about to stop. However, if you fail
to do so, the framework will attempt to clean for you. However, in
doing so it will not release any of the objects that you are using which
could result in a system resource leak (depending upon the objects in
use).

Service Object (IdwEasyService Interface)
The following method is exposed by your service object to receive
notifications when wait conditions are satisfied:

Page 76

VB: WaitComplete(ByVal ControlObject As
IdwServiceCtl, ByVal ThreadID As Integer, ByVal
CompletionType As Integer, ByVal ObjectIndex As
Integer)

C#: void WaitComplete(IdwServiceCtl ControlObject,
int ThreadID, int CompletionType, int
ObjectIndex)

The ControlObject parameter is a reference to the service control
object from the service framework.

The ThreadID parameter identifies the background thread whose wait
condition has been satisfied.

The meaning of the CompletionType and ObjectIndex parameters
depends upon whether you are waiting for all objects or one object to
be signaled (i.e. whether the bWaitAll parameter to the
SetWaitOperation method is True).

If you are waiting on one object only…

The CompletionType parameter will be one of the following four
values:

-1 Indicates the wait operation failed.

0 Indicates that the wait condition was satisfied (at least one

object was signaled). The ObjectIndex parameter is the entry
in the array of the object that satisfied the wait condition.

1 Indicates that the wait condition timeout expired.

2 Indicates that a mutex object was abandoned. The
ObjectIndex parameter is the entry in the array of the
abandoned mutex that satisfied the wait condition.

If you are waiting on all objects…

The CompletionType parameter will be one of the following four
values:

-1 Indicates the wait operation failed.

Page 77

0 Indicates that the wait condition was satisfied (all objects were
signaled).

1 Indicates that the wait condition timeout expired.

2 Indicates that at least one mutex object was abandoned, and
all other objects were signaled. The ObjectIndex parameter is
the entry in the array of an abandoned mutex.

After this method is raised, the background thread used to perform the
wait operation is automatically terminated.

Page 78

Exposing Service Objects
One of the most important features of a service is the ability to act on
behalf of a client. And the best way for clients to obtain access to a
service is using either .NET remoting, COM or DCOM to obtain a
reference to an object exposed by the service.

.NET Remoting vs. COM/DCOM
One of the key design goals of the .NET version of this toolkit is to
make it as easy as possible to provide client access to objects in the
service via both .NET remoting and COM/DCOM. This is in
recognition of the fact that the transition to .NET will be a long
process, and it will be very common to have a mix of COM and .NET
based applications in many enterprises.

The COM remoting subsystem in this toolkit is identical to that in the
COM edition of the NT Service Toolkit. It is designed to be called
from VB6 and other COM based clients, and adheres to the COM STA
(Single Threaded Apartment) threading model.

The .NET remoting subsystem uses .NET remoting. As such, it does
not impose any threading restrictions on objects. This freedom does,
however, impose on the programmer the responsibility to handle
synchronization in any case where a client might access shared data.

.NET Remoting
A complete discussion of .NET remoting is beyond the scope of this
document. Refer to the .NET documentation, or the excellent book
Advanced .NET Remoting by Ingo Rammer (published by Apress:
www.apress.com, available in both VB .NET and C# editions).

The following description assumes you have at least a basic familiarity
with .NET Remoting.

The first, and most important thing to remember about .NET remoting
with the NT Service Toolkit is this:

Services created with this toolkit are true Windows services, and
as such, are fully capable of acting as hosts for .NET remotable
objects.

In other words, services you create are able to correctly remote all
types of .NET remotable objects (Singleton, Singlecall, and Client
Activated).

Page 79

http://www.apress.com/

If you do not wish to use the COM/DCOM subsystem, you should not
use the IdwServiceCtl RegisterApplicationObject or RegisterClient-
ObjectName methods. Simply define the objects you wish to remote,
and register them for remoting using your services configuration file
or the appropriate .NET framework functions.

Keep in mind that .NET remoting does not automatically synchronize
access to objects. It is up to you to add thread synchronization as
necessary. This is especially important for Singleton objects, which
can be accessed simultaneously by multiple clients. It is also important
for SingleCall or Client Activated Objects that reference shared data.

Note: Your service’s Service Control object (IdwServiceCtl interface)
is automatically synchronized.

.NET Remoting Configuration File
The NT Service Toolkit framework will automatically load a remoting
configuration file if one exists with the following name:

yourservicedll.config

Where yourservicedll is the name of your service DLL file without the
DLL extension.

For example: if your service DLL is myservice.dll, the configuration
file name will be myservice.config.

You must include a remoting configuration file (or perform
configuration in your service startup code) to use .NET remoting.

The Service Framework Object Architecture
There are three types of objects you can expose through your service
component.

1. Objects exposed only through .NET remoting.

2. Application objects exposed through both .NET remoting and
COM.

3. Client objects exposed through both .NET remoting and COM.

Let’s consider these types of objects.

Page 80

Objects Exposed Only Through .NET Remoting
These objects were discussed earlier. Use standard .NET Remoting
techniques to expose any MarshalByRef object.

Application Objects Exposed Through Both .NET
Remoting and COM
You may register any one MarshalByRef object to serve as the
Application object which will be accessible through both .NET
remoting and COM. You create an instance of the object in your
primary service object, and register it by calling the
RegisterApplicationObject method on the ServiceControl object
(IdwServiceCtl interface). The object may have any class name you
choose – we use Application in our examples by convention only.

Calling the RegisterApplicationObject method causes two things to
happen:

1. The object becomes available to COM clients via the
GetAppObject method of the RunningService object (which will
be discussed shortly).

2. The object is registered as a Singleton object via .NET remoting
under the name Application.Soap.

When accessed via COM, all references to the application object will
be synchronized and marshaled to the primary service thread. This is
important to remember, because it means that long operations on this
object can impair the performance of the entire service.

When accessed via .NET remoting, references to the application object
will not be synchronized and will take place on the remoting thread.

This means it is important for you to perform any necessary
synchronization on methods of your Application object.

Note to those migrating from the COM edition of the toolkit: Under
COM, access to the Application object was automatically
synchronized owing to the use of the STA COM threading model.
Under .NET, the Application object is free threaded. You should
review your design and add SyncLock (C# lock) statements to
synchronize any methods or properties of this object where
simultaneous access by different clients might lead to errors.

Page 81

Refer to Dan Appleman’s book “Moving to VB.Net: Strategies,
Concepts and Code” for a discussion of .NET multithreading written
for those migrating from VB6.

Your application object is typically used to expose functionality that
controls the entire service or is otherwise global to the service. It may
also be used by client objects (which you’ll read about shortly) to
exchange data among clients.

Client Objects Exposed Through both .NET
Remoting and COM
The application object is fine for providing functionality that is global
to a service and consists of short operations, but is terrible for the
general support of clients. For a service to support clients properly,
you need a different set of features, specifically:

1. Long client operations should not impact the overall
performance of the service.

2. Long client operations should have minimal impact on other
clients.

3. The service should be able to act on behalf of individual
clients based on their identity and security context.

These goals are accomplished by having client objects run on a
different set of threads from the primary service.

Client objects created via .NET remoting are accessed from a thread
pool provided by the .NET runtime. Client objects created via COM or
DCOM run on a thread pool managed by the NT Service Toolkit
framework. The number of threads in this threadpool is defined by the
service configuration program when you create the service.

By using threadpools in this manner, if a client performs a long
operation, at worst it will block another client in the same thread. The
service itself, and all clients on other threads, will continue to run.
Distributing the client load among multiple threads is the standard
mechanism by which services achieve a high degree of scalability as
the number of clients increases.

You define a client object by creating a class that inherits from
MarshalByRefObject and registering the name of the class with the
ServiceControl object using the RegisterClientObjectName method.

Page 82

You may only register one object type for access by both COM and
.NET. You may register additional object types for access only via
.NET remoting using standard .NET remoting techniques.

The RunningService Object (COM Clients Only)
The service framework always exposes a COM object named
RunningService. Thus, if you configured your service executable with
the name MyService, the framework will expose a public object called
MyService.RunningService.

If you have not registered an application object, and have not
registered a client object name (i.e., you are not exposing any COM
objects from the service), any attempt to create the object
MyService.RunningService will fail with the error “ClassFactory
cannot supply requested class”.

If you have registered an application object, any legal attempt to create
the RunningService object will succeed, and retrieve an object with a
single automation method called “GetAppObject”. This method
returns a reference to the object you registered earlier. GetAppObject
returns an error if the service is not in the running state.

If you have registered a client object name, any legal attempt to create
the RunningService object will succeed, and retrieve an object that has
both the “GetAppObject” method described earlier, and every public
method and property that you defined in your client object class (yes –
the methods you defined in your client are added to the services
RunningService object).

Your client object will be created on the thread pool described earlier,
thus will run in the same thread as the RunningService object – not the
primary service object.

All methods and properties of the client object are accessed through
the IDispatch (automation) interface and are thus late bound. This
means that references to the objects should be defined “As Object”
rather than as the specific object type (the performance impact of
using late binding in this case is negligible compared to the
marshalling overhead that you are going through with COM or
especially DCOM).

Page 83

The service must be in the running state for a client to obtain a
RunningService object for the service. The client will not be able to
obtain an object in any other state (including the Paused state). If the
client is holding a reference to the RunningService object, all property
and method access to your object will continue to work while the
service is paused. It is up to you to decide how to handle incoming
client requests while the service is paused.

If your client object raises any runtime errors during method or
property access by the client, those errors will be reflected through the
RunningService object to the client.

Creating the Application Object
Creating an application object for your service is almost trivial.
Simply do the following:

1. Add a new class to your component, typically named
“Application” (though it can be any name).

2. The class should inherit from MarshalByRefObject.

3. In your service object, create an instance of the application object,
typically using code such as:

VB: Private appobject As New Application
C#: Application appobject = new Application();

4. In the IdwEasyService_OnStart method for your service object,
register the application object using code such as:
ControlObject.RegisterApplicationObject(appobject)

If you wish your application object to be accessible via .NET
remoting, add a remoting configuration file of the name
yourservice.config, where yourservice is the name of your service
DLL (without the DLL extension). See the next section for a sample
configuration file. While you do need to specify a listening channel,
you do not need to define the Application object – the
RegisterApplicationObject method automatically registers your object
under the name Application.Soap.

That’s all there is to it.

Page 84

In the COM edition of this toolkit, developers would have to use a
variety of techniques to avoid circular reference problems both with
Application objects, and with objects they reference (such as the
service control object). With the .NET edition of the toolkit, this is not
a concern, as the runtime will automatically clean up objects when
they are no longer referenced.

Creating the Client Object
Creating a client object for your service is almost as easy as creating
the application object. Simply do the following:

1. Add a new class to your component, typically named “Client”
(though it can be any name).

2. The object must inherit from MarshalByRefObject.

3. Implement the IdwServiceClient interface using the following
code:

 VB: Implements IdwServiceClient
 C#: yourclass: IdwServiceClient

4. Add code for the IdwServiceClient methods (description follows).

As with other interfaces, if you just add an empty method
declaration, the default operation is sufficient for most
applications.

5. In the IdwEasyService_OnStart method for your service object,
register the client object using code such as:

VB: ControlObject.RegisterClientObjectName _
 ("clientobjectname")
C#: ControlObject.RegisterClientObjectName
 ("clientobjectname");

where clientobjectname is the name of your client object class

If you wish the client object to be accessible via .NET remoting, add a
remoting configuration file of the name yourservice.config, where
yourservice is the name of your service DLL (without the DLL
extension).

Here is an example of a typical configuration file for a service:
<configuration>
 <system.runtime.remoting>

Page 85

 <application name="dwEasyServ">
 <lifetime leaseTime="2M"

 renewOnCallTime="1M"/>
 <service>
 <activated type="dwEasyServ.Client,

 dwEasyServ"/>
 </service>

 <channels>
 <channel port="8001" ref="http" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

You should define each client activated object and define a default
listening port for your service as well.

That’s all there is to it.

Again, there are some rules you should follow, and some subtle issues
to be aware of. They will be described shortly.

When migrating a client object from the COM edition of the toolkit,
be sure to remember that your client object must inherit from
MarshalByRefObject if you wish it to be accessible via .NET
remoting.

The IdwServiceClient Interface and Client Objects
The NT Service Toolkit provides a mechanism by which client objects
can obtain important information during the time they exist. The
IdwServiceClient interface allows client objects to obtain references to
the underlying service object when the client is created. The interface
also provides notification when a client has disconnected, and when
the service is stopping. It also makes it easy to start asynchronous
background operations on the client.

Client objects that are exposed using the RegisterClientObjectName
method (under both COM and .NET remoting) are required to
implement the IdwServiceClient interface.

However, other .NET remoting clients (in cases where you expose
additional client activated objects) may implement this interface if
they wish, in which case they too will receive the appropriate
notifications.

Page 86

Service Specific Issues Relating to Client Objects
In a normal component that exposes objects, the lifetime of the
component is dictated by the life of the objects. Under .NET, object
lifetime is specified by an activation lease. Under COM, lifetime is
determined by reference counting. Once all of the clients release their
objects, the component shuts itself down and unloads.

In a service, the lifetime of the component is dictated by the service
control manager and is independent of the life of any objects it
exposes!

This has profound ramifications.

You’ve already read that a service will not allow objects it exposes to
be created unless the service is actually running.

But consider the flip side – this also means that if you stop the service,
any objects it exposes will stop working for clients!

The service framework handles this by forcibly disconnecting any
clients that are using objects as soon as the service stops. Those clients
will receive “Object disconnected” or other error messages if they
attempt to access the client object once the service stops.

But there’s more.

Consider how your service will interact with client objects.

Obviously, you’ll want your client objects to be able to communicate
with your primary service object. This suggests that your client object
might want to hold on to a reference to the primary service object.
How does it get a reference to the primary service object? The service
framework calls your client object’s OnConnect method (on the
IdwServiceClient interface that it implements) and passes it a
reference to your service object.

But at the same time, your service object might want to keep track of
clients using the service. To do so, it needs a way to gain a reference
to the client object and possibly hold a reference to the client object.
The best way for it to gain a reference to your client object is by
having your client call a method on the service object as soon as it
receives the OnConnect method call. Your service object can store
references to all of the clients in a collection.

Page 87

Those of you migrating from the COM version of the toolkit may
recall a recommended design pattern to use to maintain collections of
client objects in order to avoid circular reference problems. Under
.NET, you need only add a client to a collection when the
IdwServiceClient_OnConnect method is called, and remove it when
the IdwServiceClient_OnDisconnect method is called.

Figure 6 illustrates the actual object model used when you expose a
client object.

Page 88

Service Framework
Executable

Se
rv

ic
e

C
on

fig
ur

at
io

n
S

er
vi

ceS
er

vi
ce

C
on

tro
l

R
un

ni
ng

Se
rv

ic
e

Ap
pl

ic
at

io
n

C
lie

nt

COM Client

.NET Client

Your Service
Component

Figure 6

The Client Object Model

Page 89

With a COM client, the RunningService object exposes all of the
public methods and properties of your client object by reflecting them
to the client through the RunningService object. You obtain a
reference to the Application object by calling the GetAppObject
method of the RunningService object.

With a .NET client, the actual client and application objects are
referenced directly via .NET remoting.

Object Identifiers
In the COM edition of the toolkit, each of the IdwServiceClient
interface methods included an object identifier value. This integer
value made it possible to uniquely identify a client without holding a
reference to the client (with the resulting circular reference problems).
With .NET, you should use the references to the object itself to
identify the object, as no circular reference problem exists. The
ObjectIdentifier parameters have been removed from the interface
methods.

The following functions are defined on the IdwServiceClient interface:

OnConnect
VB: OnConnect(ByVal ServiceObject As Object)

C#: OnConnect(Object ServiceObject)

This method is called after the class Initialize event, after a client has
connected to the object. During this method you can store a reference
to the primary service object, and call methods on that object to
register the client with the service.

This call comes in immediately on the thread that creates the object,
and is not synchronized.

OnDisconnect
VB: OnDisconnect(ByVal ServiceObject As Object)

C#: OnDisConnect(Object ServiceObject)

This method is called after a client has disconnected from the
RunningService object.

This call is synchronized to the object being disconnected.

Page 90

OnStop
VB: OnStop(ByVal ServiceObject As Object)

C#: OnStop(Object ServiceObject)

This method is called when the service is about to stop. Perform any
necessary cleaning here and try to avoid long operations.

Note: If you design your object such that it must receive this method
call then it is your responsibility to defer the service from stopping
until all of the client’s OnStop methods are called.

If you return immediately from the IdwEasyService_OnStop method
(in your service object), the service will shut down immediately and
you are not guaranteed to receive this method in each client object.

The framework works this way because there is no way for the
framework to know how long it will take for the
IdwServiceClient_OnStop method call to return. Since the Service
object controls termination of the service, the framework cannot
guarantee that this method will be called before the service terminates.

Refer to the RemoteUser sample application for an illustration of one
approach for handling this situation.

This method is called on the primary service thread. It is not, however,
synchronized against other method calls on the object.

ExecuteBackground
If you call the ClientExecuteBackground method of the Service
control object for a given client, you will start an asynchronous call to
this method.

In other words, the call to the ClientExecuteBackground method will
return immediately and you can return from the current function call.
A new thread will be created and this method will be called by that
thread.

Note that this method will not block other methods from being called
(say, on additional client requests). You must perform your own
synchronization to prevent threading problems.

The synchronization issue represents a major change from the COM
edition of the toolkit. In the COM edition, the COM threading rules
insured that during such background execution, no other calls into the
object would occur. Under .NET, this protection does not exist.

Page 91

To replicate the COM approach, you should add a SyncLock/lock
statement to this method and any other methods that you wish to
synchronize. If you use the client object itself as the synchronization
object (with SyncLock/lock), you will automatically synchronize to
the OnDisconnect method.

Additional Application and Client Object Issues
Exposing COM objects from a service is complex in general, given the
multithreaded nature of services. We’ve made every effort to keep it as
simple as possible, but there are issues you should understand that are
natural consequences of this architecture. Some of these issues relate
to NT services, some to COM, some to .NET, and some to the service
framework. Many of them will be familiar to you from your regular
programming efforts, but may not be intuitive when applied to
services.

Shared Variables
Client objects should avoid accessing shared variables including
global variables (VB) or static members of classes. Any time shared
variables are accessed, you should be careful to synchronize that
access to reduce the chance of threading problems.

The only shared variable that may be safely accessed is the service
control object (IdwServiceCtl methods only), which are synchronized
to the service control object (meaning only one thread can ever call
them at a time).

Service State and the Client and Application
Objects
Clients cannot obtain access to your Client or Application objects
unless the service is in the running state. If your service is not in the
running state, attempts to create client objects, or to call the
GetAppObject method of the RunningService object will fail with a
“Service not active” error.

However, once a client is holding a reference to your Application or
Client object, method and property calls to the object will go through
as long as the object exists – it is your responsibility to keep track of
the current state of the service and handle client requests accordingly.

Page 92

Once your service stops, any attempts by the client to access methods
or properties on an object reference they are holding will result in an
“Object Disconnected” error.

It is very important from a design perspective that your client
applications are prepared to handle object disconnections any
time they access your client object!

Pausing a service has no impact on the behavior of the client or
application object. If you wish to change their behavior (say, respond
with an error) when a service is paused, it is up to you to do so in your
own code.

Page 93

Security and Impersonation
Few subjects in Windows are as complex and intimidating as security.
This section can’t possibly cover all of the issues that you may face
when configuring security, but will at least try to give you a handle on
basic security operations relating to services.

NT/2000/XP Security in 250 Words or Less
Every thread in a system belongs to somebody. Each “somebody” is
identified with a user name, and may belong to one or more groups.
For example: most services run under an account named
“LocalSystem” which is a fictional user that exists on every Windows
system. Each “somebody” has certain rights or privileges – things that
they are allowed to do. For example: the LocalSystem account is
allowed to run as a system service (which, among other things, means
that it can continue to run even when a user logs out).

There are a variety of securable objects on a system – objects whose
access can be allowed or restricted based upon the user. Examples of
securable objects include files, registry entries and even COM objects.
You can, for example, decide who is allowed to access the Client
object that you expose in your service.

Every security operation in Windows consists of answering one of the
two following questions:

4. Is a particular user allowed to perform a certain operation on a
system?

5. Is a particular user allowed to perform a certain operation on a
securable object?

That is, in a nutshell, everything there is to know about NT/2000/XP
security. Everything else is commentary. But oh my, what a
commentary it is….

Impersonation
A key concept that you must understand to take full advantage of the
service framework is that of impersonation. One of the privileges that
the LocalSystem account has is the right to impersonate users.
Remember, every thread belongs to a particular user. But there are
times where you will want a thread to act on behalf of another user.

Page 94

For example: Let’s say you have a client object exposed from a
service. This object has a method that reads a private data file. But you
want it to only work for authorized users. How can the object figure
out if a particular client is authorized to read the file? You can’t just
try reading the file – since the object runs in a service thread which is
probably always authorized to read the file.

The solution is for the thread to temporarily impersonate the client –
effectively pretending to be that client. While impersonating the client,
Windows treats the thread as if it were that client, and applies security
based on that client. If the program tries to access the file while
impersonating, Windows will verify if the client is allowed to access
the file – if not, a permission error will occur.

Types of Impersonation
This sounds fairly simple, and really is in concept. In practice,
however, it is made more complex by the fact that there are different
types of impersonation. Each client machine can decide what level of
impersonation it allows. The levels of impersonation are as follows:

Anonymous The client machine does not allow impersonation of
its clients.

Identity With this level (the default on many installations),
the server can determine who the client is and
impersonate the client in order to perform security
tests. However, it cannot actually do anything on
behalf of the user.
If you wanted to check if a user could access a file
using this level of security, you would have to first
use API functions to obtain the DACL for the file (a
structure that determines which users can access the
file), then impersonate the client, then call the
AccessCheck API to check whether the operation
would succeed. You could not simply try to open the
file, because Identity level impersonation does not
allow you to do perform the Open operation even if
the user has permission to open the file.

Impersonate This is the most useful level of security for
impersonation, in which the server is allowed to act
as if it were the client in most respects. Instead of the
relatively complex operation of checking whether a

Page 95

client can perform an operation, you can attempt the
operation. If the client is not allowed to perform the
operation, it will fail with a permission error.
There is one small catch to this level of
impersonation. You can only access resources on
behalf of the user on the local system. You cannot
impersonate the client and then use the client’s rights
or permissions to access resources on remote
systems.

Delegate This type of impersonation is only supported by
Windows 2000/XP. It is complete impersonation, in
which the server can impersonate the client and act
on their behalf in every respect – even going to other
systems or network based resources.

Under DCOM, the client actually passes identity credentials to the
server, making it possible for the client to specify who the user is and
the type of impersonation that is permitted. In that case, if you wish to
use an impersonation level of “Impersonation”, you must set the
default level for the client computer to this level using the dcomcnfg
application. You must do this even if you are running the client on the
same computer as the service!

Under .Net remoting, the default channels and configuration do not
include identity credentials, so impersonation of a client is not possible
unless you perform additional customization steps that are beyond the
scope of this document.

However, in addition to impersonating clients, your service can use the
LogonUser API (if running under the LocalSystem account) to log in
as a particular user and then impersonate that user using members of
the System.Security.Principal.WindowsIdentity class. An example of
this is shown in the RemoteUser example. Note, however, that unless
you build a secure channel, the logon name and password in this
remoting scenario is passed in plain-text, and is thus not secure.

Users migrating from the COM edition of the toolkit will note that the
RemoteUser example has been modified to use LogonUser instead of
client impersonation. This approach is supported under both DCOM
and .NET remoting.

Page 96

Configuring Your Service for Client Access
Now that you know the basics of security and impersonation, let’s take
a look at how these concepts work in practice. For the sake of this
discussion, the term user and client will be used interchangeably –
since every client we will be dealing with also has a user identity.

First, keep in mind the key question behind NT/2000/XP security –
does a user have permission to act on an object?

This question divides into two parts: identifying the user, and setting
the necessary security so the user can perform the operations in
question.

The first part of the question – identifying the user, implies that the
computer that the service is running on must somehow be able to
identify the user. The question of authentication is complex –
depending upon the operating systems in question, how they are
configured, how they are organized into domains and forests, and so
on. This document will not even begin to address this issue.

Desaware cannot provide technical support on the issue of
authentication of users or basic Remoting/COM/DCOM functionality
on your service’s computer. Before you call us for technical support
on subjects related to client access, you must verify that you can create
a standalone executable on your service’s computer, and access it via
.NET remoting or DCOM from the client system in question, where
your client system is logged in under the same account that you wish
to use to access the service. If you cannot do this, you have an
authentication or connection problem that does not relate in any way
to our toolkit.

If you call us for support on what turns out to be an authentication
problem, we will charge you our standard consulting rates for time
spent on the problem. Authentication and account management issues
must be resolved by your system administrator.

The easiest way to be sure that a client account will be authenticated
on the service’s computer is to be sure that both machines belong to
the same domain, and that the client is logged into an account in that
domain.

Page 97

The easiest way to make sure that your computers are configured
properly for .NET remoting is to install one of the simple console
program based remoting examples provided with the .NET framework
and make sure you can access the server from the client machine. If
you do not know how to do this, refer to the .NET MSDN
documentation and learn how to do this before you proceed to attempt
this with a service.

The easiest way to make sure that your computers are configured
properly for COM is to create a simple remotable ActiveX EXE server
in VB6 that uses remote automation. Register its VBR file on the
client machine and make sure you can access the server from the client
machine. If you do not know how to do this, refer to the Visual Basic
documentation and learn how to do this before you proceed to attempt
this with a service.

Configuring the Service Access Through .NET
Remoting
All objects in your service that are to be available via .NET remoting
should be specified in your service configuration file as described
earlier.

We strongly recommend Rammer’s book on Advanced .Net Remoting
or Advanced .Net Remoting with VB.Net to help you understand how
to use .Net remoting.

Services created with this toolkit are true services, and are fully
compatible with the .Net remoting system – so all the configuration
options and framework classes related to remoting work just as you
would expect.

The only circumstance where our toolkit provides additional remoting
features are:

1. The ability to expose one object type simultaneously via .Net
remoting and DCOM remoting.

2. The ability to give remoted objects access to service related
information via the IdwServiceClient interface.

Page 98

Configuring the Client System for Access to .NET
Remoting Objects Exposed from the Service
A client can specify objects that should be accessed remotely by
creating a configuration file which can be loaded using the following
code:

System.Runtime.Remoting.RemotingConfiguration.Config
ure("ClientTest.exe.config")

The configuration file typically resembles the following:
The configuration file
<configuration>
 <system.runtime.remoting>
 <application name="ClientTest">

 <client
url="HTTP://localhost:8001/dwEasyServ">
 <activated type="dwEasyServ.Client,
dweasyservmetadata" />
 </client>
 <channels>
 <channel ref="http" />
 </channels>
 </application>
 </system.runtime.remoting>
</configuration>

The application name refers to your client application. The client url
specifies the port and application name that was set by the server (in
the server configuration file). The activated type specifies the type
which will be accessed remotely, and the assembly that contains the
type schema.

Once this file is successfully processed, all attempts to create the
object dwEasyServ.Client (which is presumably exposed from your
running service) will be redirected via remoting to the service.

The only remaining question is – how does the client obtain the type
schema?

There are several different ways to accomplish this (all discussed in
the .Net remoting documentation and Rammer’s book). The one we
recommend is to extract the metadata from your service using the
soapsuds command as shown here:

Page 99

soapsuds -types:dwEasyServ.Client,dwEasyServ -
oa:dweasyservmetadata.dll -nowp

This command extracts the metadata from the dwEasyServ.Client
object from the service object, and places it in an assembly named
dweasyservmetadata.dll, which can be referenced by the client
application to obtain the schema for the type.

Users of the COM version of the toolkit will notice that the
RemoteUser sample application, which in the past returned an ADO
recordset, now returns a string array. It is possible to remote an ADO
recordset via .Net remoting, but it is complex and requires
customization of the metadata file to avoid duplicate references to the
ADODB namespace.

Configuring the Service Access Through
DcomCnfg
The following steps are necessary to configure your service to expose
objects for remote access via DCOM.

1. The first step on the server side is to compile the service
component and register the service to run as a service (by
executing it with the parameter –I). You cannot remotely access
DCOM objects while your service component is running in the
VB IDE. You can, however access objects if the client is on the
local system, and thus you should start your testing and debugging
using the VB IDE and local clients.

2. Use Dcomcnfg to select the properties for the service application.

Set the launch and access properties to include the client user. If
the default access and launch permissions are adequate, you will
see the user on the list when you click the custom access
permissions option and select “Edit.” If that is the case, you can
safely use the default permissions. Default permissions are also
set using the dcomcnfg program.

If you don’t see the client user on the list of the computer or
available domains, you probably have a user/authentication
problem. Contact your system administrator to resolve this
problem before continuing. Rather than setting security for each
possible user, you’ll probably actually want to authorize groups to
which the potential users belong.

Page 100

Figure 7
Distributed COM Configuration Properties

Page 101

Figure 8

EasyServ Properties

You can use the dcomcnfg program to perform other tasks such as
setting the log in name and account for the service if you wish to
override the settings in the service itself. Note that you must make
these changes after the service is installed, and they will be reset if you
reinstall the service.

Configuring the Client System for Access to
COM/DCOM Objects Exposed from the Service
Before a client can access an object from a service, it must know about
that object. It needs three pieces of information:

1. The name and class identifier (CLSID) of the object, and other
information needed to register the object.

Page 102

2. Information on the interfaces used by the object, and how to
invoke them remotely (i.e. marshal the information from one
computer to the next).

3. The machine on which the object can be found.
The Service Configuration program allows you to create a VBR file.
This file contains the information on the objects exposed by your
service, along with the application name and identifiers of the service.
You need to generate a new VBR file each time you recompile your
Service EXE.

Copy the VBR file to the client system. Then run the clireg32 program
to register the VBR file. The CliReg32 program will prompt you for
the IP address or name of the machine.

Page 103

Figure 9

Distributed COM Configuration Properties

Page 104

Examples
This toolkit includes a number of service examples. These examples
are designed to also be part of the documentation – you’ll find the
comments include in-depth discussions of the example, its design, and
potential issues that may arise while testing and debugging the
example.

All of the examples for the demo edition have the same assembly
name (dwEasyServ) and are designed to run with the demonstration
version of the framework. For this reason, you can actually only test or
run one example at a time.

If you have purchased the toolkit, all you need to do to use these
service samples independently is to use the configuration program to
create a service framework executable that references the sample
project.

The following examples are included (by subdirectory name).

Template Contains blank templates for the ServiceCon-

figuration and Service classes that you can load
into a new service project (thus saving some
typing).

Beeper Simple service that beeps at a set interval.

ControlPanel-
Applet

Sample shows how to create a standalone control
panel applet.

ControlPanel-
AppletService

Sample shows how to create a control panel applet
that interacts with your service.

ReportEvent2 Similar to the Beeper sample. Demonstrates how
to use the ReportEvent2 function to perform
advanced event logging operations.

Tracing Similar to the beeper sample, but supports
InstallParameter and StartupParameter arguments
for different results and to output debugging
information.

Launcher Launches an application, monitors for it to be

Page 105

closed, and relaunches it – making for “unkillable”
programs. Demonstrates use of the Application
object and background wait threads.

TinyWeb This primitive web server returns a standard page
using the HTTP protocol. Demonstrates non-COM
based clients.

TinyWeb2 This slightly less primitive web server returns the
same page using the HTTP protocol. Demonstrates
use of threading to service HTTP requests on
multiple threads, thus preventing connections from
blocking each other.

FileWatch This service watches for changes to files in a
directory and reports them via MSMQ to a client
application. Demonstrates the use of a background
wait thread and MSMQ integration. Classic
example of a “monitor” style service, that runs
always in the background, queuing information for
an application to read later.

MSMQ can also be used to allow applications to
send messages to a service. This example requires
that MSMQ be installed to run.

FileWatch2 Similar to the FileWatch sample except this does
not require MSMQ. Changes are output to the
Tracing log file or the Event Log.

RemoteUser This service allows users to access a database

record set and a file using .NET remoting, COM or
DCOM.

• Demonstrates .NET remoting and
COM/DCOM access.

• Demonstrates pre-loading of data for
rapid availability.

• Demonstrates performing a high
privileged operation on behalf of a low
privileged user (acting on behalf of a
client).

Page 106

• Demonstrates impersonation – acting in
the security context of the client.

• Demonstrates holding a service open until
all clients disconnect.

StateCoder This service demonstrates how to implement state
machines using Desaware’s StateCoder in your
service.

COM Service
Library

The COM edition of the Service Control Manager
component. Can be used to start and stop services,
and retrieve information on running services. This
edition wraps the Windows Service API functions
and exposes almost all of the Services capabilities.
Includes full VB6 source code. NOTE: This folder
is located as a subfolder of the
dwSCMDemonstrationCOM folder and is installed
only when the Install Visual Basic .NET files
option is selected.

dwSCMNet A managed .NET edition of the Service Control
Manager component. Can be used to start and stop
services, and retrieve information on running
services. This edition wraps the native .NET
Service objects and exposes just a subset of the
Services capabilities. Includes full VB.NET source
code.

DwSCMDe-
monstration-
Net

This sample demonstrates how to use the .NET
edition of the Service Control Manager compo-
nent.

DwSCMDe-
monstration-
COM

This sample demonstrates how to use the COM
edition of the Service Control Manager component
in a .NET application.

Page 107

Migration FAQ
Migration Issues Relating to the Transition From
the COM Edition Toolkit

The following are common questions regarding the migration from the
COM edition of the toolkit to the .NET edition of the toolkit.

Where is the dwSecurity Object?
The dwSecurity object and DLL was designed to provide an in-process
component for performing various security related tasks associated
with impersonation. These tasks can be accomplished using classes
and methods from the System.Security.Principal namespace.

Where is the dwBackThread Object?
The dwBackThread Object allows VB6 programs and components to
create and manage background threads. Multithreading is well
supported in .NET (though it is certainly as tricky as with VB6, and
considerably more risky). Refer to the objects of the System.Threading
namespace for specifics on multithreading. Refer to Dan Appleman’s
book “Moving to VB.Net: Strategies, Concepts and Code” for
assistance with learning how to do multithreading safely with .NET.

Where is the dwSock Component?
The dwSock component provides a powerful winsock wrapper for
VB6 programmers. It is no longer necessary with the .NET
framework. Refer to the classes and objects in the System.Net and
System.Net.Sockets class to implement network access from your
services.

NOTE: The dwSock6.dll file is still distributed with the NT Service
Toolkit .NET edition but we are not supporting the dwSock6
component in .NET services. From our preliminary tests, it seems to
work fine in .NET, but it has not undergone the rigorous testing in
.NET we normally apply to our native .NET components. For those
who still wish to use the dwSock6 component in your .NET projects,
an example of the TinyWeb project that uses the dwSock6 component
is included in the sub folder of TinyWeb.

Page 108

Migration Issues Relating to the Transition from
VB6

How can the interface names be the same in the
.NET edition, even though the interfaces are
different?
This is possible because the .NET interfaces are not COM interfaces,
nor are they really the same name. For example: The full name of the
IdwEasyService interface is actually:

Desaware.ServiceToolkit.IdwEasyService.

In .NET, the full namespace is what counts.

Page 109

Common Errors
Installation and Registration

Service Cannot be Deleted Error When Trying to
Install or Delete a Service
Chances are the services control panel applet (NT4) or snap-in
(Win2K) is visible and the service is already installed (this typically
happens when you wish to reinstall after changing some parameters).
Close service window to allow Windows to release its handles to the
service, thus allowing the service to delete the current version of the
service.

Unable to Load Service Configuration Object
Error When Trying to Install a Service
 Chances are the corresponding Service DLL is not installed in the
same folder as the Service EXE. Also verify that the
Desaware.ServiceToolkit.Interfaces.dll file is distributed with your
service files and installed in the same folder as your service files or in
the GAC.

Client Objects
Permission Denied Error When Creating the
RunningService Object from COM/DCOM
Use the Dcomcnfg application to allow your client permission to
access the object.

My Client Object Is Not Receiving an OnStop
Method Call
The service object controls termination of the service – thus it is
possible for the service to stop before the framework has had time to
send the IdwServiceClient_OnStop method on each client object. It is
up to your program to defer the service shutdown until the method has
been called for all clients if this is important to your particular
application. Refer to the description of the IdwServiceClient_OnStop
method for details. Refer to the RemoteUser sample application for an
illustration of one approach for handling this situation.

Page 110

Unable to Access an Object Through .NET
Remoting
This can result from a variety of configuration errors. The key steps to
remember are as follows:

• Be sure your service is configured to use .NET remoting. The
framework will attempt to load a remoting configuration file
named yourdll.config, where yourdll is the name of the
service assembly DLL without the .DLL extension. The
remoting configuration file should be installed in the same
folder as your service assembly DLL file.

• Be sure your clients are initializing the remoting
infrastructure correctly. The samples included demonstrate
the use of the RemotingConfiguration object’s Configure
function to read the configuration file to initialize the
remoting infrastructure. There are additional methods you can
use to initialize the remoting infrastructure.

• Be sure your client is configured correctly to access the
remote service. Channel type, port number, and object names
must be correct.

• If you are using port numbers, be sure another service is not
using the same port number. If the same port number is used
a conflict may occur. To resolve this conflict, you must first
stop the service that is causing the conflict and then restart
your service .

Unable to Access an Object Through DCOM
This can result from a variety of DCOM configuration errors. The key
steps to remember are as follows:

• Use Dcomcnfg to ensure that your service allows both launch
and access to the client account.

• Use Dcomcnfg to give the client computer an impersonation
level of “Impersonate”.

• Be sure the client account can be authenticated by the server
(i.e., both are on the same domain).

• Be sure the service is running as a service with a compiled VB
component.

Page 111

• Be sure the VBR file is registered on the client system using
the clireg32 application.

• Be sure that the correct VBR file is installed on the client
system. You must generate a new VBR file each time you
recompile your Service EXE.

While Running
The Service Stops Working
It is critical that your service component not raise unhandled runtime
errors. These errors will be caught by the framework and will cause
the service to stop. Use the tracing and logging capability to detect
when this has occurred. Setting a background “beep” on the primary
service timer provides a handy way to know that a service is running
while debugging.

The Service Cannot Access Network Resources
When Running As a Service
The LocalSystem account, under which most services run, does not
have network credentials, so is not able to access network resources.

This leaves you with two choices as to how to proceed if you must use
network resources:

1. Run your service in a user account. You can configure your service
to run as a particular user. In this case, be sure you modify the user
account so it has permission to run as a service.

2. In Windows 2000/XP, you can use the LogonUser API to log your
service onto a specified user account and impersonate that user
(with delegation level impersonation) to use their network
credentials.

Page 112

Licensing Issues
There are no royalty fees to distribute services you create with your
toolkit or files listed in the license agreement as redistributable.

The Desaware NT Service Toolkit is licensed to you on a per-
computer basis. You must install the framework using the installation
program and a unique license key on each computer on which you
wish to do the following:

• Any software development using the toolkit.
• Creation of the service framework executable using the

configuration utility.
• Running the service using the simulator.
Upon installation, the license key is associated with the name of the
computer on which the software is installed.

If you wish to transfer the license from one computer to another, you
must uninstall the software from the first computer before installing it
on the second. You may also need to rebuild your service framework
executable using the Service Configuration Wizard before you will be
able to debug the service on the new machine. Changing your
computer name may require reinstallation of the software and
rebuilding your service framework executable as well.

Please contact Desaware for information on purchasing site licenses
for five or more computers.

Page 113

Testing and Debugging
Surprisingly, it is in many ways actually easier to debug services
written using the Desaware NT Service Toolkit than it is to debug
traditional services written using Visual C++! This is because the
simulator mode allows you to test and debug most aspects of your
service without actually installing it as a service.

Tracing and Logging
The Desaware NT Service Toolkit framework is designed to help
speed debugging and diagnose problems both during development and
after deployment.

You can initiate logging by setting the TraceLevel switch in your
service’s configuration file to a number between 1 and 4. The service
configuration file is an XML file with the same name as the service
plus the extension .config. Thus, if your service name is Beeper.exe,
the configuration file name will be Beeper.exe.config. The
configuration file should be in the same directory as the service.

The following is a typical configuration file that sets the TraceLevel
switch to 1 (severe errors).
<configuration>
 <system.diagnostics>
 <switches>
 <add name="TraceLevel" value="1" />
 </switches>
 </system.diagnostics>
</configuration>

The TraceLevel setting determines what information is written to the
log file. When the TraceLevel entry is zero, or not present, TraceLevel
is set to zero, no log file is created. A TraceLevel of 1 only records
severe (fatal) errors. Higher trace levels report additional information
that includes additional details on errors, warnings and general
information indicating normal operation.

You can send tracing output to a log file or any other destination by
setting an entry in the Listeners field. For example:

<configuration>
 <system.diagnostics>
 <switches>

Page 114

 <add name="TraceLevel" value="4" />
 </switches>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <add name="myTracingNET_VBListener"

type="System.Diagnostics.TextWriterTraceListener,Sys
tem,Version=1.0.3300.0,Culture=neutral,PublicKeyToke
n=b77a5c561934e089"
 initializeData="c:\errors.log" />
 <remove name="Default"/>
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Sends trace information to the file c:\errors.log. Note: You should
specify a path for the output log file. Otherwise, the file will be written
to the default trace listener path (which will probably not be the same
path where your service exe resides) which may vary.

When logging is enabled, the framework reports detailed information
on errors that occur. Logging works both when the service is running
and during installation and uninstallation. The framework will also
trap and report any unhandled runtime errors that occur in your service
component.

You may use the Trace method of the IdwServiceCtl interface to write
information to the log file from your service component.

For more information on tracing in .NET, refer to Dan Appleman’s
eBook “Tracing and Logging with .NET”. For details visit
http://www.desaware.com/tracing.htm.

Testing and Debugging – Simulator Mode
The majority of your initial debugging can be done using the Visual
Studio environment in the service framework’s simulation mode. To
perform this type of debugging, do the following:

• Build your service executable using the Service
Configuration Wizard.

• Register your service executable with the command line
parameter “–RegServer” (or drag and drop your service
executable file on the “Register for Simulator” command
button in the service launcher utility).

Page 115

• Open your service object project in Visual Studio.
• Set the debug project settings to launch your service

executable, with the extension –Sim.
• Run your project in Visual Studio.
The simulator window will appear that allows you to pause, continue,
stop and shutdown your service. You can set breakpoints in your
component and verify the operation of the component using the Visual
Studio .NET environment.

Note: Be sure your debug Exceptions options are set to “Break into
debugger”. If you have it set to “continues”, the service framework
will receive the error and interpret it as a failure in your component
and terminate the service.

Testing and Debugging – While Running as a
Service

While the simulator does a fairly good job of mimicking the behavior
of a service, it does not do a complete job because in simulator mode,
the service executable runs as a standalone application in the security
context of the user currently logged on. You must verify operation of
your service while running as a service

To debug a running service, do the following:

• Register your service executable with the command line
parameter –i (or drag and drop your service executable file on
the “Install Service” command button in the service launcher
utility).

• Run your service executable using the system administrative
tools. Please refer to the following ‘Note’ for instructions as
to how to proceed should you receive a “Permission Denied”
error.

• Select the Debug-Processes dialog and attach the Visual
Studio debugger to the running service. You may need to
check the “Show System Processes” checkbox to view the
service.

You can use the Service administrative tools to start, stop, pause and
continue your service. You can set breakpoints in your service
component and verify the operation of the component using the Visual
Studio environment.

Page 116

It is essential that you test your service
thoroughly as a fully compiled service
running as a service.
When running under the simulator, your service is running in the
current interactive user account. It is critical that you test your service
as a service, while running under the account that will be used by the
service itself.

Tip: Use the MessageBeep API in the OnTimer event in the service,
with a timeout to give you an audible indication that your service is
running.

Testing COM and DCOM
Our experience suggests that the best strategy for testing services that
expose objects through COM and DCOM is to first test them using the
simulator and Visual Basic with the client running on the same system
as the service. Please note that you will still need to set security using
Dcomcnfg and set the impersonation level to “Impersonate” for this to
work.

When you are ready to test remote access, you should go directly to
running as a service using a compiled component. Each of the possible
combinations (simulator vs. service, component in VB vs. compiled)
has its own set of security issues, and solving the problems in one will
not necessary resolve those for others. You will not be able to access
objects remotely when running your VB component in the VB IDE.

Page 117

The dwSCM Component: Service Control
Manager

The Service Control Manager (SCM) is a series of Windows API
functions that allow you to control, get information about, and
configure services. The dwSCM component gives you this
functionality in .NET. There are two versions of this library. The
original version (dwSCM.dll) is a COM component written and
compiled in Visual Basic 6 that provides a full set of features. The
second (dwSCMNet.dll) is a version built using only the .NET
framework and .NET class objects, but it has fewer features.

These are the changes in the .NET framework version of the library:

dwServiceManager Object

LockServiceDatabase, UnlockLockServiceDatabase, QueryLock-
Status, GetServiceNameFromDisplayName, GetDisplayNameFrom-
ServiceName and CreateService are not implemented. Initialize-
SCManager now always returns zero (as there are no handles in the
.NET framework service functions) and the database parameter is not
used.

dwServiceObject Object

ServiceHandle, ChangeServiceConfig, and DeleteService are not
implemented. There is a new read only property called Service of
type ServiceProcess.ServiceController, for retrieving the
ServiceController object.

dwServiceStatus Object

Win32ExitCode, ServiceSpecificExitCode, CheckPoint and WaitHint
are not implemented.

dwServiceConfig Object

Only ServiceType, ServiceName, DisplayName and Dependencies are
implemented, and they are read-only.

Page 118

dwSCM Architecture
The dwServiceManager is the base object. It represents the Service
Control Manager itself. It allows you to access services, both running
and inactive. You can get information about a service with as little as
one of the service’s strings. This object also allows you to register
service executable files.

The dwServiceObject object represents a single service. This controls
all the command and configuration settings for a single service. It can
also delete a particular service from the list of services.

The dwServiceConfig object contains the configuration settings for a
service, such as the dependencies or the account used by the service.
This is used with the configuration functions in dwServiceObject.

The dwServiceStatus object contains the description of a service and
its current status. It is returned by the QueryServiceStatus method of
dwServiceObject.

When errors take place, dwSCM will raise an error using Windows
API error values with descriptions for common errors. When first
using the component, you will become very familiar with error
number 5, which means you do not have the proper permission to
perform a certain task. Opening a service without a needed flag
usually causes this error.

Page 119

dwServiceManager Methods
COM

InitializeSCManager
(ByVal Machine As String, ByVal Database As
String, ByVal Access As ServiceControlRights)
As Long
.NET

InitializeSCManager
(ByVal Machine As String, ByVal Database As
String, ByVal Access As ServiceControlRights)
As Integer
Use this method to initialize the Service Control Manager, which
allows you to use the other methods of this object. The Machine
parameter allows you to access other machines on the network. Leave
this blank to specify the local machine. When specifying a foreign
machine, be sure to prefix the machine name with “\\”. The Database
parameter specifies which service database you would like to manage.
Normally this would be blank. The Access parameter describes what
types of functions you will be using. You would almost always use
the SC_MANAGER_ALL_ACCESS flag, which permits use of all the
functions.

See MSDN documentation for the OpenSCManager API function for
information on the other, more limited flags. This function returns the
handle to the manager. This can be used if you need to call your own
API functions with such a handle. This return value is not needed for
any functions in the dwSCM library. No value is returned in the
.NET version.
Dim sc as New dwServiceManager
Call sc.InitializeSCManager ("","",
ServiceControlRights.SC_MANAGER_ALL_ACCESS)

COM

EnumServicesStatus
(Optional ByVal ServiceType As Long =
SERVICE_WIN32, Optional ByVal ServiceState As

Page 120

EnumServiceStates = SERVICE_STATE_ALL) As
Collection
.NET

EnumServicesStatus
(Optional ByVal ServiceType As Integer =
SERVICE_WIN32, Optional ByVal ServiceState As
EnumServiceStates = SERVICE_STATE_ALL) As
Collection
This method returns a collection of dwServiceStatus objects, each one
containing information on the current status of a service. ServiceType
in an optional parameter that describes which kinds of services are
enumerated – either driver service (SERVICE_DRIVER), normal
services (SERVICE_WIN32) or both (SERVICE_DRIVER And
SERVICE_WIN32). ServiceState is an optional parameter of type
EnumServiceStates that specifies if running, non-active, or all services
should be enumerated.

VB6

Dim svcstat As dwServiceStatus
Dim ServiceCollection as Collection

' This will add a dwServiceStatus object to the
' ServiceCollection for each service. Use the
' default parameters to get a list of non-driver
' services, both running and not.
Set ServiceCollection = sc.EnumServicesStatus()
' Now the names and descriptions are printed.
For Each svcstat In ServiceCollection
 Debug.Print svcstat.Name
 Debug.Print svcstat.DisplayName
Next

VB.NET

Dim svcstat As dwServiceStatus
Dim ServiceCollection as Collection

ServiceCollection = sc.EnumServicesStatus()
' Now the names and descriptions are printed.
For Each svcstat In ServiceCollection
 Debug.WriteLine svcstat.Name
 Debug.WriteLine svcstat.DisplayName

Page 121

Next

OpenService
(ServiceName As String, DisplayName As String,
ByVal Rights As ServiceAccessRights) As
dwServiceObject
The OpenService method opens the specified service, allowing you to
control it and to access its configuration. ServiceName is a string
which contains the service name. DisplayName is a string which
contains the user-friendly display name. These strings can be obtained
by using the EnumServicesStatus method. Rights (parameter) is a
combination of the values in the ServiceAccessRights enumeration.
This describes what actions you plan to take with the service. This
method returns a dwServiceObject object. In the .NET edition, an
exception is raised if the specified Service is not found or could not be
opened.

VB6

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject
' Open the service to change its configuration.
Set servobj = sc.OpenService (servname,_dispname,
SERVICE_CHANGE_CONFIG)

VB.NET

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

servobj = sc.OpenService (servname,_dispname,
ServiceAccessRights.SERVICE_CHANGE_CONFIG)

Page 122

GetDisplayNameFromServiceName
(ByVal ServiceName As String) As String

GetServiceNameFromDisplayName
(ByVal DisplayName As String) As String
Each service has two names: a service name that is its key in the
Registry, and a user-friendly display name that is displayed in the
service control panel applet. You can use these functions to learn one
name by using the other. COM edition only.

CreateService
(ByVal ServiceName As String, ByVal
DisplayName As String, ByVal DesiredAccess As
ServiceAccessRights, ServiceConfig As
dwServiceConfig) As dwServiceObject
If you have a service executable on your machine, you can add it to
the list of services by using this method. This also allows you to set
all of the configuration information. It will then open the service and
return a dwServiceObject.

• ServiceName is the name the service identification. It must
be less than 256 characters and not contain slash or backslash
characters.

• DisplayName is the user-friendly description of the service’s
purpose. It should also be less than 256 characters.

• Parameter DesiredAccess is a combination of the flags in the
ServiceAccessRights enumeration. It represents what actions
you need to perform on the service.

• ServiceConfig is an dwServiceConfig object that represents
the initial configuration of the service. COM edition only.

You should not use this method for registering a service created using
the Desaware NT Service Toolkit. Such services already have a built
in ability to register themselves, and take their configuration from
internal settings.

Page 123

LockServiceDatabase () As Boolean
It is possible for services to start while you are trying to change the
configuration. This will not be a problem if you are only performing
one action, but if you are performing multiple actions and the service
starts during your operation, it could cause problems. To prevent this,
you can use the LockServiceDatabase method, which prevents
services from starting. TRUE is returned if the SCM was successfully
locked. COM edition only.

UnlockLockServiceDatabase () As Boolean
If you have used LockServiceDatabase method, be sure to call this
immediately after you have completed modifying a service. COM
edition only.

QueryLockStatus
(LockOwner As String, Duration As Long) As
Boolean
If you cannot start a service, this can assist you in determining if it is
because another program has locked the Service Control Manager. It
will fill the LockOwner and Duration parameters with the
corresponding information regarding who created a lock. FALSE is
returned if the SCM is not currently locked. COM edition only.
Dim retval as Boolean
Dim LockOwner as String
Dim Duration as Long

retval = sc.QueryLockStatus (LockOwner, Duration)
If (retval = True) Then
 Debug.Print "Locked by: "; LockOwner
 Debug.Print "For "; Duration; "seconds"
End If

dwServiceObject Methods and Properties
StartService
(Optional ByVal Arguments As String = "")
This will send a request to the service (represented by this
dwServiceObject) to start. If the service uses any command line
parameters, you can pass them in the optional Arguments string
parameter. Place spaces between each parameter.

Page 124

This function will end before the service has actually started – use
QueryServiceStatus to determine when the service has responded. An
error is raised if the service cannot start.

VB6

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

Set servobj = sc.OpenService (servname, dispname,
SERVICE_START)

On Error GoTo FailStart
servobj.StartService

VB.NET

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

servobj = sc.OpenService (servname,_dispname,
ServiceAccessRights.SERVICE_START)

Try
 servobj.StartService()

ControlService
(Operation As ServiceControlConstants)
To perform other actions, such as stopping, pausing or unpausing the
service, this method is used. The Operation parameter is a member of
the ServiceControlConstant enumeration.

This function will end before the service has actually performed the
action requested – use QueryServiceStatus to tell when the service has
responded. You can also send numbers with values up to 255 to notify
the service to perform a custom function (as long as the service is not
stopped or paused).

VB6

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

Set servobj = sc.OpenService (servname, dispname,
SERVICE_STOP)
servobj.ControlService SERVICE_CONTROL_STOP

Page 125

VB.NET

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

servobj = sc.OpenService (servname, dispname,
SERVICE_STOP)
servobj.ControlService SERVICE_CONTROL_STOP

QueryServiceStatus() As dwServiceStatus
This returns a dwServiceStatus object which describes the current
running status of this service.

VB6

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject
Dim ss As dwServiceStatus

Set servobj = sc.OpenService (servname, dispname,
SERVICE_QUERY_STATUS)

Set ss = OpenService.QueryServiceStatus()
Debug.print ss.DisplayName

VB.NET

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject
Dim ss As dwServiceStatus

servobj = sc.OpenService (servname, dispname,
SERVICE_QUERY_STATUS)
ss = OpenService.QueryServiceStatus()
Debug.WriteLine (ss.DisplayName)

QueryServiceConfig() As dwServiceConfig
This returns a dwServiceConfig object that describes the service
configuration. Note that this does not reveal the password of the
account that the service is using.

VB6

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject

Page 126

Dim scfg As dwServiceConfig

Set servobj = sc.OpenService (servname, dispname,
SERVICE_QUERY_CONFIG)
Set scfg = servobj.QueryServiceConfig()
Debug.Print sc.AccountName

VB.NET

Dim sc As New dwServiceManager
Dim servobj as dwServiceObject
Dim scfg As dwServiceConfig

servobj = sc.OpenService (servname, dispname,
SERVICE_QUERY_CONFIG)
scfg = servobj.QueryServiceConfig()
Debug.WriteLine sc.AccountName

ChangeServiceConfig
(ServiceConfig As dwServiceConfig)
ChangeServiceConfig sets the service configuration according to the
ServiceConfig (is an instance of dwServiceConfig) parameter. If the
service is currently running, several of the configuration settings will
not take effect until the service has stopped. COM edition only.
Dim OpenService As dwServiceObject
Dim sc As New dwServiceConfig

' The only thing being changed is the display name.
sc.StartType = SERVICE_NO_CHANGE
sc.ServiceType = SERVICE_NO_CHANGE
sc.ErrorControl = SERVICE_NO_CHANGE
sc.StartType = SERVICE_NO_CHANGE
sc.DisplayName = "New Display Text"
Set OpenService = OpenSelectedService _
 (SERVICE_CHANGE_CONFIG)
OpenService.ChangeServiceConfig(sc)

Page 127

COM

EnumDependentServices
(ByVal ServiceState As Long) As Collection
.NET

EnumDependentServices
(ByVal ServiceState As Integer) As Collection
If you need to stop a service, you should also stop all services that
depend upon it – otherwise the dependent services might fail or even
cause exceptions. EnumDependentServices returns a collection of
dwServiceStatus objects representing all the services that require the
original service to start first before they themselves can run.

The collection is in reverse order of the start order, with group order
taken into account, so you can stop the services in the correct order.
The ServiceState parameter lets you limit the list to only those services
currently running or paused (SERVICE_ACTIVE), those services
currently stopped (SERVICE_INACTIVE), or all dependent services
(SERVICE_STATE_ALL).

DeleteService()
This method will delete the service from the list of services. This
method might end before the actual deletion takes place. If the service
is currently running or has any open handles (such as any
dwServiceObjects that reference it) then the Service Control Manager
will wait until the service has stopped and there are no more handles
open. It is possible that this will not take place until the computer is
shutdown and restarted. This does not effect the service files. COM
edition only.

ServiceName as String
This is a read only property containing the service name string.

ServiceHandle as Long
This is a read only property that contains the service handle. It can be
useful in certain API function calls. COM edition only.

Page 128

Service As ServiceProcess.ServiceController
This is a read only property that returns the .NET framework service
object that represents the dwServiceObject service. .NET edition
only.

dwServiceStatus Properties
DisplayName as String
Read only property containing descriptive string meant for display.

ServiceName as String
Read only property containing the service name string.

CurrentState as ServiceStateConstants
Read only property describing the current running state of the service.
It is a value of the ServiceStateConstants enumeration.

ControlsAccepted as ControlsAcceptedFlags
Read only property describing to which commands the service will
respond. See the ControlsAcceptedFlags enumeration below for more
details.

Win32ExitCode as Long
This read only property will contain an error value if there is a
problem during service starting or stopping. COM edition only.

ServiceSpecificExitCode as Long
This read only property contains a server-specific error value if there
is a problem during service starting or stopping, and the
Win32ExitCode property is set to ERROR_SERVICE_SPE-
CIFIC_ERROR. COM edition only.

CheckPoint as Long
Read only property containing a value that the service increments
periodically to report its progress during a lengthy start, stop, pause, or
continue operation. This will be zero when the service does not have
an operation pending. COM edition only.

Page 129

WaitHint as Long
An estimate of the amount of time, in milliseconds, that the service
expects a pending start, stop, pause, or continue operation to take
before the service either changes the CheckPoint or the CurrentState
properties. If the amount of time specified by WaitHint passes, and
neither CheckPoint nor CurrentState has changed, you can assume that
an error has occurred and the service should be stopped. COM edition
only.

dwServiceConfig Properties
ServiceType as ServiceTypes
ServiceType is a value of the ServiceTypes enumeration. It describes
the nature of the service executable, such as if it is a driver, or if it runs
in its own process or not. If you are creating a dwServiceConfig
instance for use with ChangeServiceConfig and you do not want to
change this value, set it equal to SERVICE_NO_CHANGE.

StartType as ServiceStartTypes
StartType is a value of the ServiceStartTypes enumeration. It
describes when the service starts, such as at system boot or at user
command. If you are creating a dwServiceConfig instance for use
with ChangeServiceConfig and you do not want to change this value,
set it equal to SERVICE_NO_CHANGE. COM edition only.

ErrorControl as ServiceErrorControlType
ErrorControl is a value of the ServiceErrorControlType enumeration.
If the service fails to start, this will determine how seriously the
system consider the situation, and how the system will respond. If you
are creating a dwServiceConfig instance for use with Change-
ServiceConfig and you do not want to change this value, set it equal to
SERVICE_NO_CHANGE. COM edition only.

BinaryPathName as String
BinaryPathName is string containing the location of the service
executable. If you are creating a dwServiceConfig instance for use
with ChangeServiceConfig and you do not want to change this value,
do not modify this property. COM edition only.

Page 130

LoadOrderGroup as String
LoadOrderGroup is a string containing the name of the group to which
this service belongs. Services in a group are loaded together. This can
be blank. If you are creating a dwServiceConfig instance for use with
ChangeServiceConfig and you do not want to change this value, do
not modify this property. COM edition only.

TagId As Long
TagID is a long integer which identifies this service within a group (if
the service belongs to one). COM edition only.

Dependencies as String
Dependencies is a list of all names of services that this service depends
upon to run. Each name is separated by a semicolon.

If you are creating a dwServiceConfig instance for use with
ChangeServiceConfig and you do not want to change this value, do
not modify this property.

AccountName as String
AccountName is the name of the system account under which the
service is logged.

If you are creating a dwServiceConfig instance for use with Change-
ServiceConfig and you do not want to change this value, do not
modify this property. COM edition only

Password as String
Password is the password for the account specified under the
AccountName property. Note that this property is never set by any of
the dwSCM functions. If you are creating a dwServiceConfig instance
for use with ChangeServiceConfig and you do not want to change this
value, do not modify this property. COM edition only

DisplayName as String
DisplayName is a user-friendly description of the service’s purpose. If
you are creating a dwServiceConfig instance for use with Change-
ServiceConfig and you do not want to change this value, do not
modify this property at all.

Page 131

Description as String
Description is a string that describes the purpose of the service in more
detail. It is only valid when the library is being used on Windows
2000 or XP machines. If you are creating a dwServiceConfig instance
for use with ChangeServiceConfig and you do not want to change this
value, do not modify this property at all.

Enumerations and Constants
ServiceTypes Enumeration
Using the OR command, combine together as many of the following
as necessary to describe your service type.

SERVICE_KERNEL_DRIVER File system driver
service.

SERVICE_FILE_SYSTEM_DRIVER Driver service.

SERVICE_WIN32_OWN_PROCESS Service that runs in its
own process.

SERVICE_WIN32_SHARE_PROCESS Service that shares a
process with other
services.

ServiceStartTypes Enumeration
Use the one constant that describes when the service should start.

SERVICE_BOOT_START A device driver started by the
system loader. Valid only for driver
services.

SERVICE_SYSTEM_START . A device driver started by the
IoInitSystem function. Valid only
for driver services.

SERVICE_AUTO_START Service started automatically
during system startup.

SERVICE_DEMAND_START Service starts when a process calls
the StartService function (such as
from the Control Panel).

Page 132

SERVICE_DISABLED Service that cannot be started.
Attempts to start the service result
in the error code 1058
(ERROR_SERVICE_DISABLED).

ServiceErrorControlTypes Enumeration
Use the one constant that describes how the system should behave
when the service encounters an error during system boot.

SERVICE_ERROR_IGNORE The error is logged but the
startup operation continues.

SERVICE_ERROR_NORMAL The error is logged and a
message box is displayed but
the startup operation
continues.

SERVICE_ERROR_SEVERE The error is logged. If the
last working configuration is
being started, the startup
operation continues. Other-
wise, the system is restarted
with the last known working
configuration.

SERVICE_ERROR_CRITICAL The error is logged, if
possible. If the last working
configuration is being
started, the startup operation
fails. Otherwise, the system
is restarted with the last
known working configu-
ration.

ServiceControlRights Enumeration
Using the OR command, combine together as many of the following
as necessary to describe the access you need when you open the
Service Control Manager. Note that SC_MANAGER_ALL_ACCESS
is a combination of all of the other values, and will give you access to
all the methods of the dwServiceManager class.

Page 133

SC_MANAGER_CONNECT Required to access the
service control manager.
It is automatically added
by the dwSCM library.

SC_MANAGER_CREATE_SERVICE Enables the CreateService
function.

SC_MANAGER_ENUMERATE_SERVICE Enables calling of the
EnumServicesStatus
function.

SC_MANAGER_LOCK Enables the LockService-
Database and UnlockSer-
viceDatabase functions.

SC_MANAGER_QUERY_LOCK_STATUS Enables the Query-
Service LockStatus
function.

SC_MANAGER_ALL_ACCESS Combination of all the
above.

ServiceAccessRights Enumeration
Using the OR command, combine together as many of the following
as necessary to describe the access you need when you open a service.
Note that SERVICE_ALL_ACCESS is a combination of all of the
other values, and will give you access to all the methods of the
dwServiceObject class.

SERVICE_QUERY_CONFIG Enables QueryServiceConfig.

SERVICE_CHANGE_CONFIG Enables ChangeServiceConfig.

SERVICE_QUERY_STATUS Enables QueryServiceStatus.

SERVICE_ENUMERATE_DEPENDENTS Enables the EnumDependent-
Services function.

SERVICE_START Enables StartService.

SERVICE_STOP Enables calling the Control-
Service function to stop the
service.

Page 134

SERVICE_PAUSE_CONTINUE Enables the ControlService
function to pause or continue
the service.

SERVICE_INTERROGATE Enables the ControlService
function to ask the service to
report its status immediately.

SERVICE_USER_DEFINED_CONTROL Enables calling of the Con-
trolService function to spe-
cify a user defined control
code.

SERVICE_ALL_ACCESS Combination of all of the
above.

ServiceControlConstants Enumeration
Use the appropriate value to indicate which action you wish the
service to take.

SERVICE_CONTROL_STOP Ask the service to stop.

SERVICE_CONTROL_PAUSE Ask the service to remain
active, but not perform
any actions.

SERVICE_CONTROL_CONTINUE Ask a service which is
paused to return to
normal running state.

SERVICE_CONTROL_INTERROGATE Ask the service to report
its current status informa-
tion to the service control
manager.

SERVICE_CONTROL_SHUTDOWN Inform the service that
the system is about to
shut down.

SERVICE_CONTROL_PARAMCHANGE Inform the service that its
startup parameters have
changed.

Page 135

Values between 128 and 256 may also be passed if the service defines
the action associated with that control value. The service must have
been opened with SERVICE_USER_DEFINED_CONTROL access.

ServiceStateConstants Enumerations
You will receive one of these values to indicate the current state of the
service.

SERVICE_STOPPED 1

SERVICE_START_PENDING 2

SERVICE_STOP_PENDING 3

SERVICE_RUNNING 4

SERVICE_CONTINUE_PENDING 5

SERVICE_PAUSE_PENDING 6

SERVICE_PAUSED 7

EnumServiceStates Enumeration
Use the appropriate value to indicate which services you want
enumerated when calling the EnumDependentServices method of the
dwServiceObject class.

SERVICE_ACTIVE – List services that are running or paused.

SERVICE_INACTIVE – List services that are not active.

SERVICE_STATE_ALL – List all services.

ControlsAcceptedFlags Enumeration
You will receive a value comprised of the following enumeration
values that represent the type of commands the service can receive.
To find out which flags have been set, AND one of the constants
below with the ControlsAccepted property of the dwServiceStatus
class. For example:
Dim ss As dwServiceStatus
If (ss.ControlsAccepted And SERVICE_ACCEPT_STOP)
Then
 Debug.Print "Service accepts stop requests"

Page 136

SERVICE_ACCEPT_STOP If this value is set, the service will

respond to stop requests.

SERVICE_ACCEPT_PAUSE_
CONTINUE

If this value is set, the service will
respond to pause and continue
requests.

SERVICE_ACCEPT_SHUTD
OWN

 f this value is set, the service will be
notified of when the system is shutting
down.

SERVICE_ACCEPT_PARAM-
CHANGE

 If this value is set, the service can
accept new startup parameters while it
is running. This is only valid in
Windows 2000/XP.

Page 137

Creating Control Panel Applets
It is not uncommon to use control panel applets to control or configure
services. The NT Service Toolkit includes a framework for authoring
control panel applets that is similar to the one used to create NT
services.

Building a Control Panel Applet
Building a control panel applet using this toolkit requires you take the
following simple steps:

1. Build the control panel framework CPL file using the control panel
applet wizard.

2. Create a new .NET class library project (or modify the template
file provided). Perform the modifications listed later in this section.

3. Test the control panel applet by copying your class library into the
primary system folder (System32). Place your CPL file in the
System32 folder.

NOTE: If you are distributing your control panel applet, be sure
that you also distribute the Desaware.ServiceToolkit.Interfaces.dll
file. This file needs to be installed into the GAC – a merge module
is included for this purpose.

NOTE: In Windows 2000 and later, you can install your Control
Panel Applet into a folder other than the System folder. If you do
so, you must add a string value to the following HKEY_
LOCAL_MACHINE registry key - Software\Microsoft\Windows\
CurrentVersion\Control Panel\Cpls in order for the system Control
Panel to be able to include your control panel applet in its list. The
name of the string value can be a description for your control panel
applet, the string value must contain the full path and name of your
control panel applet file.

Using the Control Panel Applet Wizard Program
The Desaware Control Panel Applet Wizard program creates a custom
control panel applet specifically for your Visual Studio project. This
Wizard can also be used to review and edit the information in your
compiled Control Panel Applet. This Wizard guides you through a
series of steps requesting information regarding your Visual Basic
control panel applet. The following describes each step.

Page 138

Control Panel Applet Name
This is the first step in the Wizard. Enter the name of the control panel
applet file. It can be any name you choose. If you select an existing
control panel applet file, this Wizard will extract the control panel
applet information from that file and initialize the remaining steps of
the Wizard with that information. This Wizard can only input control
panel applet files created by this Wizard. You can use the Browse
button to navigate your file system to specify a file name for your
control panel applet. This Wizard will only generate files with the CPL
extension.

Tip: You can create a control panel applet file that contains some
default information (such as Version Information) for your company
or product to serve as a template file. Each time you need to create a
new control panel applet, select the template file to initialize this
Wizard with the version information, etc., then change the applet file
name to the name you want to give for the particular control panel
applet.

Figure 10
Control Panel Applet Wizard

Page 139

Assembly Name
Enter the assembly name of the .NET DLL that contains the applet
object with which your control panel applet will communicate. If you
decide later that you will want to change the assembly name, you will
have to run this configuration program again.

It is important that you should choose an assembly name that is unique
– duplication of assembly names used by this framework might cause
control panel applets to fail to work properly. We recommend
including your company name or initials in the name. For example:
most Desaware components include the prefix “dw”. The assembly
name length can be up to 32 characters.

Version Information
Enter the version resource information for your service executable file.
The control panel applet Wizard writes a standard version resource
into your control panel applet. You must enter information in the
“Company Name” and “File Version” fields. The “File Version” field
must contain a valid version number in “#.#.#.#” format, for example
“1.0.0.1”. If you select an existing control panel applet file to compile,
its file version will automatically be incremented by 1 revision where
revision is the fourth version number field in the version format.

Description
Enter your control panel applet’s name and description. The control
panel applet name is the string that is displayed in the Control Panel
directly below your control panel applet’s icon. The control panel
applet description is the string that is displayed next to your control
panel applet’s name when the Detail View is selected in the Control
Panel. Your control panel applet must have a name and a description
otherwise it will fail. If you do not specify a control panel applet name
and description in this Wizard, then you must specify the name and
description in your Applet class. For more information, refer to the
Applet template class file.

Page 140

Figure 11

Control Panel Applet Wizard – Description Dialog Box

Icon File
Enter your control panel applet’s icon file name. The selected icon file
is compiled into your control panel applet and used for display in the
Control Panel. If you are compiling an existing control panel applet
file, you may choose to select the existing icon from the current
control panel applet file instead of selecting an icon file. Your control
panel applet must have an icon otherwise it will fail. If you do not
specify a control panel applet icon name in this Wizard, then you must
specify the icon in your Applet class. For more information, refer to
the Applet template class file.

Compile Applet
The Control Panel Applet Configuration Wizard is now ready to
compile your control panel applet file. Select the Next button to start
compilation, or the Back button to make any changes.

Page 141

Compile Completed
The Control Panel Applet Wizard has finished compiling your service
executable. This step displays whether or not the compilation was
successful. After a successful compilation, you should install your
control panel applet in the appropriate directory before running it.

If you are running systems prior to Windows 2000/XP, you should
install the control panel applet file into the System directory. If you are
running Windows 2000/XP, you should install the control panel applet
file into your application directory and insert the appropriate entry into
the Windows registry (refer to the earlier section Building a Control
Panel Applet for registry requirements).

System Compatibility
The Control Panel Applet Wizard requires Windows 2000/XP to run.

Create an Assembly DLL for Your Control Panel
Applet

Create an assembly DLL and create a class named Applet that
implements the IControlPanelApplet interface as shown here:

VB:
Imports Desaware.ServiceToolkit
Public Class Applet
 Implements IcontrolPanelApplet

C#:
using Desaware.ServiceToolkit;
public class Applet: IControlPanelApplet

The cpapplet.tlb type library contains the definition for this interface,
and was registered when you installed the software package. The
methods of this interface are called by the applet framework during the
course of the applet operation.

Page 142

CplDblClk
(ByVal AppNumber As Integer, ByVal UserData
As Integer)
This method is called when the user double clicks on the applet icon or
name in the control panel window. You should display the main form
of your applet at this time as follows:

VB:
Public Sub CplDblClk(ByVal AppNumber As Integer, _
ByVal UserData As Integer) Implements _
IControlPanelApplet.CplDblClk

 Dim frm As New frmApplet()
 frm.ShowDialog()

C#:
void IControlPanelApplet.CplDblClk(int AppNumber,
int UserData)

 frmApplet frm = new frmApplet();
 frm.ShowDialog();

If your applet DLL supports more than one applet, the AppNumber
parameter will indicate which applet was invoked (from zero through
the number of applets - 1). The UserData parameter will contain the
same value specified in the CplInquire or CplNewInquire methods.

CplExit()
This method is called before the applet DLL is unloaded. You should
perform any final cleanup operations here.

VB:
Public Sub CplExit() Implements _
IControlPanelApplet.CplExit

C#
void IControlPanelApplet.CplExit()

Page 143

CplGetCount() As Integer
Return the number of applets in your applet file as the return value for
this method. A single applet DLL can support multiple applets, but
this is very uncommon. You will typically just include the following
line in this method:

VB:
Public Function CplGetCount() As Integer Implements
IControlPanelApplet.CplGetCount
 Return (1)

C#:
int IControlPanelApplet.CplGetCount()
 return (1);

The AppNumber parameter for the other IdwControlPanelApplet
methods will range from zero to one less than this number.

CplInit() As Integer
This method is called when your applet is loaded. You should return
the value 1 as a result if your initialization succeeds. If you do not
return one, or return zero, the applet will fail to load.

VB:
Public Function CplInit() As Integer Implements _
IControlPanelApplet.CplInit
 Return (1)

C#:
int IControlPanelApplet.CplInit()
 return (1);

Page 144

CplInquire
(ByVal AppNumber As Integer, ByRef idIcon As
Integer, ByRef idName As Integer, ByRef idInfo
As Integer, ByRef UserData As Integer)
This method is called when Windows wants to retrieve the resource
identifiers of the icon, name and description of the applet. If there is
more than one applet in your DLL, AppNumber specifies the applet
number. You can set the UserData parameter to any value you choose
– the value will be passed as a parameter to the CplDblClick method.

If the AppNumber value is 0, the idIcon, idName and idInfo
parameters will be initialized to 1, 96 and 97, which are the values that
are used by the Control Panel Applet Wizard. The only time you
should change these values is if you wish for the system to not cache
the icon and string information or if you are implementing more than
one applet in an applet DLL. Caching is the preferred mechanism for
control panel applets because it allows the system to display applet
information without loading the applet. However, in cases where the
name or icon of the applet needs to change each time it is displayed,
caching must be disabled. In this case, set the parameters that you do
not wish cached to the value of –1.

Important Note: The control panel applet framework and wizard only
provide built in resources for one applet. The idIcon, idName and
idInfo must be left at the default value (-1) for all applets other than
the first one.

VB:
Public Sub CplInquire(ByVal AppNumber As Integer, _
ByRef idIcon As Integer, ByRef idName As Integer, _
 ByRef idInfo As Integer, ByRef UserData As _
 Integer) Implements IControlPanelApplet.CplInquire

C#:
void IControlPanelApplet.CplInquire(int AppNumber,
ref int idIcon, ref int idName, ref int idInfo, ref
int UserData)

Page 145

CplNewInquire
(ByVal AppNumber As Integer, ByRef hIcon As
Integer, ByRef szName As String, ByRef szInfo
As String, ByRef UserData As Integer)
This method is called when Windows wants to retrieve the icon and
name information for the applet. If there is more than one Applet in
your DLL, AppNumber specifies the applet number (zero for the first
applet). hIcon is the handle of the icon to use (you would typically
store an icon in a picture box on a form and use the handle returned
from the picture property if you wish to dynamically assign an icon in
this manner). szName is the name of the applet (up to 31 characters)
and szInfo the description of the applet (up to 63 characters). Text
beyond the length specified will be ignored.

The hIcon, szName and szInfo parameters are initialized to the values
set by the Control Panel Applet wizard for the first applet. If you are
implementing more than one applet in an applet DLL, you must set
these three parameters to the correct values for that applet.

You can set the UserData parameter to any value you choose – the
value will be passed as a parameter to the CplDblClick method.

VB:
Public Sub CplNewInquire(ByVal AppNumber As _
Integer, ByRef hIcon As Integer, ByRef szName _
As String, ByRef szInfo As String, ByRef UserData _
As Integer) Implements _
 IControlPanelApplet.CplNewInquire

C#:
void IControlPanelApplet.CplNewInquire(int
AppNumber, ref int hIcon, ref string szName, ref
string szInfo, ref int UserData)

Important Note: The exact behavior of this method and the
CplInquire method is inconsistent between operating systems. In other
words, you cannot assume that these methods will be called, or what
order they will be called in.

Page 146

CplStartWParms
(ByVal AppNumber As Integer, ByVal ExtraData
As String) As Boolean
This method is similar to CplDblClick except that the ExtraData
parameter is provided with additional parameters. This only applies to
version 5.0 of shell32.dll.

VB:
Public Function CplStartWParms(ByVal AppNumber _
As Integer, ByVal ExtraData As String) As _
Boolean Implements _
 IControlPanelApplet.CplStartWParms

C#:
bool IControlPanelApplet.CplStartWParms(int
AppNumber, string ExtraData)

CplStop
(ByVal AppNumber As Integer, ByVal UserData
As Integer)
This method is called when an applet is about to be closed. You should
perform any necessary cleanup operations here. If you have more than
one applet in your applet DLL, the AppNumber parameter will
indicate which applet is being stopped. After CplStop is called for all
of the applets in your DLL, the CplExit method will be called.

VB:
Public Function CplStop(ByVal AppNumber As _
Integer, ByVal UserData As Integer) As _
Integer Implements IControlPanelApplet.CplStop

C#:
int IControlPanelApplet.CplStop(int AppNumber, int
UserData)

Page 147

Using Control Panel Applets with Services
The dwCPLService example provided with the toolkit illustrates how
you can communicate with your service using the control panel applet.
The sample project references the dwSCMNet component to access
the Service functionality. The InitializeSCManager function is used to
initialize the service control manager. The OpenService function then
opens the specified service and returns a dwServiceObject object. The
ControlService function can be used to pass values to a running
service – calling this function ultimately leads to your services
IdwEasyService_ OnUserControlCode method being called.

A partial listing of the relevant code follows:

VB.NET:

Imports dwSCMNet

Const USERIDFORSHORTESTTIMEOUTVALUE As Short = 128
Const USERIDFORSHORTERTIMEOUTVALUE As Short = 129

Dim scm As New dwServiceManager()
Dim hservice As dwServiceObject

Private Sub frmServiceApplet_Load(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
MyBase.Load
 Dim sStatus As dwServiceStatus

 hservice = Nothing
 Call scm.InitializeSCManager("", "",
ServiceControlRights.SC_MANAGER_CONNECT)

 Try
 hservice = scm.OpenService("dwBeeperNET_VB",
"", ServiceAccessRights.SERVICE_INTERROGATE Or
ServiceAccessRights.SERVICE_USER_DEFINED_CONTROL)
 Catch exc As Exception
 ' Service not found, hide the buttons
 btn250ms.Visible = False
 btn1500ms.Visible = False
 Exit Sub
 End Try

 If hservice.QueryServiceStatus.CurrentState <>
ServiceStateConstants.SERVICE_RUNNING Then
 ' Service is installed but not currently
running, hide buttons and display error message.

Page 148

 lblWarning.Text = "Service '" +
hservice.ServiceName + "' not Running"
 btn250ms.Visible = False
 btn1500ms.Visible = False
 Else
 lblWarning.Visible = False
 End If

End Sub

' btn1500ms and btn250ms are simple commands.
' In this case they set the beep duration to fixed
values.

Private Sub btn250ms_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn250ms.Click
 Try

hservice.ControlService(CType(USERIDFORSHORTESTTIMEO
UTVALUE, ServiceControlConstants))
 Catch exc As Exception
 lblWarning.Text = exc.ToString
 lblWarning.Visible = True
 End Try

End Sub

Private Sub btn1500ms_Click(ByVal sender As
System.Object, ByVal e As System.EventArgs) Handles
btn1500ms.Click
 Try

hservice.ControlService(CType(USERIDFORSHORTERTIMEOU
TVALUE, ServiceControlConstants))
 Catch exc As Exception
 lblWarning.Text = exc.ToString
 lblWarning.Visible = True
 End Try
 End Sub

C#:

using dwSCMNet;

short USERIDFORSHORTESTTIMEOUTVALUE = 128;
short USERIDFORSHORTERTIMEOUTVALUE = 129;

dwServiceManager scm;
dwServiceObject hservice;

private void frmServiceApplet_Load(object sender,
System.EventArgs e)

Page 149

{
 dwServiceStatus sStatus;

 scm = new dwServiceManager();

 hservice = null;
 scm.InitializeSCManager("", "",
ServiceControlRights.SC_MANAGER_CONNECT);

 try
 {
 hservice = OpenService("dwBeeperNET_C", "",
ServiceAccessRights.SERVICE_INTERROGATE |
ServiceAccessRights.SERVICE_USER_DEFINED_CONTROL);
 }
 catch (Exception exc)
 { // Service not found, hide the buttons
 btn250ms.Visible = false;
 btn1500ms.Visible = false;
 return;
 }

 if (hservice.QueryServiceStatus().CurrentState
!=.ServiceStateConstants.SERVICE_RUNNING)
 {
 // Service is installed but not currently
running, hide buttons and display error message.
 lblWarning.Text = "Service '" +
hservice.ServiceName + "' not Running";
 btn250ms.Visible = false;
 btn1500ms.Visible = false;
 }
 else
 {
 lblWarning.Visible = false;
 }

}

// btn1500ms and btn250ms are simple commands.
// In this case they set the beep duration to fixed
values.
private void btn250ms_Click(object sender,
System.EventArgs e)
{
 try
 {

hservice.ControlService((ServiceControlConstants)USE
RIDFORSHORTESTTIMEOUTVALUE);
 }
 catch (Exception exc)

Page 150

 {
 lblWarning.Text = exc.ToString();
 lblWarning.Visible = true;
 }
}

private void btn1500ms_Click(object sender,
System.EventArgs e)
{
 try
 {

hservice.ControlService((ServiceControlConstants)USE
RIDFORSHORTERTIMEOUTVALUE);
 }
 catch (Exception exc)
 {
 lblWarning.Text = exc.ToString();
 lblWarning.Visible = true;
 }
}

Installing and Testing Your Control Panel Applet
It is very important that your control panel applet DLL and the
Desaware.ServiceToolkit.Interfaces??.dll (where ?? is 11 or 20
depending on .NET framework version) file be available on the system
when your control panel applet CPL file is installed. The
Desaware.ServiceToolkit.Interfaces??.dll file should be installed into
the GAC, and the control panel applet DLL and CPL files should be
installed in the same folder.

When testing your control panel applet, you may want to initially
avoid opening the Control Panel. This is because once you open the
Control Panel, it maps your control panel applet DLL and CPL files to
the Explorer.exe process space. If you want to recompile either of
these files, you will get an access denied error and you will need to log
off before the Explorer process releases these modules. You can test
your control panel applet by selecting your control panel applet CPL
file name with Windows Explorer, then right clicking on the file, then
selecting the “Open With Control Panel” menu item. This method
does not permanently map your control panel applet files into
Explorer.exe.

To install the control panel applet CPL file, you can:

1. Copy all required files into the system directory (the only way to
install it under versions of Windows before Windows 2000/XP).

Page 151

2. In Windows 2000/XP, copy all required files into the directory of
your choice, then add the CPL file to the registry as shown in the
next section.

If the applet DLL file is not available, you will see a warning and the
CPL file will fail to load.

Installing the CPL File on Windows 2000/XP
The following excerpt from the Microsoft Platform SDK explains how
to install a control panel applet on Windows 2000/XP. Note that
despite what follows, you can install a control panel applet on
Windows 2000/XP by copying it into the system directory for testing
purposes on your development system (you should not attempt to
distribute control panel applets that are installed in the system
directory).

Every Control Panel application is a dynamic-link library. However,
the DLL file must have a .cpl file name extension. For Windows 2000
and later systems, new Control Panel applications should be installed
in the associated application's folder under the Program Files folder.
The DLL's path must be registered in one of two ways:

• If the Control Panel application is to be available to all users,
register the path on a per-computer basis by adding a
REG_EXPAND_SZ value to the HKEY_LOCAL_MACHINE\
Software\Microsoft\Windows\CurrentVersion\ControlPanel\Cpls
key, set to the DLL path.

• If the Control Panel application is to be available on a per-
user basis, use HKEY_CURRENT_USER as the root key
instead of HKEY_LOCAL_ MACHINE.

The following two examples register the MyCplApp control panel
application. The DLL is named MyCpl.cpl and is located in the
MyCorp\MyApp application directory. The first registry entry
illustrates per-computer registration, and the second illustrates per-user
registration.

HKEY_LOCAL_MACHINE
 Software
 Microsoft
 Windows
 CurrentVersion
 Control Panel
 Cpls

Page 152

MyCpl="%ProgramFiles%\MyCorp\MyApp\MyCpl.cpl"

-or-

HKEY_CURRENT_USER
 Software
 Microsoft
 Windows
 CurrentVersion
 Control Panel
 Cpls

MyCpl="%ProgramFiles%\MyCorp\MyApp\MyCpl.cpl"

Distributing Your Control Panel Applet
You must distribute three files with your control panel applet.

Your CPL file This is the file created by the Control Panel

Applet Wizard. You should install it in the
system directory (pre-Windows 2000), or in an
application directory (Windows 2000/XP, and
be sure to edit the registry entries as described
earlier).

Your .NET control panel
applet assembly DLL file.

This is the .NET assembly file you create to
implement the control panel applet.

Desaware.ServiceToolkit.
Interfaces??.dll

This is the .NET component file used internally
by the framework to marshal control panel
applet interfaces. Install this file in the GAC.

Page 153

Installing and Distributing Your Service
Installing and distributing your service is similar to installing and
distributing any .NET program (in other words, not a simple prospect).

In addition to all of the usual issues involved in distributing a .NET
component (making sure you ship all the necessary dependent
components and runtimes, and installing and registering them properly
on installation), services have a few additional issues that you must
consider.

Compiling Your Component
This is one area where the service framework actually makes life
easier for you than a comparable standalone component. If you have
created Visual Basic component before, you know how critical
backward compatibility is, and how managing the versions and
compatibility modes of your Visual Basic project are something to
watch closely.

Those issues remain important if you expose objects from your
service. However, the framework itself does not require that you
maintain compatibility between versions. All invocations of your
objects are based on the project name and not the class identifier (so
be sure you don’t use a project name that is already in use). Calls to
your objects are early bound, but based on the interfaces in the
Desaware.ServiceToolkit.Interfaces.dll file that we provide.

Configuring Security
You may need to configure the security for your component depending
on the type of service. These include:

• Set the Application (AppId) with appropriate launch and
access security and impersonation levels.

• Set the login account (if not LocalSystem) to be able to log in
as a service.

• Set security on individual objects to prevent unauthorized
creation or access of those objects.

• Be sure the client system is set to an impersonation level of
Impersonation, not Identity, if you wish to perform operations
other than security tests in the context of the user.

Page 154

There may be other securities to consider depending on your system
and service.

Configuring Remote Systems to Access Objects
From Your Service

Configuring client systems to access objects from your service through
DCOM is the same as any Visual Basic ActiveX server accessed from
DCOM. Refer to your VB or DCOM documentation for details. In
brief, you must do the following:

• Distribute the VBR file created by the service configuration
program.

• Use the CliReg32 application to register the objects for your
service.

• Set the impersonation level of your client computer to
“Impersonate” if your client object will be acting on behalf of
the client.

• Be sure your client system has the necessary credentials to be
authenticated on computer that the service is running on.

• Be sure your service is configured (using dcomcnfg) to allow
launching and access to the client.

Refer to the section on security and impersonation for further details.

Service Executable Command Line Options
Your service executable supports the following command line options:

-RegServer
[-Params
paramstring]
[-Silent]

Register your service to run in standalone mode
with the simulator.
/Params paramstring – Allows you to set a
parameter string during installation that can be
read at any later time. Enclose paramstring in
double quotes if paramstring contains one or more
spaces.

-UnRegserver
[-Silent]

Unregister your service from standalone mode.

-I [-User user
 -Password

Install your service to run as a service.
-User username – If specified, this overrides the

Page 155

password]
[-Params
paramstring]
[-Silent]

user name provided by the service configuration
file (if any).

-Password password – If specified, this overrides
the password provided by the service configuration
file (if any). NOTE: The password is not tested for
validity at install time.
Use the –User and -Password options when you
wish to set the service account during installation.
These fields are not supported for services that are
set to interact with the desktop.

-Params paramstring – Allows you to set a
parameter string during installation that can be
read at any later time. Enclose paramstring in
double quotes if paramstring contains one or more
space. NOTE: If you had successfully installed a
service and you make any service configuration
changes, you must uninstall and the reinstall the
service in order for those changes to take effect.

-U [-Silent] Uninstall your service from running as a service.

-V Display the version of the service (in a message
box).

-Sim Run the executable as a standalone simulator.

The –Silent option prevents the display of message boxes during
installation. Errors can be recorded to a log file, and if an error occurs
it will be reflected in the exit code for the application.

Redistributable Components
The following components can be distributed with your service.

• The service executable you create using the Service
Configuration Wizard Program.

• The config template file created for you by the Service
Configuration Wizard Program.

Page 156

• The VBR file created for you by the Service Configuration
Wizard Program.

• The Desaware.ServiceToolkit.Interfaces??.dll file (must be
installed in the GAC).

• The control panel applet CPL file created using the Control
Panel Applet Wizard.

• The dwSCMNet.dll (managed .NET edition) component for
use with services.

• The dwSCM.dll (COM edition, must be registered)
component for use with services.

If you use an installation program to prepare your service for
distribution, (including the Windows installer), it may detect that your
service is dependent on the file Desaware.StateCoder.dll even if you
are not using the StateCoder integration features. Despite what your
installation program says, you do NOT need to distribute the
Desaware.StateCoder.Dll file if your service does not actually use
StateCoder.

Page 157

Technical Support
Desaware prides itself on providing excellent technical support at no
charge. At the same time, while we are glad to address any problems
with our software, we know from experience that our software is often
used in ways that we never imagined. As enabling technologies (i.e.
technologies that allow VB programmers to do things that are beyond
the typical VB application), we cannot characterize any of our
components for every possible application.

In other words, while we will do our best to address any bugs in our
products or issues that look like they have the potential of being bugs,
we cannot write your code for you, or debug your program for you.
Nor can we provide one on one consulting on particular applications.

When you contact us, we will assume that you are familiar with the
material in this manual. We ask that you reduce any problems to the
smallest set of code that duplicates the problem.

We cannot help you at all with system configuration problems,
especially on the subjects of .NET remoting, COM/DCOM and
security.

Desaware cannot provide technical support on the issue of
authentication of users or basic .NET remoting, COM/DCOM
functionality on your service’s computer. Before you call us for
technical support on subject related to client access, you must verify
that you can create a standalone Visual Basic EXE on your service’s
computer, and access it via DCOM from the client system in question,
where your client system is logged in under the same account that you
wish to use to access the service. If you cannot do this, you have an
authentication or connection problem that does not relate in any way
to our toolkit. If you call us for support on what turns out to be an
authentication problem, we will charge you our standard consulting
rates for time spent on the problem. Authentication and account
management issues must be resolved by your system administrator.

Page 158

Framework Restrictions
The following are known restrictions of the Desaware NT Service
Toolkit framework, as compared to creating a service from scratch
using C++.

Configuration Issues
• You cannot use this service to create driver services (but you

wouldn’t use .NET for drivers anyway, would you?).
• Services created with this framework always run as

independent processes (most services should anyway). The
framework only supports one service per executable (as do
virtually all services).

• Services created with this framework do not support the
ERROR_SERVICE_SEVERE and ERROR_SERVICE_CRI-
TICAL options for dealing with startup errors. These options
are suitable only for key driver and system components
without which the system itself cannot operate properly.

• Detection of network binding service control manager events.
These are only useful for network driver services.

Page 159

Other Sources of Information
Here are several other resources that we recommend for advanced
Windows development.

www.desaware.com
Desaware’s web site includes numerous technical articles on all
aspects of Windows development. Be sure to also check the FAQ and
support section for this product.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special
interest to VersionStamper customers will be the chapters on OLE and

Page 160

COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 377-4770 or email support@desaware.com.

msdn.microsoft.com
MSDN contain a wealth of information and sample code, plus the
latest Visual Basic knowledge base.

Page 161

mailto:support@desaware.com

Index

.Config File, 156

Account, 43
AccountName, 127, 131
Application Object, 84
Architecture, 21, 36

NT Service Toolkit, 79, 80
Assembly DLL, 25
AutoStart, 39

Background Tasks, 19
Background Threads, 74
BinaryPathName, 130
Business Objects, 20

ChangeServiceConfig, 127
CheckPoint, 129, 130
ClearWaitOperation, 58, 76
Client Object, 85-89, 92
ClientExecuteBackground, 57, 91
CLSID, 102
COM, 20, 23, 24, 59, 79, 83, 92, 94, 102,

106, 117
COM/DCOM, 97, 158
Command Line Options, 155
Components

Redistributable Components, 156
dwSCM, 118

Configuration Issues, 159
Configuring, 38
Control Object, 75
Control Panel Applet, 138, 139, 141, 142,

145, 146, 148, 151, 153, 157
Distribution, 153
Installation, 152
Wizard, 138

ControlsAccepted, 25, 38-40, 51-53, 56,
129, 136

ControlsAcceptedFlags, 129, 136

ControlService, 125
CplDblClk, 143
CplExit, 143
CplGetCount, 144
CplInit, 144
CplInquire, 145
CplNewInquire, 146
CplStartWParms, 147
CplStop, 147
CreateService, 123
CurrentState, 129, 130

database, 106
DCOM, 20, 25, 60, 79, 83, 100, 102, 106,

111, 117, 155
DcomCnfg, 99, 100
Debugging, 114, 116
DefaultTimes, 41
DeleteService, 128
Dependencies, 131
Desaware.ServiceToolkit.Interfaces.dll, 3,

37
Description, 18
DisplayName, 121-123, 126-129, 131
dwSCM

Architecture, 119
dwServiceConfig, 119, 123, 126, 127,

130, 131, 132
dwServiceObject, 119, 122-127, 134, 136

ControlService, 125
StartService, 124

EnumDependentServices, 128
EnumServicesStatus, 121
EnumServiceStates, 136
ErrorControl, 127, 130
Event Log, 61

ReportEvent2, 61
Examples, 105

Beeper, 105

Page 162

ControlPanelApplet, 105
ControlPanelAppletService, 105
dwScm, 107
dwScmDemonstrationCOM, 107
dwScmDemonstrationNet, 107
dwScmNet, 107
FileWatch, 106
FileWatch2, 106
Launcher, 105
RemoteUser, 106
ReportEvent2, 105
StateCoder, 107
TinyWeb, 106
TinyWeb2, 106

ExecuteBackground, 91

Framework Restrictions, 159

GetAppObject, 83, 92
GetDescription, 41
GetDisplayNameFromServiceName, 123
GetInteractiveUser, 58
GetServiceNameFromDisplayName, 123
GetStateCoderMessageSource, 63
GetVersion, 42

HTTP, 106

IdwEasyServ, 22
IdwEasyServConfig, 22, 25, 38, 44, 47,

54-56
IdwEasyServConfig_DefaultTimes, 54
IdwEasyService, 46-57, 60, 76, 84, 85, 91,

148
IdwEasyService2, 17, 43, 46, 54
IdwServiceClient, 85-87, 90, 91, 110
IdwServiceControl, 16
IdwServiceCtl, 47, 51-56, 75, 81
IgnoreStartupErrors, 42
Impersonation, 94, 96, 154

Types, 95
Anonymous, 95

Delegate, 96
Identity, 95
Impersonate, 95

Information
Other Sources, 160

InitializeSCManager, 120
InstallParameters, 55
InteractWithDesktop, 43

LoadOrderGroup, 131
LockServiceDatabase, 124

Manager

EnumServicesStatus, 121
Method

CreateService, 123
dwServiceObject, 124
GetDisplayNameFromServiceName,

123
GetServiceNameFromDisplayName,

123
InitializeSCManager, 120
LockServiceDatabase, 124
OpenService, 122
QueryLockStatus, 124
UnlockLockServiceDatabase, 124

Microsoft Message Queue, 106
Migration, 34
Monitors

System, 18

NET Remoting, 14, 15, 20, 23, 25, 59, 67,

68, 79-86, 90, 96-98, 106, 111, 158
NT Service

Architecture, 36
Configuring, 38
Features, 14
Framework, 36

Objects

Application, 84
Business, 20

Page 163

Client, 85
RunningService, 83
Synchronization, 74

OnConnect, 87, 90
OnContinue, 48
OnDeviceEvent, 52, 60
OnDisconnect, 90
OnHardwareProfileChange, 51
OnParamChange, 51
OnPause, 48, 54
OnPowerRequest, 52
OnShutdown, 49
OnStart, 48, 84, 85
OnStop, 49, 54, 91, 110
OnTimer, 53, 55, 117
OnUserControlCode, 50, 148
OpenService, 122

Password, 44, 131
Property

dwServiceObject, 124

QueryLockStatus, 124
QueryServiceConfig, 126
QueryServiceStatus, 126

Redistributable Components, 156
RegisterApplicationObject, 58, 81, 84
RegisterClientObjectName, 59, 82, 85
RegisterDeviceNotification, 52, 60
Remoting, 43
Remoting File, 67
ReportEvent, 60
ReportEvent2, 105
Resource Pool, 20
RunningService, 59, 83, 84, 90, 92, 110

Security, 94
Service

Migration, 34
Service Configuration Program, 64, 70

Service Configuration Wizard, 24, 64-71,
113, 115, 156, 157

Service Control Manager, 118
Service Executable Launcher, 73
Service Framework, 37, 53, 80
SERVICE_AUTO_START, 39
SERVICE_CONTINUE_PENDING, 48
SERVICE_DEMAND_START, 39
SERVICE_DISABLED, 39
SERVICE_PAUSE_PENDING, 48
SERVICE_PAUSED, 48
SERVICE_RUNNING, 48
SERVICE_START_PENDING, 48
SERVICE_STOP_PENDING, 49
SERVICE_STOPPED, 49
ServiceAccessRights, 122, 123, 134
ServiceConfiguration, 25, 36, 38, 47, 65,

105
ServiceControlConstants, 125, 135
ServiceControlRights, 120, 133
ServiceControls, 39, 40
ServiceDependencies, 44
ServiceErrorControlTypes, 133
ServiceHandle, 128
ServiceName, 122, 123, 128, 129
ServiceProcessId, 45
ServiceSpecificExitCode, 129
ServiceStartTypes, 130, 132
ServiceStateConstants, 129, 136
ServiceType, 121, 127, 130
ServiceTypes, 132
SetWaitOperation, 57, 75-77
Shared Variables, 92
Simulator Mode, 115
Software Agent, 20
Software License, 3
StartService, 124
StartType, 127, 130
StartupParameters, 55
States

SERVICE_CONTINUE_PENDING,
48

Page 164

SERVICE_PAUSE_PENDING, 48
SERVICE_PAUSED, 48
SERVICE_RUNNING, 48
SERVICE_START_PENDING, 48
SERVICE_STOP_PENDING, 49
SERVICE_STOPPED, 49
Transitions, 47

StopService, 57
svcHardwareProfile, 40, 56
svcParamChange, 40, 56
svcPauseAndContinue, 40, 56
svcPowerEvent, 40, 56
svcShutdown, 40, 56
svcStop, 40, 56
Synchronization Objects, 74
System Monitors, 18

TagId, 131
Tasks

Background, 19
Technical Support, 158
Testing, 114, 116

COM, 117
DCOM, 117

Threads

Background, 74
Timeout, 53, 55, 76
TimeOuts, 41
Trace, 62
Tracing and Logging, 114
Tutorial, 24
Types, 18

UnlockLockServiceDatabase, 124
UnregisterDeviceNotifcation, 60
UpdateTransitionTime, 47, 49, 56
UserControl, 51

Variables

Shared, 92
VBR File, 25, 67, 68, 98, 103, 112, 155,

157

WaitComplete, 54, 76
WaitHint, 130
Win32ExitCode, 129
Winsock, 157, 168
WM_DEVICECHANGE, 52
WM_POWERBROADCAST, 53

Page 165

Desaware Product Descriptions
Thank you for your purchase of this Desaware product. We have
additional quality software to enhance your programming efforts.
Please visit our web site at www.desaware.com for detailed
descriptions and product demos.

SPYWORKS Standard 6/Professional 7.0

SpyWorks in a nutshell? Impossible!

You're going to want to download the SpyWorks demo to even begin
to understand its capabilities. This product has been evolving for
several years, and it includes so many features it's hard to know where
to begin. SpyWorks is a VB power tool. When you need to override
VB's default behavior or to extend VB's functionality, you will want to
use SpyWorks.

Do That in Visual Basic??

Want to put VB to the test? Want to learn advanced programming
techniques? Want to keep the productivity of VB and have the
functionality of C++? SpyWorks contains the low level tools that you
need to take full advantage of Windows. Here are just a few of the
features of this multi-faceted software package. For instance, have you
ever wanted to detect keystrokes on a system-wide basis or detect
when an event occurs in another application or thread using
subclassing or hooks? SpyWorks can help you solve these problems
by letting you tap into the full power of the Windows API without
having to be an expert. SpyWorks lets you export functions from VB
DLL's so that you can create function libraries, control panel applets,
and NT Services. With its ActiveX extension technology, you can call
and implement interfaces that VB5 or 6 do not support. SpyWorks
includes the Desaware API Class Library, which assists programmers
in taking advantage of the hundreds of functions that are built into the
Windows API. SpyWorks is available in either the Professional (Pro)
or Standard edition.

The Professional Edition includes .NET support for keyboard hooks,
window hooks and subclassing (including cross-task subclassing) with
examples in both Visual Basic.NET and C#. Additionally, a WinSock
component with comprehensive VB source code that gives you
complete control for Internet/intranet programming.

Page 166

http://www.desaware.com/

Other features are the NT Service Toolkit Light Edition. This
application is a subset of the Desaware NT Service Toolkit product. It
allows a developer to create true NT services using Visual Basic. A
background thread component that allows you to easily create objects
that run in a separate background thread.

It also contains extensive sample code and three product updates.

• The Professional Edition includes the Winsock Library, NT
Service support and many other additional features & samples,
plus three free updates. SpyWorks 2.1 (VBX Edition) is included
in the Pro Edition.

• SpyWorks Standard is a subset of Professional. A feature
comparison is available on our web site.

• Supports VB 4, 5 & 6, Windows 95, 98, 2000, NT and ME
depending upon which version (or edition) of SpyWorks.

STATECODER 1.0
A .NET class framework that makes it easy to create and support
powerful state machines using VB .NET or C#. Dramatically
improves the reliability of applications, components and services that
make use of the multithreading and asynchronous features of .NET.

VERSIONSTAMPER 6.5

Distributing Component-Based Applications? Beware DLL
HELL!

You've distributed your application and it's working fine. But your
end user is still in charge of their system. What happens when they
install a program that overwrites a component that your software needs
to run? Can you verify that your users have the correct files required
by your application? Can you really afford to spend two hours on the
phone trying to figure out exactly what went wrong? Now you can
easily avoid component incompatibilities by adding VersionStamper
to your toolkit. It lets you check the versions of your program's
components on your end user’s system, and correct the problem.

Page 167

You are in control!

DLL Hell is a big problem, and with VersionStamper you can be in
control of how this problem is detected and corrected. You determine
dependency scanning (file size, date, version or other parameter), how
and when the dependency scanning is done (upon start up, at midnight,
at user's discretion), and how you want the problem resolved
(automatically, an email message to your help desk, from a
dependency list on your web site and more). This means you can
handle versioning problems as simply as using a message box to call
tech support, or even automatically updating the invalid components
over the internet or corporate network. Imagine your application
updating itself without user (or programmer) intervention! Imagine the
hours and money saved in tech support calls! You can even use
VersionStamper for incremental updates and bug fixes.

Is This For Real?

No, you don't have to pay a fortune in distribution fees - there are no
run-time licensing fees. VersionStamper comes with a great deal of
sample code. Don't distribute a component-based application without
it!

• Checks the versions of your dependent files and notifies you or
the user of potential problems.

• Internet extensions allow you to update versions across the
Internet/intranets.

• Cool and USEFUL sample programs show you how it works.

Includes VB source code for the VersionStamper components that you
can use in your applications.

Page 168

NT SERVICE TOOLKIT 2.0 COM Edition, .NET Edition

Create a fully featured service in minutes using Visual Basic – even
debug your service using the Visual Basic environment! Supports all
NT service options and controls. Adheres to all Visual Basic threading
rules. Background thread support allows easy waiting on system and
synchronization objects. Client requests supported on independent
threads for excellent scalability, with client impersonation available
allowing services to act on behalf of clients in their own security
context. Client requests and service control possible via
COM/COM+/DCOM.

Simulation mode for testing as an independent executable. Create
control panel applets for service control and other purposes.

DESAWARE EVENT LOG TOOLKIT 1.0

Visual Basic allows you to log events to the NT/2000 event log, but
does not allow you to create custom event sources - so every event
belongs to the application VB runtime, descriptions are limited, and
event categories unavailable. Even if you use the API to log events,
creating custom event sources for your application is not supported by
VB, and is difficult with C++.

Desaware's new Event Log Toolkit makes creation of event sources
easy, and provides all the tools needed to create and log custom
events. Now your applications and services can support event logs in a
professional manner, as recommended by Microsoft

Page 169

STORAGETOOLS ver 3.0

StorageTools is your key to the OLE 2.0 Structured Storage
Technology. Structured Storage allows you to create files that organize
complex data easily in a hierarchical system. It is like having an entire
file system in each file. OLE 2.0 takes care of allocating and freeing
space within a file, so just as you need not concern yourself with the
physical placement of files on disk, you can also disregard the actual
location of data in the file. Additionally, with its support for
transactioning you can easily implement undo operations and
incremental saves in your application. StorageTools allows you to
take advantage of the same file storage system used by Microsoft's
own applications. In fact, we include programs (with Visual Basic
source code) that let you examine the structure of any OLE 2.0 based
file so that you can see exactly how they do it!

StorageTools includes registration database controls for Windows NT,
Windows 2000/XP, Windows 95 & 98. Plus, a simple resource
compiler (with source) so that you can create your own .RES files for
use with Visual Basic and more. 16 & 32 bit COM/ActiveX and .NET.

New for version 3.0! StorageTools 3.0 includes .NET support for
accessing OLE Structure Storage from .NET assemblies.

Page 170

DESAWARE ACTIVEX GALLIMAUFRY Ver. 2

What is it?

gal·li·mau·fry (gàl´e-mô¹frê) noun
plural gal·li·mau·fries
A jumble; a hodgepodge.

[French galimafrée, from Old French galimafree, sauce, ragout :
probably galer, to make merry. See GALLANT + mafrer, to gorge
oneself (from Middle Dutch moffelen, to open one's mouth wide, of
imitative origin).]
(From The American Heritage® Dictionary of the English Language,
Third Edition copyright © 1992 by Houghton Mifflin Company)

What does a Twain control, spiral art program, set of linked list
classes, a quick sort routine, a hex editor and a myriad of other custom
controls have in
common?

They are all part of Desaware's ActiveX Gallimaufry.

You'll find most of these controls useful, the rest entertaining – but we
guarantee that you'll find them all educational, because they come with
complete Visual Basic 6.0 source code.

Curious?

Want to learn some advanced API programming techniques? Visit our
web site for a full description and demo.

THE CUSTOM CONTROL FACTORY V 4.0
The Custom Control Factory is a powerful tool for creating your own
animated buttons, multiple state buttons, toolbars and enhanced button
style controls in Visual Basic and other OLE control clients, without
programming. With 256 & 24 bit color support, automatic 3D
backgrounds, image compression, over 50 sample controls and more.
Plus MList2 - an enhanced listbox control. 16 & 32 bit ActiveX
controls and 16 bit VBXs included.

Page 171

	Desaware, Inc.�Software License
	Limited Warranty
	Table of Contents
	Before You Begin
	Introduction
	Reading the Documentation
	New Features for Version 2.0
	New Service Executable Command Line Options
	New IdwServiceControl Methods and Properties
	Improved Instrumentation and Diagnostics
	New Features for Interactive Services
	Improved Error Handling
	Service Control Features
	Other Features

	What is an NT/2000/XP Windows Service?
	Why A Service?
	Types of Services
	System Monitors
	Background Tasks
	Software Agent
	Resource Pool
	Business Objects

	How Services Differ from Regular Executables
	Services, VB and .NET
	The Desaware NT Service Toolkit
	Learning More

	Creating A Simple Service
	Step 1 – Configure the Service Executable
	Service Executable Name
	Service Component Name
	Version Information
	Thread Pool Size
	Create Remoting Files

	Step 2 – Create the Assembly DLL
	Step 3 – Add the ServiceConfiguration Class
	Step 4 – Add the Service Class
	Step 5 – Test and Run the Service

	Migrating a Service from VB6
	Step 1 – Migrate Your VB6 Project
	Step 2 – Turn on Option Strict
	Step 3 – Remove the Reference to EASYSERVLib
	Step 4 – Add a Reference to Desaware.Service-Toolkit.Interfa
	Step 5 – Add an ‘ Imports’ Statement to Your Files
	Step 6 – Search and Replace
	Step 7 – Remove the ServiceProcessId Method
	Step 8 – Miscellaneous

	The Service Framework Model
	Configuring The Service
	IdwEasyServConfig Methods
	AutoStart
	ControlsAccepted
	DefaultTimes
	GetDescription
	GetVersion
	IgnoreStartupErrors
	InteractWithDesktop
	ServiceAccount
	ServiceAccountPassword
	ServiceDependencies
	ServiceProcessId

	Implementing the Service Class
	IdwEasyService Methods Relating to State Transitions
	OnContinue
	OnPause
	OnStart
	OnStop
	OnShutdown

	IdwEasyService Methods Relating to Other Service Control Man
	OnUserControlCode
	OnParamChange
	OnHardwareProfileChange
	OnDeviceEvent
	OnPowerRequest

	IdwEasyService Methods Specific to the Service Framework
	OnTimer
	WaitComplete

	IdwEasyService2 Interface Methods
	OnLogout

	IdwServiceCtl - The Service Control Object
	IdwServiceCtl Properties
	InstallParameters (String/string)
	StartupParameters (String/string)
	Timeout (Integer/int)
	ControlsAccepted (ServiceControls)

	IdwServiceCtl Methods
	UpdateTransitionTime
	StopService
	SetWaitOperation
	ClientExecuteBackground
	ClearWaitOperation
	GetInteractiveUser
	RegisterApplicationObject
	RegisterClientObjectName
	RegisterDeviceNotification
	UnregisterDeviceNotifcation
	ReportEvent
	ReportEvent2
	Trace
	GetStateCoderMessageSource

	Using the Service Configuration Program
	Service Executable Name
	Assembly Name
	Version Information
	Thread Count
	Create Remoting Files
	Compile Executable
	Compile Completed

	Running the Service Configuration Wizard in Batch Mode
	Command Switches

	Using the Service Executable Launcher Program
	Background Threads and Synchronization Objects
	Methods Used to Implement Background Threads
	Control Object (IdwServiceCtl Interface)
	Service Object (IdwEasyService Interface)

	Exposing Service Objects
	.NET Remoting vs. COM/DCOM
	.NET Remoting
	.NET Remoting Configuration File

	The Service Framework Object Architecture
	Objects Exposed Only Through .NET Remoting
	Application Objects Exposed Through Both .NET Remoting and C
	Client Objects Exposed Through both .NET Remoting and COM

	The RunningService Object (COM Clients Only)
	Creating the Application Object
	Creating the Client Object
	The IdwServiceClient Interface and Client Objects
	Service Specific Issues Relating to Client Objects
	Object Identifiers
	OnConnect
	OnDisconnect
	OnStop
	ExecuteBackground

	Additional Application and Client Object Issues
	Shared Variables
	Service State and the Client and Application Objects

	Security and Impersonation
	NT/2000/XP Security in 250 Words or Less
	Impersonation
	Types of Impersonation

	Configuring Your Service for Client Access
	Configuring the Service Access Through .NET Remoting
	Configuring the Client System for Access to .NET Remoting Ob
	Configuring the Service Access Through DcomCnfg
	Configuring the Client System for Access to COM/DCOM Objects

	Examples
	Migration FAQ
	Migration Issues Relating to the Transition From the COM Edi
	Where is the dwSecurity Object?
	Where is the dwBackThread Object?
	Where is the dwSock Component?

	Migration Issues Relating to the Transition from VB6
	How can the interface names be the same in the .NET edition,

	Common Errors
	Installation and Registration
	Service Cannot be Deleted Error When Trying to Install or De
	Unable to Load Service Configuration Object Error When Tryin

	Client Objects
	Permission Denied Error When Creating the RunningService Obj
	My Client Object Is Not Receiving an OnStop Method Call
	Unable to Access an Object Through .NET Remoting
	Unable to Access an Object Through DCOM

	While Running
	The Service Stops Working
	The Service Cannot Access Network Resources When Running As

	Licensing Issues
	Testing and Debugging
	Tracing and Logging
	Testing and Debugging – Simulator Mode
	Testing and Debugging – While Running as a Service
	Testing COM and DCOM

	The dwSCM Component: Service Control Manager
	dwSCM Architecture
	dwServiceManager Methods
	InitializeSCManager
	InitializeSCManager
	EnumServicesStatus
	EnumServicesStatus
	OpenService
	GetDisplayNameFromServiceName
	GetServiceNameFromDisplayName
	CreateService
	LockServiceDatabase () As Boolean
	UnlockLockServiceDatabase () As Boolean
	QueryLockStatus

	dwServiceObject Methods and Properties
	StartService
	ControlService
	QueryServiceStatus() As dwServiceStatus
	QueryServiceConfig() As dwServiceConfig
	ChangeServiceConfig
	EnumDependentServices
	EnumDependentServices
	DeleteService()
	ServiceName as String
	ServiceHandle as Long
	Service As ServiceProcess.ServiceController

	dwServiceStatus Properties
	DisplayName as String
	ServiceName as String
	CurrentState as ServiceStateConstants
	ControlsAccepted as ControlsAcceptedFlags
	Win32ExitCode as Long
	ServiceSpecificExitCode as Long
	CheckPoint as Long
	WaitHint as Long

	dwServiceConfig Properties
	ServiceType as ServiceTypes
	StartType as ServiceStartTypes
	ErrorControl as ServiceErrorControlType
	BinaryPathName as String
	LoadOrderGroup as String
	TagId As Long
	Dependencies as String
	AccountName as String
	Password as String
	DisplayName as String
	Description as String

	Enumerations and Constants
	ServiceTypes Enumeration
	ServiceStartTypes Enumeration
	ServiceErrorControlTypes Enumeration
	ServiceControlRights Enumeration
	ServiceAccessRights Enumeration
	ServiceControlConstants Enumeration
	ServiceStateConstants Enumerations
	EnumServiceStates Enumeration
	ControlsAcceptedFlags Enumeration

	Creating Control Panel Applets
	Building a Control Panel Applet
	Using the Control Panel Applet Wizard Program
	Control Panel Applet Name
	Assembly Name
	Version Information
	Description
	Icon File
	Compile Applet
	Compile Completed
	System Compatibility

	Create an Assembly DLL for Your Control Panel Applet
	CplDblClk
	CplExit()
	CplGetCount() As Integer
	CplInit() As Integer
	CplInquire
	CplNewInquire
	CplStartWParms
	CplStop

	Using Control Panel Applets with Services
	Installing and Testing Your Control Panel Applet
	Installing the CPL File on Windows 2000/XP

	Distributing Your Control Panel Applet

	Installing and Distributing Your Service
	Compiling Your Component
	Configuring Security
	Configuring Remote Systems to Access Objects From Your Servi
	Service Executable Command Line Options
	Redistributable Components

	Technical Support
	Framework Restrictions
	Configuration Issues

	Other Sources of Information
	www.desaware.com
	Dan Appleman's Visual Basic Programmer's Guide To The Win32
	Dan Appleman's Developing COM/ActiveX Components with Visual
	msdn.microsoft.com

	I

