

VERSIONSTAMPER

TM
 Version 6.5

 by

 Desaware, Inc.

Rev 6.5.2 (06/05)

Information in this document is subject to change without notice and does not represent a commitment on
the part of Desaware, Inc. The software described in this document is furnished under a license
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written permission
of Desaware, Inc.
Copyright © 1994-2005 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return
the product and all accompanying items to the place from which you obtained them for a full
refund.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed to you for your use only. If you, personally, have more than
one computer, you may install this program on all of your computers as long as there is no
possibility of it being used concurrently at more than one location by separate individuals.
You may (and should) make archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software
and all other materials and retain no copies, and the recipient agrees to the terms of this
agreement.

You may not make copies of this software for other people. Companies or schools interested
in multiple copy licenses or site licenses should contact Desaware, Inc. directly at (408) 404-
4760.

Should your intent be to purchase this product for use in developing a compiled Visual Basic
program that you will distribute as an executable (.exe) file, review the listing of which files
(located below and in the File Description section of the product manual) can be distributed
and or modified. If Desaware files are included in your executable program, you must include
a valid copyright notice on all copies of the program. This can be either your own copyright
notice, or “Copyright © 1994-2005 Desaware, Inc. All rights reserved.” .

You may include with your program a copy of the files dwvstamp.vbx, dwvstp16.ocx,
dwvstp32.ocx, dwvstp36.ocx, dwvsob36.dll, dwsockvs.dll, dwsockv6.dll, dwsock.dll,
dwsock6.dll, dwvercls.dll, dwvercl5.dll, dwvslb4.dll, dwvslb5.dll, dwvslb6.dll, dwvscmp5.dll,
and dwvscmp6.dll (the run-time libraries). You may not modify these files in any way.

You have a royalty-free right to incorporate any of the sample code provided into your own
applications with the stipulation that you agree that Desaware, Inc. has no warranty,
obligation or liability, real or implied, for its performance.

Please consult the online Help File under the topic File Descriptions for additional
information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Windows, Windows 95, 98 and 2000 are trademarks of Microsoft
Corporation.
SpyWorks, VersionStamper StorageTools, ActiveX Gallimaufry, NT Service Toolkit, Event Log Toolkit, Custom Control Factory, CCF Cursors
and SpyNotes #2, The Common Dialog Toolkit are trademarks of Desaware, Inc.
Crescent Internet Toolkit is a trademark of the Crescent Division of Progress Software.

Limited Warranty

Desaware warrants the physical CD and physical documentation enclosed herein to be free of
defects in materials and workmanship for a period of sixty days from the purchase date.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be
limited to replacement of defective CD or documentation and shall not include or extend to
any claim for or right to recover any other damages, including but not limited to, loss of
profit, data or use of the software, or special, incidental or consequential damages or other
similar claims, even if Desaware has been specifically advised of the possibility of such
damages. In no event will Desaware's liability for any damages to you or any other person
ever exceed the suggested list price or actual price paid for the license to use the software,
regardless of any form of the claim.

DESAWARE SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Specifically,
Desaware makes no representation or warranty that the software is fit for any particular
purpose and any implied warranty of merchantability is limited to the sixty day duration of the
Limited Warranty covering the physical medium and documentation only (not the software)
and is otherwise expressly and specifically disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from
state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws
of the State of California, and any action hereunder shall be brought only in California. If any
provision is found void, invalid or unenforceable it will not affect the validity of the balance
of this License and Limited Warranty which shall remain valid and enforceable according to
its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park Drive, Suite 48, San Jose,
California 95136.

Table of Contents
TABLE OF CONTENTS ..5

ABOUT VERSIONSTAMPER...11

THE TROUBLE WITH DISTRIBUTING COMPONENT BASED APPLICATIONS11
Software Installation of Shared Dynamic Link Libraries ..12
The Trend Towards Component Based Solutions ..14
The Distribution Crisis ..14

SOLVING THE DISTRIBUTION PROBLEM ..15
Embedding Component Version Information into Your Application16
Detecting Component Incompatibilities at Run-Time..16

ADDITIONAL TOOLS AND INFORMATION ..17
COMPATIBILITY ..18
CUSTOMER SUPPORT ..18
REGISTER! REGISTER! REGISTER! ..19
INSTALLATION..19

WHICH VERSIONSTAMPER FILE SHOULD I USE?...21

16 BIT...21
32 BIT...21
ADDITIONAL 32 BIT COMPONENTS...22
FILE DESCRIPTIONS ..25

FILES REQUIRED FOR DISTRIBUTION..30

STRATEGIES FOR USING VERSIONSTAMPER ..32

QUICK START - OUR STANDARD “NO CODE” APPROACH ..32
FOR SOPHISTICATES - CUSTOMIZED SOLUTIONS ..32

Tools ..33
VsWizard - VersionStamper Component Conflict Wizard ..33
VsRescue - ATL Based Component Incompatibility Scan Program33
VerInfo - Version Information Spy Program ...33
VerResQ - Component Incompatibility Scan Program..33
VerDepend - File Dependency Scanner Program ..33

QUICK START SAMPLES..34
Embedded Verification...34
Dynamic Verification (OCX Edition Only) ..40
Emergency Rescue Program..45
Creating a Component List at Run-Time ...46

Page 5

BACKGROUND INFORMATION ... 47

THE VERSION RESOURCE ... 47
Fixed File Information... 48
Support for Multiple Languages.. 51
String Information ... 52

HOW WINDOWS AND VISUAL BASIC LOAD COMPONENTS ... 53
Searching for Components .. 53
16 Bit Applications .. 53
32 Bit Applications .. 57
Problems with Updating Components ... 62

TYPICAL DISTRIBUTION PROBLEMS: WHY THEY OCCUR AND HOW TO FIX THEM................... 63
A Component was Incorrectly Registered, or an Incompatible Component was Registered63
A Newer Version of a Component Breaks Existing Code .. 64
An Older Version of a Component is in the System Directory (32 bit Windows) 65
Another Application Overwrote the Latest Version of a Component 65
A VB Executable was Overwritten During a Re-install ... 66
A Component was Accidentally Deleted.. 66
The PATH has Changed .. 67
An Older Version of a “Dependent” File was Found ... 67
An Older Version of a Component is in the Windows Directory (16 bit Windows)............ 68
An Older Version of a Component is Present in Memory (16 bit Applications)................ 68

STRATEGIES FOR DISTRIBUTING COMPONENT BASED PROGRAMS ... 69
Expensive Strategy: Don’t Use Custom Controls .. 69
Unreliable Strategy: Place Controls in the Project Directory .. 69

(16 bit Windows) ...70
(32 bit Windows) ...70

Best Strategy: Use System Directory and VersionStamper.. 70

USING VERSIONSTAMPER.. 72

OCX AND VBX.. 72
VBX EDITION ONLY .. 72
EMBEDDED FILE INFORMATION.. 72

SelectFiles Property .. 73
Using the Select Files Dialog .. 73

THE ART OF ENUMERATION ... 78
SCANNING AND VERIFICATION EVENTS ... 79

FileConflict Event.. 80
FileScan Event... 81
EnumComplete Event .. 83

STARTING A VERIFY OR SCAN OPERATION... 83
VerifyMode Property ... 83

Page 6

VerifyFile Property ..84
ScanFile Property ..85
FileCurrentDir Property..85

DELAYING A VERIFY OR SCAN OPERATION ..85
PROPERTIES AVAILABLE DURING SCANNING AND VERIFICATION ..86
USING MULTIPLE VERSIONSTAMPER CONTROLS IN AN APPLICATION......................................86

Slave Property..86
VERSIONSTAMPER METHODS (ACTIVEX EDITION ONLY) ..87

VerifyObjectFile Method ...87
VERSIONSTAMPER - API FUNCTIONS ...88
VERSIONSTAMPER CONFLICT WIZARD...88

Wizard Functionality Overview ...88
Selecting Scanning Type ..90

Visual Basic Projects ...90
Standalone files..90
Currently Running Process ..91
Installation Script File..91

Selecting Script Source ..91
Create new VersionStamper Script via Scanning...92
QuickScript - Manually Add Files to List..93
Load Existing VersionStamper Script File...93

Scanning Installation Script File ...94
Limitations on Scanning InstallShield Express installation Scripts.....................................94
Scanning Currently Running Processes...96
Editing and Filtering Files...99

System File Filter ...100
Editing the File List ...101

Editing Selected Files ..102
Version Information Tab..104
Verification Settings Tab..106
File Locations Tab ...109
File Messages Tab ...113
Reference File Paths Tab...114
Saving VersionStamper Script Files ..114
Conflict Wizard Command Line Commands..115

Batch samples ..117
Installation Script File Filter Format ..117

TECHNICAL NOTES ...119
Using VersionStamper with Visual C++ and Other Environments that Support ActiveX
Controls ...119

MIGRATING FROM VERSION 1.0 TO VERSIONS 4.0 AND GREATER..119
Features not Supported in Version 4.0 ..119

Page 7

New Features for Version 4.0 (OCX Only).. 120
Select Files Dialog Box ...120
File and Directory Filtering Properties ..121
File Size Properties ..121
VerifyObjectFile and VerifyObjectFiles Methods...121
Delay Property...121

Upgrading Visual Basic 3.0 Projects .. 122
Search Order ..122
Using Components and DLLs..122

VersionStamper API Functions 1.0 to 4.0 and Later... 123
New Features for Version 5.0.. 124

Select Files Dialog Box for VersionStamper 5.0...124
New Utilities and Samples...124

New Features for Version 6.0.. 125
New ATL Control and Component ...125
New VersionStamper Library Class Component...125
Select Files Dialog Box for the ATL VersionStamper Control (dwvstp36.ocx)126
New Utilities and Samples...126

Migrating from 4.0 or 5.0 to the ATL Control... 127
Code Changes ..127

New Features for Version 6.5.. 127
New VersionStamper Script Command...127
New Features in the VersionStamper Conflict Wizard..128
New VersionStamper Library Class Component...128

INTRODUCTION TO INTERNET SUPPORT ... 129

THE DESAWARE WINSOCK LIBRARY... 131

USING A DIFFERENT INTERNET CONTROL.. 132

VERSIONSTAMPER COMPONENTS .. 133

BEFORE YOU BEGIN ... 133
DISTRIBUTION AND LICENSING .. 134

VERSIONSTAMPER CLASSES SUMMARY... 135

VerConflict .. 135
VerControl... 135
VerDWInet... 136
VerFileDateTime ... 136
VerFTP .. 136
VerParseCommandLine... 136

Page 8

VerParseFile1..136
VerParseFormat ..137
VerParseFormat1 ..137
VerParseWebPage1 ...137
VerSecurity...137
VerSmartReplaceFile...137
VerWarningFlags...137
VerVersionInfo...138
VerWebPage ..138
VerMSINET..138
VerCINET ..138
frmInet.frm ...138
VsMain.frm ..139

TECHNICAL INFORMATION...140

THE WINDOWS VERSION API ...140
Version Control API Functions..140
The Version Data Structures..141
Version File Flags ...144
Version File Operating System Types ..145
Version File Types ...145
The Translation Table..146
Windows Character Sets ..146
Windows Languages ..147
StringFileInfo Data..149
Version StringFileInfo Data Names...149

VERSION API FUNCTION DECLARATIONS...150
GetFileVersionInfo ..150
GetFileVersionInfoSize ..151
VerFindFile..151
VerInstallFile ...153
VerInstallFile Result Constants ...155
VerLanguageName ..157
VerQueryValue ..158

THE WINDOWS REGISTRY...159
Evolution of the Registry..159
ActiveX Controls Must be Registered ..161
Registering the ActiveX Control ..162
Some Important Keys in the Registry ...163

OTHER SOURCES OF INFORMATION ..165

Dan Appleman's Visual Basic Programmer's Guide To The Win32 API...........................165

Page 9

Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to
the Perplexed ... 165
Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers ... 166
The Desaware Visual Basic Bulletin ... 166
PC Magazine's Visual Basic Programmer's Guide To The Windows API......................... 166
Windows API Online Help... 166
Microsoft's Developers Network CD Rom... 167
Microsoft's Windows Software Development Kit and Win32 Software Development Kit.. 167

INDEX .. 168

DESAWARE PRODUCT DESCRIPTIONS... 172

Page 10

About VersionStamper
This section introduces VersionStamper and the industry wide
problems that led to its development. We strongly encourage everyone
to read this section before proceeding to use VersionStamper. Since
VersionStamper includes support for both VBX and ActiveX, 16 bit
and 32 bit Windows, this manual will combine the descriptions of
common features where applicable. In cases where they are not
applicable, a VBX ONLY, OCX ONLY, 32 bit, etc. heading will
follow the section heading. Normally, VersionStamper will be used to
identify the 32 bit ActiveX, but in instances where only the VBX or 16
bit apply, the appropriate dwvstamp.vbx or dwvstp??.ocx names will
be substituted. If you are upgrading from VersionStamper version 1.0,
please read the section Migrating From Version 1.0 to Versions 4.0
and Greater first.

The Trouble with Distributing Component Based
Applications

Once upon a time.....
.... Every application was self-contained.

A program would consist of a single executable (EXE) file. Complex
applications might consist of several executables that were chained to
each other. One thing, however, was certain - the executables that
accompanied a particular application could be used only by that
application. For most programs, you could distribute all of the files
used by that program without being concerned that other products
might interfere with yours.

In the past few years the size of application files has grown
dramatically. The Windows operating environment took advantage of
the capability dynamic linking to allow code modules to be shared by
applications. The most important example of this capability is
Windows itself - the code modules that contain the functions that
make Windows work (the Windows API), could be shared by all
Windows applications. A code module that can be shared in this way
is called a dynamic link library and has the extension .DLL.

Page 11

Initially, this sharing of files was not a problem. Most applications
only used the Windows DLLs, or private DLLs - dynamic link
libraries were rarely shared between applications.

Want to Learn
More?

VersionStamper is intended for both beginning and expert
programmers. The manual is designed so that beginners will be able
to use the product in a “boiler plate” manner by simply following
the step by step instructions. If you wish to customize the
VersionStamper components you will need to have some
familiarity with Windows itself, specifically the Windows API. In
order to help you quickly come up to speed if you do not already
have this information, we will refer in the manual to pages and
chapters in “PC Magazine Visual Basic Programmer’s Guide to the
Windows API” and its successor “Dan Appleman’s Visual Basic
Programmer’s Guide to the Win32 API” which are published by
Macmillan Press.

If you would like to learn more about how dynamic link libraries
work and why they exist, refer to Chapter 1 in either of these books.

Software Installation of Shared Dynamic Link
Libraries
As Windows evolved, Microsoft began to create additional dynamic
link libraries that were designed to be shared among its own
applications, and still others that were designed to be used by all
Windows programmers. These dynamic link libraries contained groups
of functions that provide a standard functionality, eliminating the need
for each application to implement that functionality independently.

One example of these DLLs is commdlg.dll - the common dialog
library. This DLL contains a group of common dialog boxes that can
be used by any Windows application to perform standard operations
such as obtaining a file name or choosing a color.

Each application that used common dialogs would need to distribute
the file commdlg.dll, at first because it was not included in Windows,
later because Microsoft would introduce updated versions of the DLL
that fixed bugs or added new functionality.

Page 12

What happened when a new version of commdlg.dll appeared?
Obviously there is no magical way by which it would instantly be
replaced for every application that needed it. Even if you replaced it
in all new builds of a product, all of the previous distribution disks
would have the older version of the DLL. It would not be unusual for
an individual to own several programs that use this DLL, each of
which had a different version of the DLL on its distribution disks.

It is not unusual for users to re-install software, either during a system
upgrade or to change configurations. Frequently they would install
software that included an older version of commdlg.dll on a system
that already contained a program that previously installed a newer
version. As soon the user attempted to run the program that required
the newer version, problems would occur ranging from operational
difficulties to general protection faults.

The appearance of
Version Resources

Microsoft’s answer to this problem was to create a mechanism to
place a version description into a code module. This is accomplished
by embedding a special resource called Version Resource into the
code module. A resource is a block of data in a module that can be
read from within the program when it is running, or by other
programs. A version resource is a block of data that contains a
special format that describes the version of a file and additional
information about the file. The exact format of this information and
how to access it is described in the Technical Information section of
this manual.
The version resource makes it possible for installation programs to
determine if a later version of a DLL is already present on a system.
If so, the installation program can avoid overwriting it with an
earlier version.

Page 13

Want to Learn
More?

If you would like to learn more about how resources work and why
they exist, refer to Chapter 12 in the “Visual Basic Programmer’s
Guide to the Windows API” or Chapter 15 in the “Visual Basic
Programmer’s Guide to the Win32 API” and “Dan Appleman’s
“Visual Basic Programmer’s Guide to the Win32 API”.

The Trend Towards Component Based Solutions
Microsoft may have provided a version resource capability, but that
alone did not solve all of the problems with distributing applications.
Even now, many dynamic link libraries are created without version
resources or the version resource is not updated on each release. Many
applications use installation programs that do not check the version
information of existing DLLs.

Still, as long as users had to deal with only a few shared dynamic link
libraries, the problem was manageable. This all changed with the
appearance of Microsoft’s Visual Basic.

Visual Basic is the first product to take full advantage of a new
software development philosophy called “Component-Solution”
programming. Under this philosophy, programmers take advantage of
“off the shelf” software components that implement specific functions.
Visual Basic itself is the “glue” that binds these software components.

Under Visual Basic, software components consist of either dynamic
link libraries or Visual Basic custom controls (VBXs) or ActiveX
controls (OCXs).

This programming philosophy makes an enormous amount of sense.
Why write your own communications function library when a single
custom control can provide the same capability for a tiny fraction of
the price? Visual Basic has literally hundreds of different VBXs and
ActiveXs, which have assisted in making it a highly effective
programming environment.

The Distribution Crisis
The component-solution framework for programming has had one
serious side effect concerning the distribution of Visual Basic
applications. Now instead of a few DLLs that are shared by several
applications, there are hundreds of DLLs, VBXs and OCXs that may
be shared by literally thousands of applications.

Page 14

And all it takes is a single DLL, VBX or OCX to be missing, or
present in an older version (or even an incompatible newer version),
for an application to fail. A poorly designed installation program, user
error, registration error or change in the user’s PATH environment
variable are a few of the things that can cause this to occur.

Worse yet, there is no reliable way to identify the failure, since the
symptoms of the failure can vary from a minor error to a General
Protection Fault or memory exception.

But the problems do not end there. Some applications place software
components in their own directory, meaning that you can have several
versions of the same OCX, VBX or DLL on your system at the same
time. The one that is used may depend upon the sequence in which
two applications are run or which component was last registered -
leading to a whole list of “intermittent” problems that depend upon the
interaction between unrelated applications.

And for those who are using Visual Basic 3.0 or a VBA application,
add the final straw - programs created by these development tools do
not have a version resource. This means that there has been no reliable
way to prevent the overwriting of newer versions of your own
programs.

It is not unheard of for technical support personnel to spend literally
hours on the phone trying to track down elusive problems that turn out
to be nothing more than the presence of an obsolete software
component.

Which brings us to VersionStamper.

Solving the Distribution Problem
The key to eliminating problems relating to the distribution of Visual
Basic applications is to be able to determine, quickly, whether all of
the components required by the application are, in fact, present in the
run-time environment.

Page 15

Embedding Component Version Information into
Your Application
VersionStamper makes it possible to embed into the executable or an
ASCII text file a complete list of every DLL, OCX, VBX or other
software component that is needed by your program. This embedded
component information includes the required version information,
date/time, size, and other information for each component. You can
also specify the conditions under which a warning will be triggered.

VersionStamper is able to automatically scan a project for a list of the
custom controls used by the program and a list of all DLLs referenced
by the Declare statements in the project.

VersionStamper also includes the Conflict Wizard, a standalone utility
that uses several different methods to scan your program allowing you
to determine a list of the components used by your program,
minimizing the chances that you will miss a critical component.

Detecting Component Incompatibilities at Run-
Time
Since an executable stamped by VersionStamper “knows” exactly what
components it requires at run-time, it is an easy matter for it to confirm
that all of those components are available and current. The
comparison process is also built into the VersionStamper custom
control.

VersionStamper provides a great deal of flexibility in terms of how
you handle the scanning and reporting process. Beginning
programmers may simply choose our quick start solutions and add the
standard vervrfy.frm or vervrfy2.frm form and associated modules to
their application to provide a default verification check at load time or
under user control. More advanced programmers may choose to
modify the code, or use the VersionStamper classes, to create their
own custom report. You might also provide the user with a step-by-
step procedure as to how to fix certain problems, or perhaps a request
that they call your customer support line.

Page 16

It is possible for the software components required by an application
to be so old that the program will not run at all. For these cases
VersionStamper includes a sample “Rescue” program which is able to
compare the component requirements of an executable with the run-
time environment without actually loading that executable. The rescue
program includes complete source code and can be fully customized to
suit your own needs.

VersionStamper includes Internet features that allow your end-user to
access an updated dependency list from a web site, report component
conflicts via email and even automatically update their components
via the world wide web or from an FTP site.

Additional Tools and Information
VersionStamper includes the program, VerInfo.exe which is able to
report on the version information of any executable that contains a
version resource. It is also able to report on the embedded component
information added by the VersionStamper control.

This program also includes full source code. Which brings us to one of
the final features of this package, a feature that we feel is one of the
most important.

One of our goals at Desaware is to not just provide “canned solutions”
for programmers but to also help educate programmers to take
advantage of all of the technology that is available to Visual Basic
programmers. Following this philosophy, you will find a fair amount
of technical material in this manual and a generous amount of Visual
Basic source code as well. We will also cover some of the reasons why
certain things work the way they do and how they influenced the
design of VersionStamper.

But fear not - this product was designed to be used by absolute
beginners as well. And for those who just need a quick solution to the
distribution problems discussed earlier, feel free to skip forward to the
Quick Start section which will walk you through the process of
embedding a version resource, embedding component information and
adding a run-time conflict report in a few easy steps.

Page 17

Compatibility
VersionStamper is designed for use with Visual Basic 3.0 and higher,
Microsoft Visual C++, Delphi, and other products that support the
Visual Basic 1.0 VBX file format. The ActiveX (OCX) edition may be
used with Visual Basic 4.0 and higher, and other products that support
the full ActiveX control container specifications.

The ability to embed version resources is only provided for Visual
Basic 3.0 itself. This ability is not required by Visual Basic 4.0 and
later, Microsoft Visual C++ and Borland C++ and Delphi (those
products come with other tools that allow the creation of version
resources). VersionStamper can, however, be used to embed
component information into applications created with these languages
in order to support the run-time verification features of this product.

Customer Support
We at Desaware have one very simple company policy - we do our
best to treat our customers as we would like to be treated (after all, we
are programmers too).

If you have purchased this software directly from Desaware and you
feel that VersionStamper is not for you or you are otherwise
dissatisfied, please feel free to return it for a full refund (if you
purchased it elsewhere you will need to contact your dealer for return
or refund information - also, we reserve the right to limit this offer to
30 days from the invoice date). Your satisfaction is important to us,
and we are well aware that this is a very unusual product and not
appropriate for everyone.

For information on customer support and last minute changes,
refer to the readme.wri file on the VersionStamper CD. This file
is compatible with write.exe (included with each copy of
Windows).

There is a saying in the software world that no non-trivial program is
completely bug free. The corollary to that saying is that no program
with more than 10 lines in it is non-trivial. VersionStamper is
emphatically non-trivial....

Page 18

VersionStamper has undergone extensive testing in all the existing
Windows operating systems to make it as bug free as possible.
Nevertheless, it is possible that some may have crept through. Please
check the VersionStamper FAQ page at Desaware’s web site
(http://www.desaware.com/VersionStamperFAQL3.htm) for latest
breaking news on bug fixes and other issues. Also, please run the
VersionStamper Run Time Files Update utility (VsUpdate.exe) to
ensure that you have the latest VersionStamper release files. Please
contact us via email or fax if you encounter problems, and include all
of the steps needed to reproduce the problem. Also, if there are any
files needed to reproduce the error, include them in your email. Once
we are able to duplicate a problem, we will provide you with a fix as
quickly as possible.

Please address all correspondence to:

Desaware Inc.
3510 Charter Park Drive, Suite 48
San Jose, CA 95136

Phone (408) 404-4760, Fax (408) 404-4780

Internet: http://www.desaware.com, or support@desaware.com

Register! Register! Register!
We’ve found that the person who ultimately uses a software package is
frequently not the person who purchased it. Therefore we really need
your registration card. This will allow us to send you information
about upgrades.

But we can’t send this information to you without knowing who you
are!

And please send us your suggestions for features that you would like
to see in future editions of this product!

Installation
VersionStamper comes with a Windows installation program. Refer
to the readme file on the CD for the latest information regarding
installation.

• Place your VersionStamper CD in your CD ROM drive.

Page 19

• The setup program should automatically start if your computer’s
autorun mode is enabled. Otherwise, use the Start Button’s Run...
command in Windows to run d:\setup.exe or e:\setup.exe
(depending on the drive letter assigned to your CD ROM drive).
You can also use Windows Explorer or the File Manager to
initiate this program.

• Select the desired setup option to start the installation.

• The setup program will prompt you for a destination directory for
the VersionStamper sample files and utilities. The
VersionStamper ActiveX controls and components will be
installed and registered in the appropriate System directory.

• Follow any further directions in the setup program. A summary of
files installed will appear in the install.log file in your
VersionStamper directory.

Installation programs are tricky - and we have found that occasionally
a system is configured in such a way that the installation program
fails. Please refer to the readme file for the latest information on these
situations, and for instructions for manual installation.

The directory containing the VersionStamper sample files may contain
files readme.txt or readme.wri. These files, if present, will contain
recent information that could not be incorporated into the manual at
time of printing. Use the Windows ‘Notepad’ program to view
readme.txt, and the Windows ‘Write’ program to view readme.wri.

Page 20

Which VersionStamper File Should I Use?
VersionStamper includes several different editions of the ActiveX
control and component. The files or edition you should use depends on
whether you are using 16 or 32 bit, and whether or not your
programming environment is Visual Basic.

16 Bit
If you are developing in a 16 bit environment, you are limited to using
either the dwvstamp.vbx or dwvstp16.ocx files. The dwvstamp.vbx
file is the VBX edition of VersionStamper. This file does not include
many of the new features offered in the OCX edition and should be
used only in environments that support VBXs such as Visual Basic 3.0
or Visual Basic 4.0 – 16 bit. The dwvstp16.ocx file is the 16 bit OCX
edition of VersionStamper. This file should be used only in
environments that support 16 bit OCXs such as Visual Basic 4.0 – 16
bit. The 16 bit edition controls do not support many of the new
VersionStamper features.

32 Bit
If you are developing in a 32 bit environment, you can use either the
dwvsob36.dll, dwvstp36.ocx, or dwvstp32.ocx files.

File Description
Dwvsob36.dll
Desaware
VerScan
Component Type
Library

This file is the 32 bit ATL ActiveX component
edition of VersionStamper. This file can be
used in any 32 bit development environment
that supports ActiveX components.

Page 21

Dwvstp36.ocx
Desaware
VersionStamper
6 Control

This file is the 32 bit ATL ActiveX control
edition of VersionStamper. This file supercedes
the dwvstp32.ocx file and includes additional
features. This file can be used in any 32 bit
development environment that supports
ActiveX controls. The dwvstp36.ocx file
requires distributing the dwvsob36.dll file.

dwvstp32.ocx
Desaware
VersionStamper
Control

This file is the 32 bit MFC ActiveX control
edition of VersionStamper. This file requires
distributing the MFC40.dll and MSVCRT40.dll
files. This file should be used only when you
are planning to release both 16 and 32 bit
versions of your application and are developing
in a dual 16 and 32 bit environment such as
Visual Basic 4.0. Otherwise, it is more
advantageous to use either the dwvstp36.ocx or
dwvsob36.dll files.

Additional 32 Bit Components
VersionStamper includes a component class library that wraps the
VersionStamper control or component and provides additional support
in areas such as conflict report resolution, file list parsing, and internet
support. This component class library was written in Visual Basic and
includes source code. You can add the required class files to your
Visual Basic project, or reference the compiled component. This
component class library is also compiled in several different editions.

File Description
dwvscmp6.dll
“Desaware
VersionStamper
ATL SW VB6
Components”

This is the latest VersionStamper Class Library
file. This edition is compiled in Visual Basic
6.0. The dwvscmp6.dll file requires the
dwvsob36.dll, dwsock6.dll and the Visual Basic
6.0 run time library files. You should use this
file if you are developing in Visual Basic 6.0 or
in NON-Visual Basic environments.

Page 22

dwvscmp5.dll
“Desaware
VersionStamper ATL
SW VB5
Components”

This file is similar to the dwvscmp5.dll file except it
was compiled in Visual Basic 5.0 instead. The
dwvscmp5.dll file requires the dwvsob36.dll,
dwsock.dll and the Visual Basic 5.0 Service Pack #2
or later run time library files. You should use this file
if you are developing in Visual Basic 5.0 or in NON-
Visual Basic environments.

dwvslb6.dll
“Desaware
VersionStamperVB
6 ATL
Components”

This file is similar to the dwvscmp6.dll file
minus some of the newest changes (such as
HTTP Proxy Support). The dwvslb6.dll file
requires the dwvsob36.dll, dwsockv6.dll and the
Visual Basic 6.0 run time library files. You
should use this file only if you are updating an
existing VB project that already uses this file.
You can easily migrate to the dwvscmp6.dll
file.

dwvslb5.dll
“Desaware
VersionStamperVB
5 ATL
Components”

This file is similar to the dwvslb6.dll file except
it was compiled in Visual Basic 5.0 (without
any Service Packs). You should use this file
only if you are updating an existing VB project
that already uses this file or if you are
developing new Visual Basic 5.0 projects
without any Service Packs installed.

dwvslb4.dll
“Desaware
VersionStamperVB
4 ATL
Components”

This file is similar to the dwvslb5.dll file except
it was compiled in Visual Basic 4.0. You should
use this file if you are developing new Visual
Basic 4.0 projects.

dwvercl5.dll
“Desaware
VersionStamperVB
5 Components”

This file is the original component class library
compiled in Visual Basic 5.0. You should use
this only for existing Visual Basic 5.0 projects
that already use this component (you can also
migrate to the dwvscmp5.dll or dwvslb5.dll).
The dwvercl5.dll file requires the dwvstp32.ocx,
dwsockvs.dll and the Visual Basic 5.0 run time
library.

Page 23

dwvercls.dll
“Desaware
VersionStamper
Components”

This file is the original component class library
compiled in Visual Basic 4.0. You should use
this only for existing Visual Basic 4.0 projects
that already use this component (you can also
migrate to the dwvslb4.dll). The dwvercls.dll
file requires the dwvstp32.ocx, dwsockvs.dll
and the Visual Basic 4.0 run time library.

dwsock6.dll
“Desaware Winsock
Library vb6”

This file includes HTTP and FTP support for
retrieving files through the Internet. This file is
licensed for use only with dwvscmp6.dll and is
required by that file. This file also requires
dwspyv6.dll, sockintf.dll, dwspy5.dll and the
Visual Basic 6.0 run time library.

dwsock.dll
“Desaware Winsock
Library”

This file includes HTTP and FTP support for
retrieving files through the Internet. This file is
licensed for use only with dwvscmp5.dll and is
required by that file. This file also requires
dwspyvb.dll, sockintf.dll, dwspy5.dll and the
Visual Basic 5.0 Service Pack #2 or later run
time library.

dwsockv6.dll
“Desaware Winsock
Library (VS edition
for VB 6)”

This file includes HTTP and FTP support for
retrieving files through the Internet. This file is
licensed for use only with dwvslb6.dll and is
required by that file. This file also requires
dwspyv6.dll, sockintf.dll, dwspy5.dll and the
Visual Basic 6.0 run time library. This file is a
subset of our SpyWorks Winsock ActiveX
component.

dwsockvs.dll
“Desaware Winsock
Library (VS edition
for VB 5)”

This file includes HTTP and FTP support for
retrieving files through the Internet. This file is
licensed for use only with the dwvercls.dll,
dwvercl5.dll, dwvslb4.dll, and dwvslb5.dll files and
is referenced by those files. This file also requires
dwspyvb.dll, sockintf.dll, dwspy5.dll and the Visual
Basic 5.0 run time library. This file is a subset of our
SpyWorks Winsock ActiveX component.

Page 24

File Descriptions
The following files and controls may be distributed with your
compiled Visual Basic application without payment of license fees
according to the terms on the License Agreement.

File Description
dwvstp36.ocx,
dwvstp32.ocx,
dwvstp16.ocx

The primary VersionStamper (ActiveX edition) custom
control. It should be registered in the registry, it is
typically installed in the System directory. If you are
creating a 32 bit only application, you should use the
dwvstp36.ocx file.

dwvsob36.dll

The primary VersionStamper scanning engine COM
component. This file is required if you are using
dwvstp36.ocx. It can also be used by itself. This file is
also required if you are using dwvslb5.dll, dwvslb6.dll,
dwvscmp5.dll, or dwvscmp6.dll.

dwvscmp5.dll,
dwvscmp6.dll
dwvslb5.dll,
dwvslb6.dll,
dwvercl5.dll,
dwvercls.dll,

VersionStamper classes run-time ActiveX DLL. It
should be registered in the registry, it is typically
installed in the System directory. These files are all
similar, they are compiled in different VB editions. If you
are using VB 6, you should be using the dwvscmp6.dll
file. If you are using VB 5 (Service Pack 2 or later), you
should be using the dwvscmp5.dll file. dwvercls.dll is the
VB 4 compiled version, dwvercl5.dll and dwvslb5.dll are
the earlier VB 5 compiled version, dwvslb6.dll is the
earlier VB 6 compiled version.

dwsock.dll,
dwsock6.dll,
dwsockvs.dll,
dwsockv6.dll

Desaware SpyWorks WinSock component (Version-Stamper
edition). This WinSock component allows VersionStamper to
retrieve files from a URL for file verification and perform FTP
downloads for auto updates. This file can be distributed only
with a VersionStamper application. dwsock.dll is used by
dwvscmp5.dll, dwsock6.dll is used by dwvscmp6.dll,
dwsockvs.dll is used by dwvslb5.dll and dwvercl5.dll,
dwsockv6 is used by dwvslb6.dll. If you are starting a new
project, use either the dwsock.dll or dwsock6.dll.

Page 25

dwvstamp.vbx

The primary VersionStamper (VBX edition) custom
control. It should be installed in a directory that is in your
PATH environment setting (typically the System
directory).

VsRescue.exe

This is a “last-resort” rescue application. This 32 bit
rescue application can scan a file that has a
VersionStamper embedded file list. It should be able to
execute under most scenarios even when your primary
application cannot run. You may distribute this file with
your application solely for the purpose of providing file
conflict information for your application.

The following files may NOT be distributed and are subject to the terms in your license
agreement. However, you may incorporate the source code from these files (where
applicable) into your own application.

File Description
dwverd36.dll,
dwverd32.dll,
dwverd16.dll

Design time library and license file for VersionStamper
(ActiveX edition).

dwverdes.dll Design time library and license file for VersionStamper
(VBX edition).

Verclass
(dwVer*.vbp)
projects
and associated
files.

These projects include helper classes used for a variety of
functions related to reporting file conflicts. Commonly
referred to as the VersionStamper Component Library.

vervrfy.frm
vervrfy.bas

These modules demonstrate how to use the Version-Stamper
control to scan for component conflicts at runtime. These
modules can be incorporated directly into your own applications
to provide this functionality. You may distribute these files as
is only if you are also distributing your own source code under a
valid copyright.

Page 26

vervrfy2.frm
vervrfy.bas

These modules demonstrate how to use the Version-
Stamper control to scan for component conflicts at
runtime and provide a typical verification report at the
same time. These modules can be incorporated directly
into your own applications to provide this functionality.
You may distribute these files as is only if you are also
distributing your own source code under a valid
copyright.

verresq.vbp
and
associated
files.

This project demonstrates a more robust scheme for
reporting component file conflicts. It can also be used as
a stand-alone utility for doing component verification on
any file that contains embedded component information.
This project includes full source code.

verinfo.vbp and
associated files.

This project demonstrates how to read the version
resource information from any executable. It is also a
stand-alone utility for browsing the version resource and
embedded component information for any executable.
This project includes full source code, but requires that
SpyWorks be installed on your system to load.
verinfns.mak (listed next) is identical except that it does
not require SpyWorks. (SpyWorks is used to implement
the status bar in this project.)

verinfns.vbp
and associated
files.

This project is almost identical to verinfo.mak. It uses a
different MDI form that does not include a status bar, and
can be loaded without having SpyWorks on your system.

vsrtdemo.vbp
and associated
files.

This sample project demonstrates a new feature of
VersionStamper - how to specify components to verify
during run-time.

Page 27

vrsqtest.mak
and associated
files.

This sample project demonstrates a minimal scheme for
reporting version conflict information. It shows how to
add the vervrfy.frm and vervrfy.bas modules to an
application to detect conflicts.

vrsqtst2.mak
and associated
files.

This sample project demonstrates a more robust scheme
for reporting version conflict information. It shows how
to add the vervrfy.frm and vervrfy.bas modules to an
application to detect conflicts.

versplsh.mak and
associated files.

This sample project demonstrates using a standalone
executable to perform file verification for your main
application. It displays a splash screen during file
verification. If no conflicts were found, it Shells your
application, otherwise a form is displayed notifying the
user of the conflicts.

VsReplace and
associated files.

This sample project demonstrates how to use some of the
more advanced features of the VerSmartReplaceFile class
object.

VsWebLst and
associated files.

This sample project demonstrates how to retrieve a file
list to verify from a web address. It parses the file list
and reports any component file conflicts.

VsFileLs and
associated files.

This sample project demonstrates how to retrieve a file
list to verify from a file on a local drive. It parses the file
list and reports any component file conflicts.

VsMail and
associated files.

This sample project demonstrates how to send an email to
report component file conflicts.

Page 28

VSAutoUpdate,
AutoUpdate and
associated files.

This sample project demonstrates how to create a self-
updating application. It verifies the required files for an
application by retrieving the file list from a web address,
then it uploads newer files via an FTP location.

VsWizard.exe The VersionStamper Conflict Wizard. This utility is used
to perform an analysis of a particular Visual Basic
project, EXE file, or other binary file and retrieve a list of
dependent files required.

VerDepend.exe This is a utility program used by VersionStamper to scan
a binary file for direct dependencies.

dwvstamp.hlp On-line help file for VersionStamper. This file contains
context sensitive help for the VersionStamper control, the
full manual text, and other supplemental information.

Page 29

Files Required for Distribution

dwverd36.dll or
dwverd32.dll

You are NOT allowed to distribute
these files.

dwverdes.dll or
dwverd16.dll

You are NOT allowed to distribute
these files.

Other EXE files
included with
VersionStamper.

You are NOT allowed to distribute
these files.

The following table summarizes the list of files required to be
distributed with the VersionStamper components.

Files Dependent Files
Dwvsob36.dll Requires oleaut32.dll version

2.20.4054.1 or greater and stdole2.tlb
version 2.20.4054.1 or greater. (These
two files were not included with the
original Windows 95 system but are
included in Visual Basic 5.0 or later
and Internet Explorer 3.1 or later.)

Dwvstp36.ocx Requires dwvsob36.dll.

Dwvstp32.ocx Requires msvcrt40.dll, mfc40.dll.

Dwvscmp6.dll Requires dwvsob36.dll, dwsock6.dll,
dwspyv6.dll, dwspy5.dll, sockintf.dll,
msvbvm60.dll, and oleaut32.dll.

Dwvscmp5.dll Requires dwvsob36.dll, dwsock.dll,
dwspyvb.dll, dwspy5.dll, sockintf.dll,
msvbvm50.dll (Service Pack #2 or
later edition), and oleaut32.dll.

Page 30

Dwvslb6.dll Requires dwvsob36.dll, dwsockv6.dll,
dwspyv6.dll, dwspy5.dll, sockintf.dll,
msvbvm60.dll, and oleaut32.dll.

dwvslb5.dll Requires dwvsob36.dll, dwsockvs.dll,
dwspyvb.dll, dwspy5.dll, sockintf.dll,
msvbvm50.dll, and oleaut32.dll.

dwvslb4.dll Requires dwvstp36.ocx, dwsockvs.dll,
dwspyvb.dll, dwspy5.dll, sockintf.dll,
vb40032.dll, msvbvm50.dll, and
oleaut32.dll.

dwvercl5.dll Requires dwvstp32.ocx, dwsockvs.dll,
dwspyvb.dll, dwspy5.dll, sockintf.dll,
msvbvm50.dll, and oleaut32.dll.

dwvercls.dll Requires dwvstp32.ocx, dwsockvs.dll,
dwspyvb.dll, dwspy5.dll, sockintf.dll,
vb40032.dll, msvbvm50.dll, and
oleaut32.dll.

dwvstp16.ocx Requires oc25.dll, wowglue.dll, and
w32sys.dll.

dwvstamp.vbx Requires wowglue.dll.

VsRescue.exe Requires dwvsob36.dll.

Page 31

Strategies for Using VersionStamper
VersionStamper contains tools that can be used in a number of
different ways to assist you with distributing your Visual Basic
applications reliably.

Quick Start - Our Standard “No Code” Approach
This chapter is intended to provide a quick-start approach that involves
minimal effort on your part and a minimum amount of coding.

For Sophisticates - Customized Solutions
VersionStamper takes an unusual approach to detecting and reporting
version conflicts. The detection capability is almost entirely built into
the VersionStamper custom control. However we designed this control
in such a way that the detection itself can be customized not only by
the configuration of the control, but by adding your own Visual Basic
code to events that are triggered during the verification process. The
reporting capability is implemented using Visual Basic code in such a
way that you can either plug in our standard reports, customize them,
or create your own from scratch.

This approach makes it possible for VersionStamper to work as a
simple “canned” solution for some, while providing enormous
flexibility for those who wish a custom approach towards resolving
version conflicts.

For those who wish to customize the verification process, we direct
you to the following sources:

This manual: especially the chapter on the VersionStamper control
where the verification process and events are described in detail.

The verresq, vrsqtest, vrsqtst, versplsh, vsrtdemo.vbp,
autoupdt.vbp or vsupdate.vbp, vsreplace.vbp, vsfilels.vbp,
vsweblst.vbp, and vsmail.vbp projects: These projects are included
with complete source code and we encourage you to customize them
to suit your own needs.

Page 32

Tools

VsWizard - VersionStamper Component Conflict Wizard
VsWizard is a utility which can scan your Visual Basic project, EXE
file, or other binary file to retrieve a list of the components required.
You can use this utility to generate a list of files required, then specify
warning conditions for the files you want VersionStamper to verify.
The file list is output to an ASCII text file which can be read at run-
time by VersionStamper, or embedded into an EXE file.

VsRescue - ATL Based Component Incompatibility Scan
Program

The VsRescue program is a stand-alone utility that is similar to the
other Visual Basic verification files and programs that are included
with this package. The difference is that this is an ATL-based edition
and requires minimal run-time files so it should be able to run even in
cases where your primary application cannot run due to major file
conflicts.

VerInfo - Version Information Spy Program
The VerInfo program can be used to view the version resource
information for any file. It can also be used to display the embedded
component information for each file. This project includes complete
source code.

VerResQ - Component Incompatibility Scan Program
The VerResQ program is a stand-alone utility that is almost identical
internally to the other verification files and programs that are included
with this package. It adds the ability to select which files to verify, and
to print the report or write it to a file. This project includes complete
source code.

VerDepend - File Dependency Scanner Program
VerDepend is a utility which scans an executable or dynamic link
library (DLL) file and extracts the dependency files for the scanned
file. Each dependent file is in turn scanned for direct dependencies to
ultimately produce a complete list of dependent files. Dependency
relationships in addition to detailed version information for each file
may be saved in a text file.

Page 33

Quick Start Samples
There are several methods that can be used to add file verification to
your application. This section outlines detailed step-by-step
instructions on several of the common methods.

If you have used previous editions of VersionStamper, you are
probably familiar with the “embedded” method. In this method, you
use the VersionStamper control to interactively create a list of files to
verify in addition to the warning conditions for each file. This is one of
the simplest methods with which to begin. The advantage of this
method is that the file list is embedded into your EXE file so you can
be sure that the correct file list will be verified. Also, this method
allows other VersionStamper utilities to verify your EXE file in case
the conflict is so great that your EXE cannot even load.

Another method that can be used to verify a file list is the “dynamic
run-time” method. This method allows you to specify the files to
verify and warning conditions for each file dynamically at run-time.
Generally, this involves reading the file information from another file
during run-time. The advantage of this method is that you have more
control over which files are verified and which warning conditions are
used. For example, you can check the operating system or the user’s
license before deciding on which files to verify. Also, you can have
your application retrieve the file information list from a central
location such as a server or web site. This way, you can update the file
list once, and all instances of your application will be updated to use
the new verification criteria.

Embedded Verification
There are four basic steps in using this method to add file verification
to your application.

1. Add the Desaware VersionStamper 6 Control (dwvstp36.ocx) to
your application project and place it on a form. If you are planning
to compile both 16 and 32 bit executables, you can use the
dwvstp16.ocx or dwvstp32.ocx instead, these files can be used
interchangeably for 16 and 32 bits where as the dwvstp36.ocx is 32
bit only and is not compatible with the other two files. Refer to the
Files Description topic for more detailed explanation of these files.

Page 34

If your development environment does not support ActiveX
controls, does not allow placement of ActiveX controls or is
formless, then you need to use the Dynamic Verification method in
order to implement file verification.

2. Create the file list and warning conditions.

You specify a list of files to verify by using the Select Files form.
To open the Select Files form, click on VersionStamper’s
“SelectFiles” property to bring up VersionStamper’s Property
Page, then click on the “Select Files” button to bring up the Select
Files form.

If you had earlier used the VersionStamper Conflict Wizard to
generate a VersionStamper Script File, you can import that file list
by selecting the “Input File List” button and selecting the script
file. If you did not use the Wizard to generate a VersionStamper
Script File, you can manually add files to be verified by selecting
one or more files from the Available list box then the Add button,
or the Select Additional Files command button.

If you are using Visual Basic, you can also use VersionStamper’s
Scan Visual Basic Project feature to create a list of dependent files
referenced by your Visual Basic project.

NOTE: If you are not certain which files are required by your
application, we highly recommend that you use the
VersionStamper Conflict Wizard to generate a list of files for you
(even though you may not plan to verify all the files).

The Selected list box contains the files that will be verified. Select
any file in the Selected list box to review or edit verification
attributes for that file. You can also change the file’s reference
information (such as version number, date/time, size, etc) by
double-clicking on the entry in the Selected list box.

For more detail information on the Select Files form, refer to the
Select Files form.

3. Add code to perform the verification and detect file conflicts.

To start a verification, you can use the VersionStamper control’s
VerifyMode or VerifyFile functions.

Page 35

You can initialize the VerifyMode property to “1 – On Load” if
you want the VersionStamper control to start the file verification as
soon as the control is completely loaded. Or, set the VerifyMode
property equal to “2” in your code to start the file verification at
any time. The VersionStamper control will verify its own file list
when the VerifyMode property is set. This method is used for
verifying files within your own application.

VerStamp1.VerifyMode = 2

You can also start a file verification by calling VersionStamper’s
VerifyFile method and passing it the path and file name of an EXE
file that contains VersionStamper embedded file information.
Usually, you would set the file name to your application’s file
name, but you can set it to any file. This method allows you to
create a separate “Rescue” application or “Splash Screen” start up
application that can verify the files for your primary application.
NOTE: When using this method, you need to re-compile your
application each time you change any file list information in order
for the changes to be written to the EXE file.

VerStamp1.VerifyFile = App.Path & "\MAINAPP.EXE”

For example, you can place a VersionStamper control on a form
(which does not ever need to be loaded) in your project and use
that control to embed the file list into your executable file. Then
you can create a separate “Verification” application that displays a
splash screen while it is verifying the files in your main executable.
You would place the “Verification” application in the same
directory as your primary application. You can organize it so that
the verification application does a verification of your primary
application first.

If no conflicts are found it will then “Shell” your main application
with a command line parameter (to indicate that a verification was
performed prior to running the primary application). If conflicts
were found, you have the option of warning your user (giving them
the option to proceed or stop), attempt an update (via the internet
or intranet), or have them contact your technical support with the
conflict report information. Refer to the VsSplash project for an
example.

Page 36

The file verification can be performed at any time, but depending
on how many files you are verifying, the speed of the computer,
and where the files are searched, this process may cause a
noticeable delay in your application.

4. Resolve a conflict report.

When VersionStamper determines a file conflict, it triggers the
FileConflict event. Usually, when a FileConflict event is triggered,
you would want to know which file caused the conflict. The
ReferenceFile parameter in the FileConflict event contains the file
name that you are verifying. The FoundFile parameter contains the
path and file name of the file found on the current machine, this
parameter string is empty if the file was not found. Also, you
would probably be interested in what type of conflict was caused
by this file. The Flags parameter is a Long value containing bit
masks which describe the type of conflict encountered for this file.
Also during this event, you can retrieve additional file conflict
information by accessing VersionStamper’s properties.
VersionStamper includes several sample Visual Basic templates
that retrieve the file conflict information and formats it to produce
a simple conflict report. Refer to the VersionStamper sample
projects for examples.

When this event is triggered, you normally would just increment a
conflict counter and log the results for later use. After all the files
have been verified, VersionStamper triggers the EnumComplete
event. At this time, you would check your conflict counter to see
whether any conflicts were found. If so, you can compile the
conflict information logged earlier and display some type of
conflict report to your user. The information you decide to report
(and resulting actions) is entirely up to you. Be sure to take into
consideration the knowledge your users have of computers, shared
files, file locations, etc.

You can also immediately halt the verification process when a
FileConflict event is triggered by setting the StopVerify parameter
to True. You may want to do this if you are verifying a number of
files and the conflict found would cause a major problem, or if you
do not want your users running your application with any incorrect
files.

So let’s create a quick Visual Basic sample.

Page 37

1. Start with a new EXE project and add the VersionStamper control
to your project, then place the control on the main form.

2. Select the VersionStamper control and then select the “Select
Files” property. This will open the Property Page. Select the
“Select Files” button to open the Select Files form. A list of DLLs
and OCXs should appear in the “Available” list box. Select the
comdlg32.ocx and comdlg32.dll files (or some other random files)
and “Add” them to the “Selected” list box. Usually, the default
warning conditions assigned to the selected files would be
sufficient. For this sample, we’ll force an “older file version”
condition. Highlight the cmndlg32.dll file and double click on it.
The “Edit File Information” form should now be displayed. The
purpose of this form is to allow you to override the file’s
reference information. Increment the file’s “Version Number” and
select the OK button. This makes the reference version number
for the file greater than what actually exists on the hard drive
which should produce a conflict error during the verification.
Select the OK button in the “Select Files” form to close the form,
then the OK button again to close the Property Page form.

3. First, we’ll do a very simple verification. In the “Form_Load”
event of the main form, add the following line of code:

VerStamp1.VerifyMode = vstManualVerify (or 2).

4. In the “VerStamp1_FileConflict” event, add the following line of
code:

Debug.Print ReferenceFile & ": conflict found with " &
FoundFile & ", conflict code = " & Hex$(Flags).

You can also add a label to your form and assign the Label’s
Caption property the same string you assign to the Debug
command line.

Run this sample and look in your Debug or Immediate window.
You should see the following message:

COMDLG32.DLL: conflict found with c:\windows\system\
COMDLG32.DLL, conflict code = 4

Page 38

This indicates that VersionStamper found an older version of the
comdlg32.dll file. Refer to the FileConflict event for more detailed
information on the event parameters.

Using the VersionStamper template files for reporting

We will do a similar example here, but in this case we will use the
VersionStamper template files for reporting conflicts. Steps 1 and
2 are identical to the previous example.

Next, add the following files to your project: english.bas,
vervrfy.bas, and vervrfy2.frm. These files are located in the
VersionStamper “Template” sub directory.

3. In the “Form_Load” event of your main form, add the following

lines of code:

FileToCheck = App.Path & "\VsSample.exe" ' Use the name of your
executable here'
Load VerVrfy2

If ConflictFilesFound Then
 VerVrfy2.Show 1
Else
 Unload VerVrfy2
End If

Now compile the project and assign the executable file the same
name that you assigned to the “FileToCheck” string in Step 3
above. Run the project. A form should appear listing the
cmndlg32.dll file as a conflicting file in the top list box. When you
highlight that file, additional detail information regarding the
conflict will appear below.

This method allows you to use the template files for file
verification and conflict reporting. The VersionStamper control
you place on your main form contains the file list you want to
verify. This list is embedded into the EXE file each time you
compile your project. A VersionStamper control also exists on the
VerVrfy2.frm file, but that control is used strictly for verification
and conflict reporting.

Page 39

Dynamic Verification (OCX Edition Only)

NOTE: This method is not supported in the VBX edition of
VersionStamper.

There are four basic steps when using this method to add file
verification to your application.

1. Add the Desaware VersionStamper 6 Control (dwvstp36.ocx) to
your application project and place it on a form OR add the
Desaware VerScan Component Type Library (dwvsob36.dll)
reference to your application project and create a new instance of
the VerScan object.

If your development environment supports events triggered by
ActiveX components, then you would probably want to choose the
VersionStamper ActiveX component (dwvsob36.dll) rather than
the ActiveX control (dwvstp36.ocx). The VersionStamper control
actually requires the VerScan component so using just the VerScan
component will result in one less file to distribute. After you add
the VerScan reference to your project, you will declare the
VerScan class as an object that triggers events. This declaration
may vary depending on the development platform. In Visual Basic
and other VBA platforms, the declaration is as follows:

Dim WithEvents VersionStamperComp As VerScan

You can then create a new instance of this object. The code to do
this may vary depending on the development platform. In Visual
Basic and other VBA platforms, the code is as follows:

Set VersionStamperComp = New VerScan

2. Create the file list and warning conditions.

There are several ways to dynamically create the file list and
warning conditions. The most common method is to read the data
from a file that contains the file information. The VersionStamper
Conflict Wizard can generate a file list for your application that
can be used by VersionStamper. VersionStamper also includes
additional classes that support parsing from a text file that contains
file list information. The file list information must be formatted in
a command line format that VersionStamper recognizes.

Page 40

3. Add code to perform the verification and detect file conflicts.

You can use the VersionStamper control’s or VerScan object’s
VerifyObjectFile methods to verify a particular file. This method
call requires several parameters which consist of the file
information for the file you want to verify. An example command
line call to VerifyObjectFile2 for the comdlg32.dll file is specified
below.

VerStampComp1.VerifyObjectFile2 "comdlg32.dll", "", &H8009, 0,
&H40000, &H5650005, "4.0.1381.5", "", 0, 185104, 1997, 4, 30, 21,
0, 0
This command line states that a warning be triggered if it found
cmndlg32.dll with a version number earlier than 4.0.1381.5. The
file’s version number is actually specified by the “&H40000” and
“&H5650005” numeric parameters, not the “4.0.1381.5” string
parameter.

When this method is called, VersionStamper immediately performs
a verification on the specified file. Program flow does not continue
until the verification process is completed, unless you have set the
“Delay” property to True. In which case, it will return immediately
and perform the verification at a later time. During the verification,
if a conflict is found, the FileConflict event is triggered. When the
verification is completed, the EnumComplete event is triggered
before it returns from the VerifyObjectFile method call (unless the
Delay property is set).

Page 41

4. Resolve the conflict.

When VersionStamper determines a file conflict, it triggers the
FileConflict event. Usually, when a FileConflict event is triggered,
you would want to know which file caused the conflict. The
ReferenceFile parameter in the FileConflict event contains the file
name that you are verifying. The FoundFile parameter contains the
path and file name of the file found on the current machine, this
parameter string is empty if the file was not found. Also, you
would probably be interested in what type of conflict was caused
by this file. The Flags parameter is a Long value containing bit
masks which describes the type of conflict encountered for this
file. Also during this event, you can retrieve additional file conflict
information by accessing VersionStamper’s properties.
VersionStamper includes several sample Visual Basic templates
that retrieves the file conflict information and formats them to
produce a simple conflict report. Refer to the VsSample sample
project for an example.

When this event is triggered, you normally would just increment a
conflict counter and log the results for later use. After you have
verified all the required files, you would check your conflict
counter to see whether any conflicts were found. If so, you can
take all the conflict information logged earlier and display some
type of conflict report to your user. The information you decide to
report (and resulting actions) is entirely up to you. Be sure to take
into consideration the knowledge your users have of computers,
shared files, file locations, etc.

So let’s create a quick sample.

1. Start with a new EXE project and add either the VersionStamper
control or the VerScan reference to your project. Also add the
VsRTCons.bas file to your project, this file contains several
constants declarations and is located in the VersionStamper
“Template” sub directory. Place the control on the main form OR
make a global declaration of the VerScan object (WithEvents).

Dim WithEvents VerStamp1 As VerScan

2. For this first sample, we will hard code the file’s information into
the VerifyObjectFile2 method so we don’t need to do anything in
this step.

Page 42

3. For the sake of comparison with the embedded method, we will
verify the comdlg32.dll and comdlg32.ocx files. You can attach
the following code to the Form_Load event or to the event when
you want to perform the verification.

Set VerStamp1 = New VerScan
VerStamp1.VerifyObjectFile2 "comdlg32.dll", "",
RTWARN_OLDERFILE Or RTWARN_VERSIONCOMPARE Or
RT_NOREGISTRYSEARCH, RTPATH_DEFAULT, &H40000,
&H5650005, "4.0.1381.5", "", 0, 185104, 1997, 4, 30, 21, 0, 0
VerStamp1.VerifyObjectFile2 "comdlg32.ocx", "{00020430-0000-
0000-C000-000000000046}#2.0#0", RTWARN_OLDERFILE Or
RTWARN_VERSIONCOMPARE Or
RTWARN_NOTINREGISTRY, RTPATH_DEFAULT, &H60000,
&H510045, "6.0.81.69", "", 0, 140096, 1998, 6, 23, 23, 0, 0
Set VerStamp1 = Nothing

The two “Set VerStamp1 =…” lines are not necessary if you are
using the VersionStamper control since it will already exist on
your form.

The parameters passed to the VerifyObjectFile2 methods are
generally not hard coded, but read from a file or retrieved from
some other source. For testing purposes, we will force a file
conflict by specifying a newer version number for the
comdlg32.dll file. At the time this manual was written, the
shipping version of comdlg32.dll was 4.0.1381.5. We will change
that to 5.0.1381.5 by incrementing the major version number in the
vsMS parameter. The modification results in the following line:

VerStamp1.VerifyObjectFile2 "comdlg32.dll", "",
RTWARN_OLDERFILE Or RTWARN_VERSIONCOMPARE Or
RT_NOREGISTRYSEARCH, RTPATH_DEFAULT, &H50000,
&H5650005, "4.0.1381.5", "", 0, 185104, 1997, 4, 30, 21, 0, 0

Note that we did not have to change the “4.0.1381.5” version string
because we are not checking that in this case.

4. In the “VerStamp1_FileConflict” event, add the following line of
code:
Debug.Print ReferenceFile & ": conflict found with " &
FoundFile & ", conflict code = " & Hex$(Flags).

Page 43

Run this sample and look in your Debug or Immediately window.
You should see a message similar to the following:

COMDLG32.DLL: conflict found with
c:\windows\system\COMDLG32.DLL, conflict code = 4

This indicates that VersionStamper found an older version of the
comdlg32.dll file. Refer to the FileConflict event for more detailed
information on the event parameters.

Using the VersionStamper Library Component

We will do a similar example here, but in this case we will read the
file list information from a text file. We will also use the
VersionStamper Library Component for parsing the file list
information and reporting conflicts.

1. Add the “Desaware VersionStamper SW VB# ATL Components”
reference to your project. NOTE: if you are using Visual Basic,
you should select the “VB#” which corresponds to the version of
Visual Basic in which you are developing. For more information
please refer to the Which VersionStamper file should I use section
of this manual.

2. For this step, you need to create a file list that VersionStamper can
read. You can do this either with the VersionStamper Conflict
Wizard, or the VersionStamper control. For our example, add just
the comdlg32.dll and comdlg32.ocx files to the output file. Name
the output file test.vsf and save it in your sample application’s
directory. Also, for our example, increment the reference Version
Number of the comdlg32.dll file by 1 so VersionStamper will
generate a conflict when verifying this file list.

Next, add the following files to your project: VsVfComp.bas and
VsVfComp.frm. These files are located in the VersionStamper
“Template” sub directory.

In the “Form_Load” event of your main form, add the following
lines of code:

 FileToCheck = App.Path & "\test.vsf"
 Load VerVerifyCompForm

 If ConflictFilesFound > 0 Then
 VerVerifyCompForm.Show vbModal

Page 44

 Else
 Unload VerVerifyCompForm
 End If
Now run the project, a form should appear listing the cmndlg32.dll
file as a conflicting file in the top list box. When you highlight that
file, additional detail information regarding the conflict will appear
in the text box below.

The previous example shows you how to use the VersionStamper
Component Library and template files for file verification and
conflict reporting. The VersionStamper Script File (.VSF) contains
the information required to verify the specified files. The
VersionStamper Component Library contains classes to parse the
file and perform verification on the specified files. Conflict
information is returned and can be used for reporting purposes.
You can customize the template files to display the information
you want your customers to see.

Emergency Rescue Program
What about situations where components are missing or so
incompatible that your application will not even load? For these cases,
the following solution is provided. VersionStamper makes it possible
for one program to perform a file component verification on another
executable. We call this type of program an “emergency rescue
program” due to its ability to solve this type of problem.

You can turn both the vrsqtest and vrsqtst2 sample projects located in
the Samples directory into stand-alone emergency rescue programs
using the following steps:

1. In either project, open the main form for the program
(vrsqtest.frm or vrsqtst2.frm).

2. Change the line that sets the FileToCheck$ variable so that it is
set to the name of your application (the one that you wish to
“rescue”).

3. Compile the project under the name of your choice. Feel free to
modify any other parts of the program (form captions, report
format, etc.).

Page 45

That’s all there is to it - you now have an emergency rescue program
for your application. This application should be placed into the same
directory as your primary application. For cases where even these
simple Visual Basic applications cannot run, try using our
VsRescue.exe utility. VsRescue is an ATL-based rescue program that
should run in most situations.

Creating a Component List at Run-Time
You can create a list of components to check during run-time.
VersionStamper exposes an ActiveX method that allows you to
specify a file for which to search during run-time. This method makes
it possible for VersionStamper to verify many combinations of file
lists using different warning conditions. Refer to the vsrtdemo.vbp
project for information on the parameters. The VersionStamper classes
also use this method to verify a file list based on a text file. Refer to
the VsFileLs or VsWebLst projects for information on the format.

Page 46

Background Information
This section introduces version resources and provides basic
information on how Windows works with components. It also outlines
a number of distribution scenarios and strategies.

VersionStamper is designed primarily for Visual Basic developers
who are distributing applications or components. If you are authoring
your own components, you might also want to refer to chapter 25 of
the book “Dan Appleman’s Developing ActiveX Components for
Visual Basic 6.0: A Guide to the Perplexed” (ISBN 1-56276-576-0)
which discusses versioning from the component developer’s
perspective.

The Version Resource
The version resource is a block of data that can be placed into a
Windows executable, DLL, custom control or other file that has an
executable header. Starting with version 4.0, Visual Basic allows you
to directly add version resource information to your application.
VersionStamper includes the dwvstamp.vbx control which can be used
to embed a version resource into a Visual Basic 3.0 executable.

A version resource is divided into three parts: the fixed file
information, the translation table, and the string file information. The
following figure illustrates the contents of a version resource:

Page 47

Outline of a version resourceFixed File Information
Contains information that can be
represented by numbers or individual bits.
Includes true file version number, product
version number, and the type of the file.
Represented by a FIXEDFILEINFO data
structure.

Language 1 Language 2 Language 3

Translation table lists all of the languages in the
version resource. Each language has its own set
of strings. dwvstamp.vbx supports up to 16
languages in a file.

FileDescription: FileDescription: FileDescription:

CompanyName: CompanyName: CompanyName:

LegalCopyright: LegalCopyright: LegalCopyright:

etc.... etc.... etc....

Each StringInfo block (one for each language present in the file) contains text descriptions of the
file. These correspond to the exe..... properties in the dwvstamp.vbx control.

Figure 1

Outline of a Version Resource

Fixed File Information
The FIXEDFILEINFO data structure is present in every file that has a
version stamp. It is defined below.

VB Declaration:

Type FIXEDFILEINFO ' 52 Bytes
dwSignature As Long
dwStrucVersion As Long
dwFileVersionMS As Long
dwFileVersionLS As Long

Page 48

dwProductVersionMS As Long
dwProductVersionLS As Long
dwFileFlagsMask As Long
dwFileFlags As Long
dwFileOS As Long
dwFileType As Long
dwFileSubtype As Long
dwFileDateMS As Long
dwFileDateLS As Long

End Type

The following table describes each of these fields:

Field Type Description
DwSignature Long Always contains &HFEEF04BD.

Automatically set by dwvstamp.vbx.
DwStrucVersion Long The version of this structure. Will be

greater than 29. Automatically set by
dwvstamp.vbx.

DwFileVersionMS Long The high 32 bits of the file version
number. Set by the dwvstamp.vbx
FileVersion property.

DwFileVersionLS Long The low 32 bits of the file version
number. Set by the dwvstamp.vbx
FileVersion property.

DwProductVersionMS Long The high 32 bits of the product
version number. Set by the
dwvstamp.vbx ProductVersion
property.

DwProductVersionLS Long The low 32 bits of the product version
number. Set by the dwvstamp.vbx
ProductVersion property.

Page 49

DwFileFlagsMask Long Any combination of the constants
described in the Version File Flags
table that follows. The presence of a
flag in this parameter indicates that the
value of the dwFileFlags parameter
for that bit is valid. Refer to the
FileFlags table that follows for
information on the dwvstamp.vbx
properties that set these flags.

dwFileFlags Long Any combination of the constants
shown in the Version File Flags table.
Refer to the FileFlags table that
follows for information on the
dwvstamp.vbx properties that set these
flags.

dwFileOS Long One of the constants that define
operating system types. This field is
set automatically by dwvstamp.vbx.

dwFileType Long One of the constants that define file
types. dwvstamp.vbx currently marks
flags as 16 bit Windows applications.

dwFileSubtype Long One of the constants defined in the
verinfo.bas file that begin with the
VFT2_ prefix. Set to zero by
dwvstamp.vbx.

DwFileDateMS Long The high 32 bits that specify the date
and time of the file’s creation. Neither
the Microsoft resource compiler nor
dwvstamp.vbx set this value.

DwFileDateLS Long The low 32 bits that specify the date
and time of the file’s creation. Neither
the Microsoft resource compiler nor
dwvstamp.vbx sets this value.

All version comparisons should be based upon the information in the
FIXEDFILEINFO structure. For more information, refer to the
Technical Information section in this manual.

Page 50

The dwFileFlags field contains flag bits that describe the type of this
particular build allowing you to flag an executable as a debug version
or indicate other characteristics. These flag bits are described by
constants in the VerInfo.bas file and can be set using dwvstamp.vbx
properties.

Constants Description
VS_FF_DEBUG This file contains debugging infor-

mation. Set by the dwvstamp.vbx
FlagDebug property.

VS_FF_INFOINFERRED The version resource for this file is
dynamically allocated and some of the
blocks in the resource may be incorrect.
Not used by dwvstamp.vbx.

VS_FF_PATCHED This file has been patched. It may differ
from the original file that has the same
version number. Set by the
dwvstamp.vbx FlagPatched property.

VS_FF_PRERELEASE This is a pre-release version of the file.
Set by the dwvstamp.vbx FlagPre-
Release property.

VS_FF_PRIVATEBUILD This version of the file is built specially
as defined by the PrivateBuild
StringFileInfo string. Set by the
dwvstamp.vbx FlagPrivate property.

VS_FF_SPECIALBUILD This version of the file is built specially
as defined by the SpecialBuild
StringFileInfo string. Set by the
dwvstamp.vbx FlagSpecial property.

Support for Multiple Languages
The FIXEDFILEINFO section of a version resource contains numeric
information which obviously does not vary according to the language
in use. The final section of a version resource consists of text
information that describes this file. This text information will naturally
vary depending on the language in use. For example: you may wish to
have a file description available in both English and Japanese.

Page 51

Version resources include text strings describing the characteristics of
the file such as the file description, copyright notice and so on. The
resource can contain multiple sets of these strings - each in its own
language.

The translation table in a version stamp defines the language and code
page combinations that are included in the version stamp. It takes the
form of an array of integer pairs. The first integer is the language code
as listed in the Windows Languages table that follows. The second
integer defines the character set or code page to use for that language
as shown in the Windows Character Sets table that is located in the
Technical Information section of this manual.

It is perhaps an indication of how new this feature is, that the language
and code page definitions are not followed consistently by every
application. For this reason, it is important to look at the translation
table if one exists. You need accurate language and code page
information to access the StringFileInfo strings that are defined in the
next section.

If a translation table is not defined, the most common language/code
combinations are &H040904E4, indicating U.S. English and the
standard multilingual Windows character set, and &H04090000,
which indicates U.S. English and the 7 bit ASCII character set.

For a list of all available character sets and languages, refer to the
Technical Information section of this manual.

The VerInfo example program illustrates how the translation table for
a version resource can be read, and shows how to locate the U.S.
English entry in the table.

The dwvstamp.vbx control allows you to specify up to 16 languages
character set pairs in an application. Each of these languages may
have its own set of StringFileInfo strings.

String Information
 The StringFileInfo entries in a version resource are strings that
describe certain characteristics of the file. A file may contain unique
strings for each language supported, thus the language/code page
information is used to access this data as well.

The dwvstamp.vbx control allows you to set any of these strings. It
supports up to 16 sets of strings at once, each with its own language.

Page 52

How Windows and Visual Basic Load Components
In order to take full advantage of VersionStamper, it is helpful to
understand a little bit about how Windows loads components at run-
time. Once you understand this, you will not only be able to use the
VersionStamper control effectively, but you will understand why these
problems occur in the first place.

Searching for Components
Every Windows executable file (OCX, VBX, DLL, EXE or others)
has a module name. This module name should be unique and will
usually match the file name. This module name is also kept in the
Windows internal task list to keep track of which programs are
running.

For this reason, you should give all of your VB programs unique
names. Under 16 bit Windows, attempting to run two programs with
the same module name will often cause problems, even general
protection faults.

16 Bit Applications
1. When Windows attempts to load a Visual Basic custom control or

DLL, it will always confirm first that the module requested is
already present in memory. There are NO exceptions to this. If a
VBX or DLL of the same name has been already loaded by
another application, that VBX or DLL will be used by the newly
launched application as well.

1a. When loading 16 bit OLE controls from your
application, Windows always verifies that the
control is registered in the Registry - even if the
control already exists in memory. If the OLE
control is not registered or not found in the
specified registered directory, it will fail to load.
Refer to the Registry is not fool proof comment
at the end of this section for additional
information.

2. The current directory is searched next. The current directory can
be set during launch by the program manager, but there is no way
to guarantee that it will be the same directory that contains your
application.

Page 53

3. The Windows directory is searched next. This directory can be
determined using the GetWindowsDirectory API function.

4. The System directory is searched next. This directory can be
determined using the GetSystemDirectory API function.

4a. If running under Windows NT, the 32 bit
System directory is searched next.
Unfortunately, there is no API function that
returns the 32 bit System directory when
running a 16 bit application.

5. The project directory (the one that contains the executable) is
searched next.

6. Finally, the directories specified in your PATH environment are
searched.

Page 54

Figure 2
Search Scheme for a 16 bit DLL or VBX 1

Page 55

Is
component
registered?

File found
in registered

directory?

Load this OCX

Search for a 16 bit OCX

Yes

No

No
Is

component
in memory?

OCX not found
Error!

No

Yes

Yes

Increment file lock
count and exit

Figure 3

Search Scheme for 16 bit OCX

Page 56

The project (MAK) file for a project can contain a full or relative path
for a Visual Basic custom control. At design-time, this directory will
be searched after Windows verifies that the VBX is already loaded
into memory, and before any other directory. However, this full or
relative path is ignored in the final executable. For this reason, you
should always specify a normal search for the embedded file
information for custom controls. Since OLE controls are registered,
the project will normally contain the OLE control’s GUID string. This
string is used to search for the OLE control in the Registry. For this
reason, you should always specify that the Registry be searched for
OLE controls.

Dynamic link libraries follow a nearly identical process with one
exception. If a full path is specified for a dynamic link library in a
Declare statement, only that path will be checked for the DLL (after
the obligatory test in memory). If there is a conflict between declare
statements that use the same DLL (for example: one specifies a path
and the other doesn’t), the first one used when the program runs will
take effect (since once the DLL is loaded successfully into memory, it
will continue to be found in memory for future calls until it is
unloaded). Refer to the Registry is Not Foolproof comment at the end
of this section for information concerning calling exported functions
from OLE controls.

32 Bit Applications
1. When a Windows application attempts to load a component or

DLL, it will always confirm first that the module requested is
already present in its own process space (refer to the Beware of
Paths comments for a warning). The exception is when loading
OLE controls. When loading OLE controls, Windows always
confirms that the control is registered in the Registry - even if the
control already exists in the application’s process space. You see,
OLE controls are actually a special type of DLL, they can export
functions that can be called by other applications. Since calling a
DLL will load it into the calling application’s process space, the
same occurs when you call an exported function from an OLE
control. But, this method of loading an OLE control will not
enable the OLE automation features of the OLE control. Refer to
the Registry is Not Foolproof comment at the end of this section
as to how this situation can occur.

Page 57

2. If the OLE control is registered in the Registry, Windows will
obtain the path of the file from the Registry and load it from
there. If the file does not exist in the registered path or is not
registered, Windows will display an error message and quit your
application, it will NOT attempt to search elsewhere for that file.

3. The application’s directory (the directory that contains the
executable) is searched next.

4. The current directory is searched next. The current directory can
be set during launching by the program manager, but there is no
way to guarantee that it will be the same directory that contains
your application.

5. The System directory is searched next. This directory can be
determined using the GetSystemDirectory API function.

5a. If running under Windows NT, the 16 bit system directory is
searched next. Unfortunately, there is no API function that
returns the 16 bit System directory when running a 32 bit
application.

6. The Windows directory is searched next. This directory can be
determined using the GetWindowsDirectory API function.

7. The App Paths registry key in the System Registry is searched
next for the name of the EXE that is running. This registry key
allows you to specify additional paths that Windows will search
when loading DLLs and other files for that specific EXE file.

8. The directories specified in your PATH environment are
searched.

9. Finally, if you are running in Windows 98, the System32
directory is searched.

 Beware of Paths There is one major difference regarding loading dynamic link libraries in 32
bit Windows. Under Win32, Windows not only compares the module name
of DLLs but also the path from which the file was loaded. If you specify a
path for a DLL in your declare statement, Windows will attempt to verify
whether that particular file has been loaded into your application’s process
space. Even if the same file is already loaded into your application’s process
space, Windows will load the DLL again if their paths do not match. This is
the case for Visual Basic 4.0, whether this behavior is true on other
development platforms is yet to be seen.

Page 58

In addition, if you specify a path for a DLL in Visual Basic 4.0, you will get
an error message if the file is not located in that specific path even if it is
located somewhere else in the normal search path.

Registry is not
fool-proof

OLE controls are similar to DLLs and can export functions. If you
are calling an exported function in an OLE control, then the search
order is similar to that of a DLL. This brings up a very interesting
situation where the OLE control used may be loaded from the
normal search path instead of from the registered directory. If you
call an exported API function in the OLE control file before loading
the OLE control in your application, then you may be loading the
control from the normal search path instead of the Registry.

In 16 bit, when you later load your OLE control, it will still check
the Registry, but since it cannot load the same module more than
once, it will use the OLE control loaded via the API function call. If
your search path happens to find an older version of the OLE control
before the current version, then you will be using an older version of
the OLE control with your application. Not only that, but you will
affect every subsequent application which uses that OLE control
since all subsequent applications will just use what’s in memory.

The impact is minor in 32 bit environment. The worse that can
happen is that you will end up with two different versions of the
OLE control mapped into your process space.

Page 59

Is
component
registered?

File found
in registered

directory?

Load this OCX

Search for a 16 bit OCX

Yes

No

No
Is

component
in memory?

OCX not found
Error!

No

Yes

Yes

Increment file lock
count and exit

Figure 4
Search Scheme for 32 Bit DLL

Page 60

Is
component
registered?

File found
in registered
directory?

Load this OCX

Search for a 32 bit OCX

Yes

No

No
Is

component
in memory?

OCX not found
Error!

No

Yes

Yes

Increment file lock
count and exit

Is path of
file in memory

the same?

No

Yes

Figure 5

Search Scheme for 32 Bit OCX

Page 61

Problems with Updating Components
16 bit Windows allows code modules to be shared - in fact, it requires
it. This applies to all code modules including executables, dynamic
link libraries and custom controls. The advantages of this approach are
obvious in terms of memory saving and the saving of disk space. The
key disadvantage is part of the reason that VersionStamper exists -
once another application loads an incompatible version of a
component, any attempt to load that component will use the version
that is currently in memory. Under Win32, code modules are mapped
into the calling application’s process space.

Each code module under 16 bit Windows has a reference count that
keeps track of how many applications are using it. When an
application closes, it frees the code modules that it is using,
decrementing their reference count. When the reference count for a
module reaches zero, Windows unloads it from memory. This
mechanism poses a serious complication to the problem of updating
code modules. Windows keeps track of the location of each code
module on disk so that it can load segments from the module as
needed. It also locks the code files so that you cannot overwrite them
(assuming share is loaded). If you were able to overwrite a code
segment that was in use, you would receive a certain General
Protection Fault as soon as Windows attempted to load a new segment.
Not only that, but overwriting a module would not update the
segments of the module that are already in memory.

You may ask: what about the possibility of freeing the module that is
currently in use by force, then overwriting the module file with an
updated file? This also will not work. Each application maintains
pointers to the code modules that it is using, so any attempt to free a
module that is in use will lead to a General Protection Fault as well. It
is necessary to close all files that are using a component before you
update that component.

For this reason, VersionStamper focuses on detection of problems
rather than repair. By identifying exactly which files are incompatible,
and whether they were detected in memory or on disk, you or your
customers will be able to determine the best course for solving the
problem based upon the environment in which the program is running.

Page 62

Under Win32 the nature of the update problem is different, but still
exists. Shared components are mapped into the individual process
spaces, making it impossible to free a component from another process
space. In many cases the operating system prevents you from
overwriting a file that is currently in use by another application. In
other cases you can overwrite the file, but risk raising an exception in
the other application. Fortunately, there are a number of well defined
techniques for safely updating components, though in many cases they
require you to reload Windows or reboot the system. VersionStamper
includes a component update object that can help you implement
automatic component updating if you choose to do so.

Typical Distribution Problems: Why They Occur
and How to Fix Them

Now that you know how Windows loads components, here are some
of the common scenarios that occur that relate to component
incompatibility and are often very difficult to track down.

A Component was Incorrectly Registered, or an
Incompatible Component was Registered
 (ActiveX Controls)
ActiveX controls must be registered in the Registry. When loading
ActiveX components in Windows NT, Windows 95, and Windows 98,
the Registry is searched first. If the component is not found in the
Registry, then the application is normally terminated. If the incorrect
component is registered, Windows use will that file.

VersionStamper Report:
If the component can be registered, VersionStamper can search the
Registry for that component. Additionally, it can also flag a warning
if the component is not registered. VersionStamper will report any
conflicts based upon the warning conditions that you specified.

Solution:
Review the “other files” and register the latest version of the
component in conflict (use Visual Basic’s Project –
Components...Browse... command to specify the path of the control to
register).

Page 63

A Newer Version of a Component Breaks Existing
Code
In the ideal world this would never happen, but in practice it does.
What happens at this point is that an updated version of a component
is somehow incompatible with the prior version.

VersionStamper Report:
The default VersionStamper test is for older components only. If you
are concerned about this type of problem, you can have file conflict
warnings triggered for newer components as well - in fact, you can
always trigger a warning and have your own verification code decide
whether there is a problem or not. The report will once again detail
any conflicts based on the warning conditions that you specified.

Solution:
Contact the vendor of the control and report the problem as soon as
possible. In the mean time you may wish to re-install the prior version
of the control. If a second application requires the newer version of the
control, you may have a situation where that application cannot run at
the same time as yours (unless your application is 32 bit, or unless you
are running in Windows NT and assign your application to run in a
separate memory space) until your receive an updated control that
supports both.

A subtle, but very
effective strategy!

You probably can’t anticipate every possible incompatibility
problem that may occur on your target system - so how do you set
the warning conditions for the file?

Well, there is no reason to limit yourself to a single rescue program.
Set the warning conditions for your file and your normal rescue
program to detect older versions, but include also a second rescue
program that is embedded with the exact list of components used by
your primary application - except that the warning conditions are set
to always warn for each component. This will produce a complete
report of the actual components found on the target system - an
invaluable tool for your technical support personnel.

Page 64

Ability to update
warning

conditions.

This is a good example on how retrieving a file list to verify from a
web site can be very useful. Once you are aware of this problem,
you can edit the text file to change the warning conditions for the
affected file such that VersionStamper will report a conflict for this
particular version.

An Older Version of a Component is in the
System Directory (32 bit Windows)
Similar to the problem above. Under Windows NT, Windows 95, and
Windows 98, the System directory is searched before the Windows
directory. This means that if an older component is present in the
System directory, it will be loaded even if the later component is
correctly in the Windows directory.

VersionStamper Report:
A file verification with VersionStamper will report a file conflict in
this situation. The desired (reference) file and version will be listed as
will the file that was actually found. The report will show that the file
was found first in the System directory, and the other file’s report will
indicate that a later version of the component was found in the
Windows directory.

Solution:
Move the later version of the control from the Windows directory to
the System directory.

Another Application Overwrote the Latest
Version of a Component
 This is also an extremely common problem. It is caused when an
application does not employ an installation program that uses the
version resources to determine whether it should update a file (or
when a component does not have an embedded version resource).
Any application that is installed with a batch file should be
automatically suspect.

VersionStamper Report:
A file verification with VersionStamper will detect the older version of
the control and report where it was found. The other file’s report will
indicate that no later version of the control were found.

Page 65

Solution:
Re-install your application. If you can locate the offending program,
complain to the developer and avoid re-installing it. This problem is
especially common with lower quality shareware or freeware products.

A VB Executable was Overwritten During a Re-
install
This problem occurs naturally with programs that are updated
periodically. In an ideal universe, a user would throw out old
distribution disks any time an update arrives. In practice, this does not
always occur. When the user re-installs the program, it is possible that
any Visual Basic executables will be overwritten if they do not contain
any version resources which will allow the installation program to
check for an existing newer version of the program.

Solution:
For Visual Basic 3.0 executables, use VersionStamper to embed a
version resource into your application. Be sure to update the
FileVersion property with each release (including internal releases).

A Component was Accidentally Deleted
or more likely - an application was distributed without all of its
components.

This is one situation that Windows itself can detect. Visual Basic
reports on any custom controls that are not found. The error report is
not as precise for DLL function calls.

VersionStamper Report:
VersionStamper will report on any components that are not found in
its search path.

Solution:
Use VersionStamper’s Conflict Wizard or Visual Basic’s Distribution
utilities to ensure that you include all required components.

Page 66

The PATH has Changed
This problem is unusual. It only occurs when applications depend
upon the PATH to locate components - something that is not common.
The majority of applications use the System directory or their own
project directory for components. The problem is similar to that of the
Windows and Windows System directory - the wrong component can
be found.

VersionStamper Report:
A file verification with VersionStamper will report a file conflict in
this situation. The desired (reference) file and version will be listed as
will the file that was actually found. The report will indicate which
files were found first and any other files with the same name that were
found in the path.

Solution:
Copy the latest version of the component into your System directory.

An Older Version of a “Dependent” File was
Found
For example, some of the ActiveX controls in your application may
require a later version of MFC40.DLL (the run-time ActiveX control
library), or other DLLs other than those provided with Visual Basic or
Windows. Usually, your component’s manual will contain information
regarding additional support files and the version number of those files
which are required by the control. Some of these files may not be
detected by the “Scan Project” or Dependency Scan feature of
VersionStamper. For best results, use the Process Scan feature of the
VersionStamper Conflict Wizard.

VersionStamper Report:
Will not identify this conflict unless the files are included in the file
list to verify.

Solution:
Use the VersionStamper Conflict Wizard to retrieve a list of the files
required by your application. Be sure to check the “file distribution
list” of any components used in your application to make sure all
required files are accounted for. Manually add any additional
“dependent” files to the file list to be verified.

Page 67

An Older Version of a Component is in the
Windows Directory (16 bit Windows)
In prior versions of 16 bit Windows, the Windows directory was
searched before the Windows System directory. This means that if an
older component is present in the Windows directory, it will be loaded
even if the later component is placed in the correct location in the
System directory.

This problem is all too common as some programs continue to install
components into the Windows directory (which until VB 2.0 was, in
fact, the recommended practice).

VersionStamper Report:
A file verification with VersionStamper will report a file conflict in
this situation. The desired (reference) file and version will be listed as
will the file that was actually found. The report will indicate that the
file was found first in the Windows directory, and the other file’s
report will indicate that a later version of the component was found in
the System directory.

Solution:
Delete the file in the Windows directory. Exception: network systems
with shared system directories often load components in the Windows
directory. In this case, copy the latest version of the component into
your Windows directory.

An Older Version of a Component is Present in
Memory (16 bit Applications)
This common scenario usually occurs when another application has a
private copy of a component that it loads from its project directory.
When you run an application that requires the same component,
Windows will locate the other application’s version of the component
already in memory and your application will begin to use it. If it is an
older incompatible version, your application may fail to work correctly
or even cause a General Protection Fault.

Page 68

VersionStamper Report:
Assuming your executable was stamped with embedded component
information, a file verification with VersionStamper will report a file
conflict in this situation. The desired (reference) file and version will
be listed as will the file that was actually found. The report will note if
the file was found in memory. A list of all other components of the
same name found anywhere in the path or Windows and System
directory will be produced as well.

Solution:
Review the “other” files list and locate the latest version of the control.
Place this latest version in the System directory and delete all other
versions of this control on your disk. You will probably have to close
other applications using that component in order to perform the copy,
and certainly in order for the solution to take effect. The safest
approach is to exit Windows, make the changes, and then re-enter
Windows.

Strategies for Distributing Component Based
Programs

Expensive Strategy: Don’t Use Custom Controls
An obvious approach to avoiding component incompatibilities when
distributing Visual Basic applications is to avoid using custom
controls in general. This approach does, however, involve giving up a
large portion of the power and flexibility that Visual Basic derives
from the vast array of components that are currently available. It also
involves an added cost, as even the most expensive custom controls
are far less expensive than developing the same functionality on your
own.

Writing your own DLLs and custom controls is also expensive and
only minimizes the problem - the distribution problems listed earlier
can still occur.

Unreliable Strategy: Place Controls in the Project
Directory
Some vendors have taken the approach of placing copies of the
components used by their application in their own project directory.
This approach has a number of problems:

Page 69

(16 bit Windows)
1. Should the current directory not match the project directory,

these controls will not be loaded if another component of the
same name exists in the current directory, Windows directory,
System directory or anywhere else in your PATH.

2. This approach does not resolve conflicts which occur when
another application loads (from a different directory) one of the
components used by your application. If that component is
incompatible, problems will occur should the other application
run first. These type of incompatibilities are difficult to detect
since they depend upon the other application and the sequence in
which the programs are loaded.

3. This approach wastes disk space.

(32 bit Windows)
1. If the control can be registered, other installation programs may

“re-register” the component in another directory.

2. This approach wastes disk space.

Best Strategy: Use System Directory and
VersionStamper
True, we are biased here - but the whole idea of VersionStamper is to
take advantage of the component-solution based programming model
that is so ideal for Visual Basic. Our recommendation is as follows:

1. Place any components that are unique to your application in your
own project directory - no need to clutter up the System directory
with components that will never be shared.

2. Place all third party controls, DLL’s or other shared components
in your system or Windows directory (depending upon whether
you are on a stand-alone or networked Windows system).

3. Be sure to rigorously follow correct installation procedures and
never overwrite a later version of the control that your customer
may have obtained elsewhere.

Page 70

4. Use only supported controls from reputable companies. This is
not just a sales pitch (though we admittedly consider ourselves a
reputable company and do support our controls). Components
are very complex (and becoming more so as the technology
advances - OLE controls, for example, are considerably more
sophisticated than VBXs). Despite the extensive testing that
component vendors apply to their controls, some bugs will slip
through. When a bug due to a new release breaks existing code,
you will want to deal with a vendor that can fix the problem and
provide you an update quickly. Saving a few bucks in the near
term can cost you dearly through the life of your program if the
company that sold you the control can’t make enough money to
survive.

5. Use the VersionStamper control to embed a list of the
components used by your program into your executable. Provide
an emergency rescue program so that your technical support
people will be able to walk the customer through a file
verification process to determine if any incompatibilities exist on
their target system. Even though we provide the ability to
perform a verification on load, frankly we prefer to use a stand-
alone program (refer to the VerSpash project for an example)
since the verification process does slightly lengthen the loading
process.

Page 71

Using VersionStamper
The following details the primary functionality of the VersionStamper
control, each has its own set of properties.

OCX and VBX
Embedded File information: This is the list of components (DLLs,
OCXs, VBXs, etc.) that are embedded into the executable with the
desired warning conditions. The VersionStamper control can use this
information at run-time to locate incompatibilities between the desired
component versions and those actually present on the system.
Properties exist to scan through an executable and read this embedded
information as well.

Conflict Resolution properties: These properties are used to read
information about the component incompatibilities that exist at run-
time. The actual conflict detection is performed by the
VersionStamper control and is triggered under program control.

VBX Edition Only
Version Resource properties: These properties are used to define the
version resource for a Visual Basic 3.0 executable. The dwvstamp.vbx
control automatically embeds the information from these properties
into a standard Windows version resource. This information is
available in the VersionStamper online help only.

Embedded File Information
One of the most important features of the VersionStamper custom
control is its ability to embed component information into your
executable. This information consists of a list of files. For each file
you specify a version or file date that typically represents the version
used at the time of release. You also specify a set of warning
conditions. These warning conditions determine the situations in
which the VersionStamper control will trigger run-time
incompatibility warnings.

Page 72

SelectFiles Property
Click on the button in the property window to bring up the Select
Files dialog box that allows you to embed the version information for
custom controls, DLLs, EXE’s and other components into the
executable of your Visual Basic application. For the OLE control
edition, this brings up VersionStamper’s Property Page, select the
Select Files... button to display the Select Files dialog box.

Using the Select Files Dialog
The Select Files dialog has four major sections. (Note: the Select
Files dialog box in the VBX and MFC OCX edition is a subset of
what is shown.)

The Available list box creates a default list of all of the components
on your system. These include dynamic link libraries, Visual Basic
custom controls, and ActiveX controls (.OCX extension). You can
also use the Directory & File Filter (OCX edition only) button to
select additional files to display in the Available list box.

Any time you click on an entry in the Available or Selected list box,
the version information for that file will appear (if available) in the
File Details list box. When selecting an entry in the Available list
box, the version information will be displayed for the specified file.
When selecting an entry in the Selected list box, the version
information will be displayed for the first file that is actually found on
the current system for the specified component name (using a normal
Windows search).

Use the Add or Remove buttons to add controls from the Available
list to the Selected list. You can also double click on entries in the
Available list to add them to the Selected list. You can select multiple
entries in the Available list, all of which will be added to the Selected
list. Finally, you can use the Select Additional Files button to add
files not displayed in the Available list box to the Selected list box.

Page 73

Figure 6
Select Files Dialog Box

The Selected list box contains a list of those components that you wish
verified for your application at run-time. VersionStamper allows you
to embed two lists of components to check (MFC OCX edition only)
depending upon whether your compiled program will be a 16 or 32 bit
executable. Select the list that you want to create (the default select list
will be in the same environment as the VersionStamper control).

The target version number, file date, and size are also displayed in the
Selected list box. You can press the Enter key when an entry is
selected, or double click on an entry to display the Edit File
Information dialog box for the selected entry.

The Edit File Information dialog box allows you to change some of
the file’s information. If a file does not have version information, you
can still add a version number in anticipation that it may have version
information on the target system. (Note: the Edit File Information
dialog box may not include all of the fields shown below depending on
which edition of the VersionStamper control you are using.)

Page 74

Figure 7

Edit File Information Dialog Box

For the MFC ActiveX edition, the Display Selected List frame
determines whether the 16 bit or 32 bit file list is displayed in the
Selected list box. Files added to or removed from the Selected list box
modifies the 16 bit or 32 bit file list based upon whether the 16 bit or
32 bit option button is selected. The Scan Project scans for 16 bit or
32 bit DLL files based on whether the 16 bit or 32 bit option is
selected.

The Scan Project command can only scan Visual Basic projects. Be
sure your project is saved before using this feature to scan your
project. The Scan Project button displays a file dialog box which lists
Visual Basic project files. Selecting a file in this dialog box will cause
that project to be scanned for Visual Basic custom controls and
dynamic link libraries referenced in “Declare” statements. These
components will be added automatically to the Selected list box. For
the OCX edition, this command can parse the “#ifdef Win32 Then”
directive and add the appropriate DLLs depending upon whether the
16 bit or 32 bit option button is selected. The parsing of the #ifdef
directive is limited to a single #ifdef level and it cannot recognize
constants other than “Win32” or “Win16”.

Page 75

Note on Project files: although Visual Basic project files contain the
actual file names of the components used in the “Object=“ statement, it
actually searches the Registry using just the component’s TypeLib
identification number and version. This allows the 16 bit version of
Visual Basic to open a 32 bit project file, all references to 32 bit
components will automatically load their 16 bit equivalent. The same
applies to VB 32 opening a VB 16 project. VersionStamper’s Scan
Project feature mimics Visual Basic’s behavior, allowing you to create
both lists regardless of whether your project was saved as a VB 16 or
32 project. The Scan Project feature can also include the DLL, VBX,
and OCX dependency files if the Include Dependents check box is
selected. You can also apply a filter list of dependent files to exclude
when scanning a project. This filter list may be edited by selecting the
Dependent File Filters... command button. Some components may
require additional support files that VersionStamper may not detect.
These files are usually documented in the component’s user manuals
and must be manually added to the Selected list.

The Scan Dependents command button adds a list of the dependency
files of a selected file to the Selected list box. This is generally used
for files that are manually added to the file list since the Scan Project
feature will automatically perform a recursive scan on all dependent
files.

The Warnings option button displays a set of warning conditions for
the component in the Selected list box that is currently highlighted.
The default is to warn if an older version of the component is found.
This warning can be based upon the version resource (if one exists) or
the file date, time, and size - or all of these. You also have the option
of triggering a warning if a newer version is present. Checking both
newer and older causes a warning to be triggered if the version does
not exactly match the one requested.

Checking the Special check box causes a warning to be triggered if
any of the flags in the FileFlags field of the FIXEDFILEINFO portion
of the version resource is set. This allows you to detect Debug,
PreRelease, PrivateBuild, Patched and SpecialBuild files.

The Always check box causes a warning to always be triggered for the
selected file. This is useful if you wish to create your own custom
warning conditions. As you will see, the VersionStamper control
makes it possible for you to add your own Visual Basic code to the
verification process and to customize it to suit yourself.

Page 76

The ATL edition includes additional warnings such as warn if the
found file’s TypeLib version string is older or newer than that
specified. The TypeLib version only supports major and minor
version numbers, for example 2.1. Also supported in the ATL edition
is warn if the found file’s FileVersion string is older or newer than
that specified. Note that the FileVersion string will be converted into
a number before comparing, thus it will be a numerical comparison
rather than a string comparison. Also note that some DLLs
FileVersion string resource includes additional text that are not
related to version information.

When a file is added to the Selected list box, it is scanned to determine
whether it contains a type library. If so, the Search Registry and warn
if Not Registered in Registry check boxes are automatically selected.
Some files may be registered in the Registry even though they do not
have a type library, but VersionStamper will not find them in the
Registry because it only searches the TypeLib branch so it is best to
leave the “warn if Not Registered in Registry” check box unchecked.

The Path option button allows you to select where the
VersionStamper control will search for the control at runtime. The
default is a normal Windows search.

The MFC edition of VersionStamper supports two additional path
overrides. A full path search causes the VersionStamper control to
only search in the exact directory in which it was originally found. A
relative path search causes the VersionStamper control to only search
in the directory in which it was originally found relative to the current
directory. In practice you will almost always want to perform a normal
search. The only exception is where you have specified a full path in
the Declare statement in your VB project (a practice which is
discouraged), or a particular DLL has to be located in a specific
directory.

The ATL edition of VersionStamper supports additional path
overrides, most of which are self-explanatory. The Relative to
UserDefined directory mode will search for a file relative to a user
defined directory as specified in the VersionStamper control’s
UserDirectory property. This is used for situations where files are
installed in a private directory or a directory that the end user can
specify during installation. This allows your primary application to
retrieve the directory before running the verification. The Relative to
Reference File’s directory mode will search for a file relative to the
specified reference file’s directory. This will be mainly used for

Page 77

dependents of registered files that are installed in private directories.
The specified “Reference File” must also be in the list of files
searched. An example of this are the ADO DLLs which are installed in
the \Program Files\Common Files\System\ADO directory. Some of
the ADO files are self registering, thus VersionStamper would find
them. But dependents of these registered files are not registered and
VersionStamper would not find them under the default search.

The OK button updates the VersionStamper control according to the
changes you’ve made. The Cancel button discards all changes.

NOTE: File lists embedded using the MFC edition (dwvstp32.ocx)
control cannot be read by the ATL edition (dwvstp36.ocx) control and
vice versa.

The Art of Enumeration
With VersionStamper we faced the challenging task of trying to find a
solution to the problem of version conflicts that was easy enough for
anyone to use, yet flexible enough to satisfy even expert programmers.
The approach we decided upon takes advantage of the event driven
nature of Visual Basic and uses a technique called enumeration.

When you trigger the verification operation using either the
VerifyMode or VerifyFile operation, the VersionStamper control first
searches for the list of embedded files and warning conditions that are
embedded into the program. The VerifyMode property is used to
verify the component list for a particular VersionStamper control. The
VerifyFile property is used to verify the component list for an
executable file on disk.

The VersionStamper control examines each file in the component list
that it is given. The control then checks for the presence of that file on
disk and checks for the warning conditions specified in the list. If any
of the warning conditions occur, a FileConfict event is triggered.
During this event, there are many properties that can be accessed to
obtain detailed information concerning the incompatibility that was
detected. Your Visual Basic code can be written in such a way that it
can determine how to respond to each file conflict. It can ignore the
incompatibility, report it, add it to a list for later reporting, or even
write code that attempts to fix the problem.

The following chart illustrates this enumeration process:

Page 78

Name, version,
warning conditions

VersionStamper -
Verification against

actual disk file

VersionStamper -
Information properties
(Reference, Found,

Other)

Your program -
FileConfict

Event

Your program -
EnumComplete

Event

Your own
verification or

reporting code.

Standard
VersionStamper

Report code.

Embedded list of
components

VersionStamper Control Visual Basic
code

Name, version,
warning conditions

Name, version,
warning conditions

Name, version,
warning conditions

End of list

Figure 8

VersionStamper Enumeration Process

This enumeration technique is also employed to obtain a list of the
components embedded into the file. In this case the FileScan event is
triggered for each component. During this event it is possible to obtain
information about the file, version and warning conditions for the
component.

The EnumComplete event is triggered after all of the embedded files
have been scanned or verified. It is very possible for this to be the only
event triggered during a verify if no conflict situations exist, or in the
case of a scan of a file that contains no embedded component
information.

Scanning and Verification Events
The following events are triggered during the course of a verification
or scan of the embedded component list of a file.

Page 79

FileConflict Event
FileConflict(ReferenceFile As String, FoundFile As String, Flags
As Long, StopVerify As Boolean)

VersionStamper allows you to embed version information and warning
conditions for components into your Visual Basic executable. During
file verification, the VersionStamper control scans this embedded
information and searches the system for the first file it encounters that
matches the component name. It compares the version and date
information found against the warning conditions included in the file.
If any of the warning conditions are detected, a FileConflict event is
triggered with the following parameters:

Parameter Description
ReferenceFile The embedded file name. This will include a full

or relative path only if specified during the
embedding process.

FoundFile The full path of the file that was found that
matches the embedded file. The empty string if
no file was found.

Flags A Long that determines which warnings were

triggered. It can be a combination of the
following:

 Bit 0 Older file was found (Date compare).
 Bit 1 Newer file was found (Date compare).
 Bit 2 Older version found (Version

compare).
 Bit 3 Newer version found (Version

compare).
 Bit 4 Special version found.
 Bit 5 Always warn was set.
 Bit 6 File was found in memory.
 Bit 7 No matching file was found. NOTE:

If a path override was specified, then
this flag will be set if the file was not
found in the specified override
directory even if the file was found
elsewhere.

Page 80

 Bit 8 A version compare was requested but
no version resource was found in file
FoundFile.

 Bit 9 A larger file was found.
 Bit 10 A smaller file was found.
 Bit 11 File was not registered in the system

registry.
 Bit 12 Older file was found (TypeLib version

compare).
 Bit 13 Newer file was found (TypeLib

version compare).
 Bit 14 No typelib resource was found in the

file.
 Bit 15 Older file was found (File Version

String compare).
 Bit 16 Newer file was found (File Version

String compare).
StopVerify Set this parameter to True to stop the

verification process.
File verification is initiated using the VerifyMode or VerifyFile
properties, and the VerifyObjectFile method.

You can also use the CF_ constants as masks to determine the value of
a particular bit. These constants are defined in the file vervrfy.bas.

FileScan Event
FileScan(ReferenceFile As String, VerifyFlags As Long, PathFlags
As Long, StopScan As Boolean)

VersionStamper allows you to embed version information and warning
conditions for components into your Visual Basic executable. During
file scanning, the VersionStamper control scans this embedded
information and triggers a FileScan event for each file found using the
following parameters:

Parameter Description
ReferenceFile The embedded file name. This will include a full

or relative path only if specified during the
embedding process.

Page 81

VerifyFlags A Long that determines the warning conditions
for this file. It can be a combination of the

ingfollow :
 Bit 0 Date & Time is specified.
 Bit 1 Version number is specified.
 Bit 2 String Version is specified.
 Bit 3 Use relative path (no search).
 Bit 4 File Size is specified.
 Bit 5 TypeLib is specified.
 Bit 6 Search in the registry for this file.
 Bit 16 Trigger warning on older file.
 Bit 17 Trigger warning on newer file.
 Bit 18 Trigger warning if special flags set.

Base warning on ve
(bits 16 and 17).
Base warnin
16 and 17).

 Bit 21 Always trigger warning for this file.
 Bit 22 Trigger warning on larger file size.
 Bit 23 Trigger warning on smaller file size.

Trigger warning if f
in system registry.
Trigger
string.
Trigger
string.
Trigger w
version.
Trigger w
version.

 Bit 30 No 24-hour leeway on date comparison.
A Long value that specifies special path overrides
used t
bits:

Search in the same directory as a
specified “Reference File”. The
Reference File name is specifie
ReferenceFileName property.

 Bit 19 rsion comparison

 Bit 20 g on date comparison (bits

 Bit 24 ile is not registered

 Bit 25 warning on older file version

 Bit 26 warning on newer file version

 Bit 27 arning on older file TypeLib

 Bit 28 arning on newer file TypeLib

PathFlags
o search for this file. It can be the following

 Bit 1

d in the

 Bit 2 Search in the specified full path.

Page 82

 Bit 3 Path is searched relative to one of the
following directories as specified by Bits
4-11:

 Bit 4 Current Directory
 Bit 5 Windows Directory
 Bit 6 System Directory
 Bit 7 User Defined Directory
 Bit 8 Application Directory
 Bit 10 Program Files Directory
 Bit 11 Common Files Directory
StopScan Set this Boolean parameter to True to stop

scanning the rest of the file.
File verification is started using the VerifyMode or the ScanFile
properties.

You can also use the VF_ constants as masks to determine the value of
a particular bit. These constants are defined in the file verenum.bas.

EnumComplete Event
This event is triggered after file scanning or verification to indicate
that the operation is complete. This event has no parameters.

Starting a Verify or Scan Operation
Three properties are used to initiate a file verify or scan operation.

VerifyMode Property
This property is used to control verification of the component
information embedded into your Visual Basic application. Each of the
embedded components is verified against the components specified in
the VersionStamper control for which the property is set.

There are four possible values for this property:

Value Description

0 None - Verification is not triggered.
1 On Load - Verification is triggered as soon as the form

containing the VersionStamper custom control is
completely loaded and events are “unfrozened”.

2 Manual Verify - Setting the VerifyMode property to this
value causes an immediate component verification

Page 83

operation to take place. Any files on the system that
trigger a warning condition according to the embedded
component list will cause a FileConflict event to be
triggered.

3 Manual Scan - Setting the VerifyMode property to this
value causes the list of embedded components to be
enumerated by the FileScan event for this control.

The only values that are valid at design-time are 0 and 1. Values 2 and
3 can be set at run-time under program control to trigger the
corresponding operation. The property’s value is automatically set
back to zero upon completion, so this operation can be repeated as
often as desired. You cannot perform another verify or scan with the
same VersionStamper control if one is already in progress. NOTE: Do
not attempt to set this property to 1 (vstOnLoad) at run time. Doing so
may trigger verification at an unpredictable time.

A subtle technique: Unlike the ScanFile and VerifyFile properties that work directly
upon an executable file, the VerifyMode property works with the
list that is internal to the control. If you have multiple
VersionStamper controls in a project (refer to the Slave property
description later in this chapter), you can have multiple component
lists in your project and have each VersionStamper control verify
against a different set of files or warning conditions.

VerifyFile Property
The VerifyMode property can be used to control verification of the
application containing the VersionStamper control. During this
verification process, a FileConflict event is triggered for each conflict
that is detected between the embedded component information and the
actual components located on the target system.

The VerifyFile property allows you to perform this verification
process for any file that contains embedded information. This is
frequently used by rescue programs such as verresq.exe to allow you
to detect conflicts for files that cannot even load.

To start a verification, simply set this property to the name of the file.
You cannot perform another verify or scan with the same
VersionStamper control if one is already in progress.

Page 84

ScanFile Property
The VerifyMode property can be used to scan the current application
and obtain information about the components and warning conditions
that are embedded in the file. During this scanning process, a FileScan
event is triggered for each file that contains embedded component
information.

The ScanFile property allows you to perform this scanning process for
any file that contains embedded information. This is used by the
VerInfo program to obtain information on other files.

To initiate a scan, simply set this property to the name of the file. You
cannot perform another verify or scan with the same VersionStamper
control if one is already in progress.

FileCurrentDir Property
This property can be used to override the current directory during file
verification triggered by the VerifyFile or VerifyMode properties.
Normally, during file verification, the current directory is searched
before the Windows directory (after searching for modules resident in
memory or registry). This property allows you to specify a different
current directory to search.

This property is a string, and is accessible only at run-time.

Delaying a Verify or Scan Operation
You can delay a verification or scan by setting VersionStamper’s
Delay property to True. Normally, the verification or scan is
performed immediately when VersionStamper is invoked (at load, or
when setting one of the properties or methods) and control is not
returned until it is completed (after the EnumComplete event is
fired). However, there are some ActiveX containers (e.g. Visual
FoxPro) which prevent events from firing while loading or invoking a
property or method of an ActiveX control. In this case, set the Delay
property to True. When a verify is requested, VersionStamper will
return right away and post a message to itself telling itself to perform
the verification as soon as possible. In this case, watch for the
EnumComplete event to occur (set a global flag there), this will tell
you that the verification or scan is completed. See the example in
VSRTDemo for a warning on using this with the VerifyObjectFile
method.

Page 85

Properties Available During Scanning and
Verification

Properties with the prefixes “Found”, “Other” and “Ref” are accessible
only during the FileConflict and FileScan events. These properties are
generally used to obtain information about the files and conditions that
triggered the event. Refer to the Help file for detailed information
regarding each property.

Using Multiple VersionStamper Controls in an
Application

Slave Property
This property controls the behavior of VersionStamper controls when
there is more than one instance of a VersionStamper control in an
application.

The nature of the VersionStamper control is such that you will rarely
need to have more than one of these controls in your application. After
all, each application can contain two embedded file lists.

However, there are cases where you may wish to use the capability
provided by the control without saving a version resource or
embedded information for that control. This is demonstrated in the
VerInfo project, where each MDI child form contains a
VersionStamper control which is used to scan for embedded version
information for a file. This also occurs when you want to keep
multiple component lists in a program. (You may also refer to the
VerifyObjectFile method for another method to use multiple
component lists for a single program.)
In order to prevent conflicts due to multiple instances of the
VersionStamper control in an application, all controls created or
loaded (after the first one) in the Visual Basic design environment are
automatically marked as slave controls (and the value of the Slave
property for that control is set to True).

Version information for slave controls is not stamped into the
executable (applies to VBX edition only), and while you may specify
an embedded file list for a slave control, that list will not be detected
by an external scan of the file. This list can only be verified internally
by an application using the VerifyMode property.

Page 86

Warning! If you create two VersionStamper controls in an application, and
delete the one that is not a slave, the other control will continue to
be a slave, thus version information from that control will not be
stamped into the file. To solve this problem, simply set the Slave
property to False.

VersionStamper Methods (ActiveX Edition Only)
VerifyObjectFile Method
VerifyObjectFile (filename$, guid$, warningflags&, reserved%,
verMS&, verLS&, filesize&, year%, month%, day%, hour%,
minute%, second%)

VerifyObjectFile2 (filename$, guid$, warningflags&, pathflags&,
verMS&, verLS&, versionstring$, referencefile$, typelibver&,
filesize&, year%, month%, day%, hour%, minute%, second%)

The VerifyObjectFile methods allow you to specify a reference file to
verify during run-time. This method is useful for applications that may
enable/disable certain portions of the reference file depending on the
user’s system configuration or license. You can create a list of the
required files from a database or another file type based on a particular
configuration of your application dynamically rather than try to embed
all the possible combinations into many VersionStamper controls.
Invoking this method will trigger the normal VersionStamper events.
Refer to the vsrtdemo.vbp for an example.

Another use is to create the required file list on your web site, and
have VersionStamper dynamically retrieve the list each time and
perform a scan on the target computer. You can use the
VersionStamper Conflict Wizard to create a list of required files for
your application and output the file list information into a text file that
can be parsed by VersionStamper. This allows you to update the file
list and warning flags when necessary (such as if a newer version of a
particular file breaks backwards compatibility or if a newer version of
a particular file requires a newer version of a dependent file). This also
opens the possibility of using VersionStamper on the internet or
intranet.

Page 87

The VersionStamper components include many classes to support
integrating VersionStamper with the internet or intranet. Other
examples are: sending an email message to you (or the System
Administrator) whenever VersionStamper detects a file conflict on a
particular computer or automatically updating a computer with an
older version of a particular file. Refer to the VersionStamper help file
for details on using these methods.

VersionStamper - API Functions
 VersionStamper exports several API functions that can be called
directly from your Visual Basic application. Declarations for these
functions can be found in file verapi.bas and VsObAPI.bas. In order to
save space, the functions have a generic declaration except in cases
where the parameters are different. The library name from the
declarations is omitted. The following library name should be used as
required: VBX - dwvstamp.vbx, 16 bit OCX - dwvstp16.ocx, 32 bit
OCX - dwvstp32.ocx, dwvstp36.ocx, or dwvsob36.dll. Refer to the
VersionStamper Help file for more information on these functions.

VersionStamper Conflict Wizard
Wizard Functionality Overview
The VersionStamper Conflict Wizard is used to generate a list of files
used by your application. This list can then be exported to create a
VersionStamper Script File (VSF) for use in detecting file conflicts.
The VersionStamper ActiveX controls can also import a VSF file list,
but some of the more advanced features such as custom messages and
file update will be ignored. The first step in using the Wizard is
choosing whether you want to generate a new VSF file or open an
existing one to edit. When creating a new VSF file, you may choose
the quick manual method of selecting just the files you want, or use
one of the Wizard’s comprehensive scanning methods which does
some additional tests to retrieve dependent files.

Page 88

The Wizard can scan any EXE, DLL, OCX or other compatible binary
files for direct dependents used by these files. The Wizard obtains this
information from the import table of the file to be scanned. This
provides quick and reliable information as to what other libraries this
particular file may require. However, the Wizard cannot find
dependents for any file that does not have an import table, and thus
cannot scan databases and such for dependents. The only exception to
the above rule is the ability to scan Visual Basic Project files (*.vbp),
Wise Installation Script files and InstallShield Installation Script files.
The Wizard scans the Visual Basic project file itself and all the code
of the project’s forms and modules and determines, if at all possible,
which components and libraries are needed by this project. The
Wizard can also scan the Wise Installation and InstallShield script files
to retrieve the files that are distributed with your application.

Also, the Wizard is able to generate a list of currently loaded modules
for any process currently running on your system. The Wizard (upon
your selection) attaches to the given process (or starts a new
application) and monitors any modules that the application loads into
memory. It then builds a list of these modules which is also used to
create a VersionStamper Script File.

The Wizard also provides a rather comprehensive editing mechanism
for VersionStamper Scripts – it has the ability to modify scripts by the
process outlined above, or it can load existing scripts from a disk. The
system allows you to modify all information that is stored in the script,
including almost all version and date information, as well as setting
various flags which VersionStamper uses in client programs to fix
version conflicts. This stage of the process also allows you to add
non-executable files (such as README.TXT and data files) which do
not have version information or import tables but which may
nonetheless be useful to your application.

Finally, the Wizard supports a command line batch mode. That is, you
can run the Wizard as part of a batch process to either create a list of
files for your application, or update an existing file list using the files
on the build machine as reference.

Page 89

The purpose of this Wizard is to make creation of VersionStamper
Script Files (*.vsf) easy and quick. The Wizard attempts to
incorporate almost every possibility for VersionStamper Script File
options, but it also does a good deal amount of error checking; this
may cause the Wizard to disallow some strange and unusual
combinations of options, even though this combination may not be
completely erroneous. In these cases, it is always possible to edit the
Script File directly using any standard text editor (i.e. Notepad).

Selecting Scanning Type
Although there is no magic solution for determining all the required
files that a particular application may use, VersionStamper offers
several scanning methods that should give a fairly accurate picture of
which files are required by a particular application. Each of these
methods uses a different technique to determine the required files, a
combination of these methods will give the best results.

Visual Basic Projects
This method scans a Visual Basic project to retrieve files directly
referenced by the project. All referenced files are then recursively
scanned to compile a list of all files used by the project. This method
may not detect all dependent files, especially those that are NOT
directly referenced or dynamically loaded which is the case with
Visual Basic ActiveX components and controls.

Standalone files
This method scans a single binary file (DLL, EXE, OCX, etc) and
retrieves the direct file references of the file. All direct file references
are then recursively scanned to compile a list of all files. This method
will not detect files that are NOT directly referenced or dynamically
loaded which is the case with Visual Basic compiled files. However, it
should work on almost all other Windows applications, including a
majority of those written in C++.

Page 90

Currently Running Process
This method scans a process and retrieves the files currently mapped
into the process space. The Wizard can monitor a running process for
an indefinite period. When using this method, keep in mind that not all
required files are mapped into an application right away. ActiveX
components and controls and other files are loaded when required. To
obtain the most accurate file list, this method requires that you run
your application and select as many options as possible, and open as
many forms as possible to try to get all required files to be loaded by
your process.

Installation Script File
This method scans an Installation Script File to retrieve files directly
installed by the script. Currently, this feature supports Wise
Installation, InstallShield Pro and InstallShield Express script files.
This method also allows you to apply filters to omit certain types of
files or specific files.

Selecting Script Source
The VersionStamper Conflict Wizard provides several options for
selecting for source of the file list. The first step provides you with
three choices: Scan New Script, Quick Script which assists you in
manually adding files and lastly the option to load and edit an existing
VersionStamper script.

The two latter choices are available under the Other Script Options
selection.

Page 91

Figure 8
Creating A New VersionStamper Script

Create new VersionStamper Script via Scanning
This is the most commonly used and most complex option for the
Wizard. If this option is selected, the Wizard guides you through
several steps of selecting executables, system components, Visual
Basic project files, installation script files, and processes. After these
items are selected, the Wizard scans and then determines (if possible)
all of their dependencies. See Selecting Wizard Scanning Types and
Scanning Processes for more information. In this step, the Script is
created from scratch (no previous information is used); however, you
are given the chance to edit any and all script information after the
scan is completed.

Page 92

The Other Script Options Pane displays the following:

Figure 9

Other Script Options Pane

QuickScript - Manually Add Files to List
This option allows you to start from scratch (empty initial file list).
Using the Editing File List Window you can create a very small and a
quick Script File -- probably only a couple entries. This option does
not constrain you to a limited set of verification and version options --
you may use all the advanced settings. However, this option does no
automated dependency scans and only adds files to the list as you
manually select them.

Load Existing VersionStamper Script File
This option allows you to edit an existing VersionStamper Script to
add new files, delete files, or change version/verification options.
Like the QuickScript option, this option does no automated
dependency scans; at this point, you cannot use automated scans to
augment an existing script. After the initial file information is loaded
from the script file, this option behaves identically to the option above.

Page 93

Scanning Installation Script File
This step of the VersionStamper Conflict Wizard attempts to build a
dependency file list by scanning an installation script. It is important
to note that the installation script scanning algorithm was based on our
own testing of script samples created in-house and that we do not have
access to or knowledge of the actual installation script file formats for
the installation programs we support. We will make every effort to
create as complete as possible an installation scanning
implementation.

Limitations on Scanning InstallShield Express
installation Scripts
The VersionStamper Conflict Wizard requires that you first
successfully build the InstallShield Express setup before it can scan it.
Furthermore, the VersionStamper Conflict Wizard does not scan the
actual installation script file (the format of the script file is not public
knowledge), but the installation's "Report" build file. The Report file is
in HTML format and contains a summary of the files included with the
installation in addition to the source paths. However, each installation
script can be distributed on more than one type of media. As a result,
each media type has its own corresponding Report file. Finally, Merge
Modules included with the installation are not included in the
generated file list.

Page 94

We currently support Wise Installation script files 6.0 through 8.1,
InstallShield Pro script files and InstallShield Express script files.

 Figure 10
File Application Selection

To scan an installation script file, select the installation script file by
using the Browse button to select the file. When using the
VersionStamper Conflict Wizard to scan an InstallShield Express
installation script, select the script file's Report file rather than the
script file itself. The InstallShield Express Report build file can be
found in your InstallShield Express script file's \Express\<Media
Type>\Reports subdirectory where <Media Type> is the media type
you selected for the build (e.g. SingleImage, CD_ROM, etc).

The Drive Mappings section allows you to specify a alternative drive
letter while scanning the installation script file. This is useful for cases
where the script file is located on a different system than where you
are building the dependency file list.

Page 95

For example, if the script file is located on another system and
references files on the C drive of that system the script scanning
algorithm may not find those files on the current computer’s C drive.
You can map a drive to the reference files’ C drive, let’s say F, then
add a drive mapping to the script where C is the original drive and F is
the target drive. After selecting the Add button, you should see c:\->f:\
in the list box.

This tells the script file scanning algorithm to replace all references of
the C drive to your F drive (which is mapped to the reference files C
drive). You may assign more than one drive mapping for each
installation script file.

The File Filters section allows you to exclude certain files that the
script scanning algorithm returned. The Edit Filters button displays a
form that allows you to add or remove filters from the list. You may
use the standard Visual Basic string wildcards in your filters. For
example, to exclude Visual Basic Class Module files, add “*.cls” to
the filter list, to filter out files that starts with “readme”, add
“readme*.*” to the list.

You may also import or export the drive mappings and file filter
settings from and to an external file by selecting either the Import
Script Settings or Export Script Settings buttons.

Scanning Currently Running Processes
This step of the VersionStamper Conflict Wizard attempts to build a
dependency file list for an application by monitoring the modules
(ActiveX Controls, DLL’s, etc.) that it may load into memory. It is
important to note that the application may not necessarily pre-load all
of its controls; it may delay bringing them into memory until they are
necessary. Thus, it is the user’s responsibility to attempt to coerce the
application into loading as many modules as possible. Usually, to
accomplish this, one must open/close files, attempt to access as many
different features of the application as possible, and (perhaps) modify
application settings.

Page 96

 Figure 11
Scanning Processes

In order to scan an application, all the current processes on the system
are loaded into the Wizard’s Process List box. The user can then
choose a process from the list (which is updated continuously), or the
user can choose to launch a new process directly by clicking the
“Launch New…” button and selecting an executable program. The
“Launch” method is suggested for most applications because it allows
the Wizard to monitor the application’s progress from the very
beginning, and may encounter modules that are loaded at startup and
then freed.

If a new process is launched, the Wizard automatically moves on to
the “Scanning” step; otherwise, the user must click the “Next >”
button to begin the process scan.

Page 97

Once the Wizard is in scan mode, it continuously updates its list of
modules loaded by the target application; this may cause a certain
reduction in the speed of your system. The user may increase the time
interval between scans and thereby decrease the reduction in
performance by editing the numerical box below the Process List.
The default setting is 250 ms as shown in the Scan Interval box in the
Figure 11.

The scan ends when the user exits the Wizard step by clicking either
of the “< Back” or “Next >” button, and, at that point, the file list is
saved for future use and dependency scanning.

If a new process appears on your system while a scan is in progress,
the Wizard produces a message box to query the user if this new
process should be added to the scan. This is in case the application
being scanned starts an ActiveX EXE server or another executable
program on your system. If the process that appears is not related to
the application in question, the user should click “No” and the Wizard
will remove that process from the scanning list.

Unlike the other scanning options (Visual Basic Project, Executable,
and System files), this option does not perform any other dependency
scans on the files found by monitoring a process (i.e. no import tables
or function references are checked inside the files found). If you want
a dependency scan to be performed, you may run the Scan Process
feature, note the name of an EXE or DLL the Wizard found, and then
manually add it to the Scan Executable step of the Wizard.

Page 98

Editing and Filtering Files

Figure 12
Edit/File Filter

After scanning the files to create a file list, the Conflict Wizard
presents you the option to exclude certain files, modify the warning
conditions to check for, include autoupdate information, override
default search order, or attach custom messages to files. These options
are accessible through the System File Filter form and File Edit form.

Page 99

System File Filter

Figure 13
File Filter

An important feature that makes the editing easier is the
VersionStamper System File Filter mechanism. VersionStamper
maintains a list of files (which can be modified by clicking the “Edit
File Filter…” button in the scanning step) which are deemed to be
System Files. In other words, these files are deemed to be necessary
for every Windows system and thus should already be found on any
client’s computer (files such as “kernel32.dll”, “user32.dll”, etc).
Almost every Windows application and component uses at least one of
these files, and it would be a waste to store the information for every
occurrence of these common files. VersionStamper filters all of these
files from the File List generated by scanning -- the files are simply
hidden from the list and not output into the VersionStamper Script
File.

Page 100

Editing the File List

Figure 14
Edit File Window

This step is the most complex and the most powerful step of the
Wizard. It allows the user to set all possible options for a
VersionStamper Script File. The Edit Window operates on a list of
files obtained through the previous steps. Depending on your choices,
the initial information in the Edit Window may be a pre-existing
loaded VersionStamper Script, a list of files generated through file and
process scanning, or a new blank list if the user selected the
QuickScript option in the first step of the Wizard.

The Edit Window is accessed by clicking the “Edit…” button at the
bottom right of the Wizard “Scanning for Dependents” pane after the
dependency scans (if any) for all the selected files are completed.

The Edit Window is organized into six tabs or panes, all of which
allow the user to view and edit a certain subset of the information that
can be stored in a VersionStamper script.

On the left side of each tab window is a large table containing the
names of all the files in the list and the information on the files
appropriate to the tab. The table is read-only; its purpose is to provide
an at-a-glance view of the settings of all the files in the list.

Page 101

On the right side of each tab is a data window that allows access to
ALL the information for each file (not just the subset of information
that is associated with the table). This is also the window in which all
the editing of information will be performed. The editing is done by
selecting settings with checkboxes and option buttons, as well as
entering data into Text Fields.

Each Text Field can be modified in a manner similar to the way
Windows Explorer allows you to rename files. The visible textboxes
themselves cannot be modified directly — you can’t type directly into
them. Rather, the user can bring up a small “Edit Box” by either
pressing the “Return” or “Enter” key in any Text Field, or by double-
clicking on one.

On the first tab, where not all the Text Fields can be edited, the fields
which can be modified, are marked with an “[*]”; all the other fields
are read-only. When you are done typing the new value into the Edit
Box, you can press “Enter” or “Return” to confirm the change (or you
can click the mouse anywhere other than the box). To abort the Text
Field edit and to return to the previous value, the “Escape” key may be
pressed at any time.

Keep in mind that not all values are acceptable for every field; the
Wizard will not allow you to enter an invalid value and will prompt
you to re-enter. If you decide to cancel the edit, press Escape. Some
controls may be disabled until another control is selected, these
usually apply to options that depend on another option being selected.

Refer to the headings on the specific tabs listed in the following pages
for more detailed explanation of the panes.

Editing Selected Files
The “Edit File List” window consists of two major panes – the “File
List” pane and the “File Information” pane.

The “File List” pane is on the left of the screen and provides the list of
files currently selected for addition to the script. It also provides a
great deal of read-only information for each of the files, most often an
easier-to read synopsis of the data displayed in the “File Information”
pane. Adding or removing files from the “File List” pane determines
whether those files will be added to the script that the VersionStamper
Wizard generates.

Page 102

The “File Information” pane is a small frame on the right side of the
screen. This window provides more detailed information on the
currently selected file (the file highlighted in the “File List” pane).
This window is where all the editing of file information is done – all
the information in the Edit File List window (including that in the
“File List” pane) is read-only. The majority of the input controls in
the “File Information” pane, however, can be edited by the user, and
are the only way to edit information for specific files in the
VersionStamper script. Currently, you must edit one file at a time
using the File Information pane.

Many of the text boxes in the “File Information” pane cannot be
modified directly. They require quite complex error-checking and data
verification which would cause problems if run every time the user
typed a character in the box. Thus, many text boxes in this pane use a
system similar to the one which is used by Windows to allow users to
rename files in Explorer.

In order to start an edit, you must either double-click on a text box, or
press the “Return” key while the text box has the focus. After you
have typed in the new value, you can either press “Return” again to
save the value or simply click the mouse anywhere outside the text
box. If the Wizard finds that the value you have entered is invalid, it
will inform you of the error and restart the edit.

If you want to cancel the edit of a text box AT ANY TIME, you may
push the “Escape” key on your keyboard and the Wizard will
terminate the edit, restoring the old value to the text box.

The buttons at the bottom of the Edit File List window are used for
managing the file list. The “Add” and “Remove” buttons add and
remove files from the “File List” pane (and thus from the
VersionStamper Script). The “Add” button brings up a standard
“Open File” box and allows multiple files to be added to the list at the
same time. The “OK” and “Cancel” buttons determine whether the
changes you make (either to the list of the files or to the options of a
specific file) are saved to the VersionStamper Script. Once “OK” is
clicked, all previous information is lost; there is no way to recover the
original list of files unless it has been saved on disk.

Page 103

The Edit File List window is also organized into six sections. The
purpose of this window is to allow access to the various types of
information contained in the files selected in the “File List” pane. The
file list is static across all of these panes. Removing a file (or adding a
file) from/to one tab will do so for ALL panes, not just the one
currently selected. The specifics of each pane are described next.

Version Information Tab

Figure 15
Version Information Tab

This window provides access to the version information stored within
the VersionStamper script file. Within this window, the File Size, File
Date, File Version (from the fixed version resource information of a
file), and String File Version (from the string version resource
information) are displayed for each file in the “File List” pane.

Page 104

The “File Information” pane provides access to almost all of the fixed
version resource and string version resource entries for a file.
However, not all of these entries are stored in the VersionStamper
script (for example, the “Copyright” string entry has nothing to do
with the functionality of the VersionStamper Wizard and thus is
ignored). Because this “extra” information is not stored in the script
but only in the actual files themselves, these data entries will only be
available for viewing when the selected file has been added in the
current Wizard session (either through a dependency scan or manually
via the “Add File” button).

These “extra” data entries cannot be modified. The VersionStamper
Wizard marks those text boxes that can be modified and saved in the
script with an “[*]” at the beginning of the caption. Thus, the “[*] File
Version:” text box is editable and essential to VersionStamper
operations (and saved in the script), while the “Product Version:” text
box is not always available and never editable.

If you make any changes to the default values in these boxes (which
are read from the file’s version information itself), the corresponding
caption for the box will turn red to indicate that you have overridden
the default value.

Page 105

Verification Settings Tab

Figure 16
Verification Settings

This tab allows you to set the error conditions for your script. When a
VersionStamper client reads your script on a user’s machine and
attempts to locate which versions of the listed files the user has, it will
only produce an error (or warning) if the conditions specified in the
script are met.

The VersionStamper Wizard allows practically all combinations of
settings, and provides default error flag settings for various types of
files that should be adequate in most cases. The default error settings
are:

Comparison Options Description of Comparison

Older Date Files with no version information at all.

Older Version Files with version information.

Older Version, or Not
In Registry

Files with version information and a GUID
(that should be registered).

Page 106

The information displayed in the Scanning/Verification Information
pane for this tab is a human-readable synopsis of the error conditions
selected in the “File Information” pane for each file. Keep in mind
that none of these error conditions are checked by the Wizard; they are
simply stored in the VersionStamper script file as flags, to be read
later and compared with the status of a user’s machine.

The following is a description of each input control in the
Scanning/Verification Information pane:

Checkbox or
Combo Box

Description

Warn Always Specifies that the client (the program
which is reporting the conflict) should
always report an error when encountering
this file.

Special Version The client will flag an error if the Special
Version flag is set on the file found on the
user’s machine (rare).

Search Registry For
File

The client will attempt to scan the registry
to determine the location of the file on the
user’s machine.

Warn if not in
Registry

Produces an error if the file was not found
in the user’s registry.

Fixed Version, Size,
String Version,
Typelib, and Date

The checkbox for each one of these
conditions indicates whether any type of
verification will be performed at any time
on this characteristic of the file.

The item selected in the combo boxes
determines whether an error will be
flagged on a Newer (Bigger), Older
(Smaller), or Different (Either Older or
Newer) setting for that characteristic.

 Fixed Version This is the normal method used for
verification. The file’s version number is
compared.

Note: The Date and File Version combo
boxes are linked together due to an old
standard in VersionStamper that must be

Page 107

maintained for backwards compatibility.
Thus, you cannot select both Newer
Version and Older Date, etc.

 Size This will compare the file’s size.

String Version This will compare the file’s Version
String instead of Version Number. Not
normally used, but there are many cases
where developers update the file’s string
version but not the file’s version number
when a new release is made. The file’s
version string is first converted into a
numeric value, then a numeric
comparison is made (rather than a string
comparison).

TypeLib This will compare the file’s TypeLib
version. Not normally used, this applies
only to self-registering files that exposes
a Type Library. A file’s Type Library
version is changed whenever the file
changes the interface.

In Visual Basic, the Type Library appears
in the project file after the GUID string.

Date This is generally used when the file does
not have version information. The file’s
date and time is compared. Also refer to
the Allow 24-Hour Leeway checkbox.

Allow 24-Hour
Leeway

Determines whether date comparisons
will find two dates that differ by less than
24 hours to be identical. This should be
enabled as files are now generally time-
stamped relative to GMT, thus moving
the files between time zones will shift the
file’s display time’s hour by the number
of time zones moved.

Page 108

File Locations Tab

Figure 17
File Location Information

When VersionStamper searches for files listed in the VersionStamper
script on the client’s machine, it follows a standard procedure of
searching the directory specified in the file’s registry entry (if “Search
In Registry” is selected in the Verification Options tab), the current
directory, the Windows system directory, the Windows directory, and
the directories listed in the PATH environment variable. If the file is
located anywhere else on the user’s machine, VersionStamper will not
be able to find it.

The information recorded in this pane allows you to override this
default searching path and specify another location for the file. The
“File List” pane of this tab displays the current overridden location for
the file (or “Default Search” if the location has not been modified), as
well as the GUID of the file if one exists.

The “Override Default Search” checkbox enables the rest of the “File
Information” pane and determines whether VersionStamper will use a
default search or a modified search for the selected file.

Page 109

The “Path or Reference File” textbox allows you to enter a path for the
location of the file (either relative or absolute), or the name of a
reference file. Its meaning depends on the option buttons selected
below. This textbox is cannot be modified directly. You must double-
click the text box or press the “Enter” key to start the edit. See the
“Edit File List Overview” for more information.

The options detailed in the Path is Relative To section allow
VersionStamper to interpret the meaning of the value in the “Path or
Reference File” box. They generally indicate to which value the box
is relative:

Option Button Description

Nothing – Absolute Path Indicates that the specified path is
absolute, and should be used directly.

Windows Directory Indicates that the location of the
Windows Directory on the user’s system
will be prefixed to the path value in
order to find the location of the file. For
example, if the “Path or Reference File”
textbox contained “Crystal”, and this
option button was selected, the client
would search for this file in
“C:\Windows\Crystal on the user’s
machine (assuming that the Windows
directory is C:\Windows”).

System Directory Same as above, but the system directory
on the user’s machine will be added to
the path.

Program Files Directory Same as above, but the “Program Files”
directory on the user’s machine will be
added to the path.

 Common Files Directory Same as above, but the “Common Files”
directory on the user’s machine will be
added to the path. The Common Files
directory is usually a sub directory of the
“Program Files” directory.

Page 110

 Application Directory Same as above, but the installation
directory on the user’s machine will be
added to the path (wherever the
application using the client is stored).

User-Defined Directory A user-defined directory (specified not
in the script but rather at the time the
script is executed, by the user) is added
to the path. The User-Defined directory
is specified in the VersionStamper
control or component’s “User-Directory”
property.

Reference File The value in the “Path or Reference
File” textbox must be the name (no path)
of a file already added to the “File List”
pane. VersionStamper will search for
this file in which ever directory it located
the Reference File. This is normally used
for dependent files of registered files
where these files are installed to a
private directory not found in the path.
An example would be some of the
Microsoft DAO or ADO files which are
installed to the “\Program Files\Common
Files\Microsoft Shared\” directory.

Page 111

AutoUpdate Tab

Figure 18
AutoUpdate Information

This tab allows you to specify the download locations for the selected
file (and to view the locations for all files in the “File List” pane).

The text boxes in the “File Information” pane can be modified
directly, and no error checking is performed. The value is assumed to
be a valid FTP URL that will allow the client to retrieve the
appropriate version of the file if a conflict is detected on the user’s
machine.

The “Attempt FTP Update” checkbox enables and disables the
corresponding textbox and determines whether automatic update
information will be stored for the selected file.

Page 112

File Messages Tab

Figure 19
Customing File Conflict Message

This tab allows you to specify a custom message to be displayed for a
particular file if a conflict was triggered for that file. This allows you
to notify your users as to the severity of the conflict and the
importance of updating to the latest file.

Select the “Specify Message for file” check box to specify a priority
and message string for the selected file. Enter a priority number in the
Message Priority text box to indicate the severity of the conflict.
Currently, priorities 0 to 100 are reserved for Desaware use, you may
specify your own custom priority numbers. Enter your custom
message in the Message text box.

Page 113

Reference File Paths Tab

Figure 20
Reference File Paths

This tab displays the full paths for all of the reference files in the file
list. The purpose of this window is to allow you to quickly verify the
reference files, This is important should you have multiple copies of
the reference files on your system and the scanning method selected a
file different from the one that you had intended.

Saving VersionStamper Script Files
After you have performed your scan and dependency checking, and
have edited the list manually via the Edit File List window (optional),
you must save the script you have created to a file on your hard disk.

This step provides a textbox that displays the currently selected file
name. You cannot modify this information directly. To choose a
suitable location, you must click the “Browse” button which displays a
standard “Save File” dialog box with which you may choose the file
name and location or the new script file.

Page 114

There are two file output formats from which to choose. In most cases,
you would select the VerStampFileInfo2 (New Format) as it supports
all of the latest VersionStamper features. You would only select the
VerStampFileInfo1 format if you are creating a file list for an older
application using controls from version 5.0 of VersionStamper.

When you click “Next >”, the file is saved and the status of the Wizard
is displayed in the next step.

Conflict Wizard Command Line Commands
With VersionStamper 6.5, you can run the VersionStamper Conflict
Wizard in batch mode. Running the Wizard in this mode allows you to
generate or update a VSF file. This feature allows you to add the VSF
file list generation to your automatic builds. Command line arguments
are not case sensitive. The following describes the command line
commands.

/batch Required for command line batch, must be specified.

/update Updates existing VSF file, preserve warning flags, path
flags, ftp location, and custom messages. Update other
file information, including ftp file’s date/time. Note that
files within the file list are updated even if the existing
files in the list are newer.

/new Output to new VSF file, if /update is also specified will
update existing file but save the results to a new file.

/outfile=c:\program files\filelist.vsf Used with /new, specify the
file to create.

/infiletype=# (# corresponds
to one of the options described for
infile)

/infile=(input file – depends on
infiletype)

1. c:\vsffile\filename.vsf. Used with the /update flag, updates
the specified file.

2. c:\vbfile\project.vbp Default is to scan VBP project using
default settings and filter system files
using verstamp.ini.

3. c:\windows\system\mydll.dll Default is to scan DLL, EXE, OCX or
other binary file using default settings and
filter system files using verstamp.ini.

Page 115

4. c:\setup\sysfiles Infile specifies a directory to add all
files from this directory to the script
using default settings. If the /depfile
is not specified, then would be
similar to the Quick Script –
Manually Select files (no scanning).
If the /depfile is specified, then would
be similar to the scan EXE, DLL,
OCX option – full binary and .DEP
scan.

5. C:\install\wise\setup.wse If /filter is specified, it refers to a
wise filter file, also /depfile is
ignored.

6. C:\install\installshield\prosetup.ipr If /filter is specified, it refers to an
Installshield filter file, also /depfile is
ignored.

7. c:\install\installshield\expsetup.htm If /filter is specified, it refers to an
Installshield filter file, also /depfile is
ignored.

/depfile Perform DEP file scan for all files, not applicable when
updating existing VSF file.

/refdir=<directory> If infiletype is 1, then this directory contains the
directory to use to update the existing VSF file. Normally,
VersionStamper would use the default Windows search to update an
existing VSF file, but in this case, it will only look in the specified
directory for newer files.

/filter=<file> The functionality of this switch depends on the
infiletype.

• If infiletype is 2 or 3, then this file is similar to the verstamp.ini file
format, and the file contains a list of files to NOT include when
infile is scanning a VBP, EXE, DLL or OCX file).

Page 116

• If infiletype is 5, 6, or 7 (parsing a Wise or InstallShield script
file), then this file contains the drive mappings or file filters for the
script file. Drive mapping is defined as a Drive from the script file
mapped to the drive on the current system, it is basically used to
retrieve the actual files used in the installation script. File filters are
defined as file names or extensions retrieved from the installation
script file that should NOT be added to the VersionStamper script
file.

Batch samples
This sample demonstrates how to scan a VB Group project file to
create a new VSF file list.

VsWizard.exe /batch /new /infile=c:\MyApp\TestVSGroup.vbg
/infiletype=2 /outfile=c:\MyApp\TestVSGroup.vsf

This sample demonstrates how to create a new VSF file list from the
reference directory.

VsWizard.exe /batch /new /infile=c:\program files\referencedirectory
/infiletype=4 /outfile=c:\MyApp\FileList\RefList.vsf

This sample demonstrates how to update an existing VSF file list from
the reference directory.

VsWizard.exe /batch /update /infile=c:\MyApp\FileList\RefList.vsf
/infiletype=1 /refdir=f:\ToDistribute\Common Files\System32

This sample demonstrates how to update an existing VSF file list
using the default file search.

VsWizard.exe /batch /update /infile=c:\MyApp\FileList\RefList.vsf
/infiletype=1

Installation Script File Filter Format
You can redirect drive mappings and apply file filters when scanning
an installation script file to retrieve files that are distributed with your
installation. The VersionStamper Conflict Wizard offers both an
interactive method to assign drive mappings or file filters and also a
batch method.

The interactive method is illustrated in Figure 8 in the Selecting Script
Source section of this manual.

Page 117

The batch method reads from a file when the /infiletype=# command
line switch is specified where # can be either 5, 6, or 7. The
/filter=filename command line switch must also be specified where
filename refers to a valid path and file name of the installation script
file filter file.

The installation script file is a plain ASCII text file. The file format
includes a section for specifying drive mappings, and a section for
specifying file filters. The file format is as follows:

[Drive Mapping]

C=I

[File Filter]

*.txt

readme*.*

*.fr?

The sample above specifies mapping the “C” drive to an “I” drive. It
also specifies excluding all files with the “txt” file extension, all files
that begins with “readme”, and all files with the “fr?” file extensions.

Page 118

Technical Notes
Using VersionStamper with Visual C++ and Other
Environments that Support ActiveX Controls
The problems relating to distributing component based applications
are not limited to Visual Basic. Today, there are many development
platforms that supports ActiveX custom controls (OCXs) and ActiveX
components (DLLs) in their environments. Some examples are
Microsoft Visual C++, Microsoft Visual FoxPro, and Microsoft Office
applications. In addition, there are many more products in
development that will support ActiveX components, these will be
available in the near future. Needless to say, we cannot verify that
VersionStamper will work in every environment, but any development
platform that fully supports ActiveX controls or components should
work with VersionStamper.

Migrating From Version 1.0 to Versions 4.0 and
Greater

This section summarizes the differences between VersionStamper
version 1.0 and later versions. It also lists several of the key
differences in researching conflicts between 16 bit and 32 bit operating
systems. The VBX edition (version 1.0) has not changed in any way,
you may still use it without any problems in Visual Basic version 3.0.
We recommend that you use the 16 bit OCX edition if you are
planning to use the 16 bit edition of Visual Basic 4.0 (or any 16 bit
development platform that supports both VBXs and OCXs).

Features not Supported in Version 4.0
Since Visual Basic version 4.0 allows you to embed a standard version
resource into the executable, the version embedding capabilities of
VersionStamper are not implemented in the OCX editions. True,
Visual Basic 4.0 only allows you to embed a subset of the standard
version resource, but it supports the version number which we feel is
the most important part of the version resource. One other item of note
is that Visual Basic 4.0 only supports three of the four sets of version
numbers that can be used. The sets are identified as Major, Minor, and
Revision in Visual Basic’s EXE Options dialog box. Using the
numbers entered in these fields, the executable’s version number
translates to the following format: Major.Minor.X.Revision where X
will always be set to zero.

Page 119

New Features for Version 4.0 (OCX Only)

Select Files Dialog Box
VersionStamper’s Select Files dialog box has been improved to allow
better filtering of the Available files. You can specify the file types to
be displayed and from which directories to include files. Files selected
from the Select Additional Files command are now added to the
Selected list instead of the Available list. Verifying the file size is
implemented and a warning may be triggered upon finding a larger or
smaller file size. An option is available to search the Registry for each
file. Files that are registered during the creation of the Selected list
will have this option enabled.

We recommend searching the Registry only for files that have a
TypeLib (or GUID) identification number. These include ActiveX
controls. If a selected file has a TypeLib, it is displayed as a string in
the Selected list after the file’s date and time information.

For files located during the Registry search, you may specify that
VersionStamper trigger a warning if the file is not registered in the
Registry. Since searching the Registry can be a very slow process, the
entire registry is not searched. Instead, only the TypeLib branch of the
HKEY_CLASSES_ROOT key is searched (this is the root where all
components are to be registered).

Each VersionStamper control may contain two file lists, a 16 bit and
32 bit file list depending upon the environment in which your
executable will run. This allows you to create a file list for 16 and 32
bit environments without having to use two separate controls. You can
use either the dwvstp16.ocx or dwvstp32.ocx file to embed both file
lists. During verification, the dwvstp16.ocx control checks the 16 bit
file list while the dwvstp32.ocx control checks the 32 bit file list. The
Scan Project command button can differentiate between the DLLs for
the 16 bit or 32 bit file list based upon the “#ifdef Win32” or “#ifdef
Win16” statements. Refer to the Using the Select Files dialog
description in the Embedded File Information section for more
information.

Page 120

File and Directory Filtering Properties
As mentioned above, the Select Files dialog box allows file and
directory filtering. The FileFilter, FileFilterExt, PathFilter, and
OtherPaths properties allow you to specify many combinations of file
and directory filters. Refer to their descriptions in other sections of this
manual.

File Size Properties
You may choose to trigger a conflict if the file sizes do not match.
There are three new properties that are available during verification to
support this new feature. The RefSize property contains the size of the
reference file, the FoundSize property contains the size of the file
found, the OtherSize() property contains the sizes of additional files
found. Refer to the verenum.bas and vervrfy.bas files for the new
constants associated with file size.

VerifyObjectFile and VerifyObjectFiles Methods
These new ActiveX methods allow you to perform verification for
individual components during run-time. These methods are useful for
applications that may enable/disable certain portions of the reference
depending upon the user’s system configuration or license. You can
dynamically create a list of the required files from a database or an
alternative file type based upon a particular configuration of your
application rather than try to embed all the possible combinations into
several VersionStamper controls. Refer to the VerifyObjectFile
Method information earlier in the manual for a more detail
explanation.

Delay Property
Normally, when you invoke a verify or scan, it takes place
immediately. However, some OLE containers disable events during
the modification of an object’s property or during the invoking of an
object’s method. This will prevent VersionStamper’s events from
firing during the scan or verification. If the Delay property is set to
True, invoking the verify or scan will return immediately and the
actual implementation will take place at a later time. Since the
EnumComplete event is fired when the operation is complete, you
can set a global variable in that event to notify you that the delayed
operation is completed. Refer to the VSRTDemo project for an
example.

Page 121

Upgrading Visual Basic 3.0 Projects
After installing VersionStamper 4.0, you should be able to open any
Visual Basic version 3.0 project and upgrade your dwvstamp.vbx
control to the dwvstp16.ocx or dwvstp32.ocx control. All relevant
properties of your VBX control will be transferred. The previous
version resource properties are not saved when upgrading the control.
The file list from the Select Files property is saved as the 16 bit file
list group regardless of whether you’re upgrading to the 16 or 32 bit
OCX.

Search Order
The sequence in which 16 bit Windows applications search for a file
has changed somewhat and the search order for 32 bit Windows
applications differs from the 16 bit application. Refer to the How
Windows and Visual Basic Load Components section for a detailed
explanation of the search order.

Using Components and DLLs
For 16 bit applications, each component used is shared among all
running applications. This is not the case for 32 bit applications. Each
application can now load a “private” copy of the component into its
own memory space. 16 bit applications running in Windows NT have
the option of running in its own memory space, but 16 bit applications
running in Windows 95 must share all components with other 16 bit
applications.

Under Visual Basic version 3.0, when a Visual Basic application is
loaded, all of the VBXs referenced by that application are loaded
immediately even though the forms containing the VBXs have not
been loaded. ActiveX controls (OCXs) are not loaded until they are
actually referenced by the application. Also, in 16 bit Visual Basic
version 4.0, VBXs are not loaded until they are actually referenced by
the application. This has several implications. First, if you install any
controls in a private directory which becomes the current directory
during run-time, the control might pass verification by
VersionStamper when your application initially loads because the
current directory is searched before the Windows and System
directories. But, since the VBX is no longer loaded immediately, the
current directory may be changed before the form containing the VBX
is actually loaded. This will change the search order and may change
the path in which the VBX is found. The reverse can also occur if you

Page 122

have older VBX files located in private directories. If any of the
private directories are somehow designated as the current directory,
then the VBX will be loaded from the private directory rather than the
System directory.

Our recommendation is to be extremely careful if your application
changes the current working directory and keep these considerations in
mind. You may want to add a menu command to your application that
will perform the verification on demand. In this way, you’ll be able to
verify that the files used are the correct files at certain points in your
program.

In VB 3.0, specifying a path for a DLL library in a Function or Sub
declaration will search the specified path after searching for the file in
memory. If the file is not in the specified path, the standard search
order is followed.

In VB 4.0, and later, an error will occur if the file is not found in the
specified path. ActiveX controls must exist in their registered
directory, otherwise an error will occur - even if they exist in another
location in the search path.

If a particular version of a registered ActiveX control is not found in
the Registry, then the ActiveX control with the same GUID and
“largest” version number greater than the reference version number in
the Registry will be used. If none is found, an error occurs. This
implies that your ActiveX control will not use an older version of the
same control.

VersionStamper API Functions 1.0 to 4.0 and
Later
Some of VersionStamper’s API functions also changed due to the
change in Visual Basic version 4.0 and later. The most significant of
these changes involves the handling of Visual Basic strings. It is now
more difficult to obtain an address of a Visual Basic string. We
recommend that you use the Visual Basic Byte array to allocate
buffers. You can call the vsGetAddressForObject function to get the
address of your Byte array variable. We have also included several
new functions for use with Byte arrays. Refer to the VersionStamper
API Function section for a description of vsLeftB and vsInstrB.

Page 123

New Features for Version 5.0

Select Files Dialog Box for VersionStamper 5.0
VersionStamper’s Select Files dialog box has been improved to
provide better scanning of your Visual Basic project. This version
supports scanning Visual Basic 4.0 and 5.0 project files. The Scan
Project feature can also include the DLL, VBX, and OCX dependency
files if the Include Dependents check box is selected. You can also
apply a filter list of dependent files to exclude when scanning a
project. This filter list may be edited by selecting the Dependent File
Filters... command button. Some components may require additional
support files that the VersionStamper scan may not detect. These files
are usually documented in the component’s user manuals and must be
manually added to the Selected list.

The Scan Dependents command button adds a list of the dependency
files of a selected file to the Selected list box. This is generally used
on files that are manually added to the file list since the Scan Project
feature will automatically perform a recursive scan on all dependent
files.

New Utilities and Samples
 VersionStamper includes some new utility programs. The following
briefly describes each application.

VerDepend
VerDepend is a utility which scans an executable or dynamic link
library (DLL) file and extracts the dependency files for the scanned
file. Each dependent file is in turn scanned for direct dependencies to
ultimately produce a complete list of dependent files. Dependency
relationships in addition to detailed version information for each file
may be saved to a text file.

AutoUpdate
AutoUpdate is a sample application that can update outdated files on
the target computer. Updated files are retrieved from an FTP site and
installed on the target computer.

Page 124

VsWebLst
VsWebLst is a sample application that retrieves a text file from a host
web site. This file contains file version and other conflict resolution
information required to perform a file verification. Each file in the list
is verified against the currently installed file on the target computer.
All incompatible (older version) files are logged and a report for each
file is displayed.

VsMail
VsMail is a sample application that retrieves a text file from a host
web site. This file contains file version and other conflict resolution
information required to perform a file verification. Each file in the list
is verified against the currently installed file on the target computer.
All incompatible (older version) files are logged and a report for the
verification file is emailed to a specified email address.

New Features for Version 6.0

New ATL Control and Component
VersionStamper includes a new ATL based ActiveX control and ATL
based ActiveX component. The dwvstp36.ocx file is similar to its
predecessor (dwvstp32.ocx) except it no longer requires the Microsoft
C run-time files (mfc40.dll and msvcrt40.dll). The dwvsob36.dll file is
a new ActiveX component that exposes a VerScan class which is
similar to the VersionStamper ActiveX control. Since it is an ActiveX
component, it does not need to be placed on a form. It is used for
verification only, and cannot hold a list of files to verify.

New VersionStamper Library Class Component
VersionStamper includes a new Component Library class compiled in
Visual Basic 6.0 using the new ATL ActiveX component. It also
includes a new Visual Basic 4.0 and 5.0 edition of the Component
Library class using the ATL component instead of the MFC control.

Page 125

Select Files Dialog Box for the ATL VersionStamper Control
(dwvstp36.ocx)
VersionStamper’s Select Files dialog box has been improved to
include additional warning conditions and path options. The Path tab
allows you to specify additional special path searches for specific files.
The Warnings (Advanced) tab allows you to check a file’s File
Version String resource or TypeLib version number. The Input File
List button allows you to input a list of files to verify from a
VersionStamper Script file. The Output File List button allows you to
output the currently selected file list to a VersionStamper Script File.
This version supports scanning Visual Basic 4.0, 5.0 and 6.0 project
files.

New Utilities and Samples
VersionStamper includes some new utility programs. The following
briefly describes each application.

VsWizard
VsWizard is a utility which allows you to compile a list of files
required by your application or another binary file; it has the capability
of finding dependents for any “executable” file on your system (such
as EXE’s, DLL’s, OCX’s, etc.). The VersionStamper Conflict Wizard
can then generate a VersionStamper Script File used by
VersionStamper to verify the required components on a client
machine.

VsRescue
VsRescue is a stand-alone utility that is similar to the other Visual
Basic verification files and programs that are included. The difference
is that this is an ATL-based edition and requires minimal run-time
files so it should be able to run even in situations where your primary
application cannot due to major file conflicts.

VsFileLs
VsFileLs is a sample application that retrieves a VersionStamper
Script file from a local or network path. This file contains file version
and other conflict resolution information required to perform a file
verification. Each file in the list is verified against the currently
installed file on the target computer. All incompatible (older version)
files are logged and a report for each file is displayed.

Page 126

Migrating from 4.0 or 5.0 to the ATL Control
If you are using the EXE embedded verification method, you can
migrate the dwvstp32.ocx control to the new dwvstp36.ocx control by
adding the “VersionStamper 6” control to your existing project. Then
“output” your current embedded file list from the “Select Files” form
of the dwvstp32 control into a “VersionStamper Script File” (VSF).
Finally, go into the “Select Files” form of the new dwvstp36 control
and “input” the VSF file. Replace any additional VersionStamper
controls marked as “slave” with the new VersionStamper control in
your project.

Code Changes
VB code changes are minimal. If you are using our template files, new
templates are included to help with the migration. If you do not plan to
use any of the new “warnings” or “path override” conditions, you will
probably not need to change any code at all. Here are some of the
more important things to note:

FileScan event now includes a new PathFlags parameter that indicates
whether or not to override the default search. The StopScan parameter
in this event has been changed from an Integer to a Boolean.

The StopVerify parameter in the FileConflict event has been changed
from an Integer to a Boolean.

The new “Ref*”, “Found*”, “Other*”, and “PathRefFileName”
properties are accessible only during a file verification or scan.

If you are using the VersionStamper Component Class Library, you
should replace the old reference with one of the new “ATL
Component” references. The old VersionStamper Component Class
Library uses the MFC based VersionStamper ActiveX control while
the new “ATL Component” Libraries use the ATL based
VersionStamper ActiveX component.

New Features for Version 6.5

New VersionStamper Script Command
New VerStampMessages command to support the display of custom
messages for file conflicts.

Page 127

New Features in the VersionStamper Conflict Wizard
VersionStamper 6.5 includes batch command line support for the
Conflict Wizard that allows you to create a VersionStamper Script File
in batch mode. Also includes support for scanning Wise Installation
script files or InstallShield Installation script files to generate a list of
files for verification.

New VersionStamper Library Class Component
VersionStamper includes new dwVsCmp6.dll and dwVsCmp5.dll
components which uses the SpyWorks WinSock component to handle
internet functions instead of the limited VersionStamper edition.

Page 128

Introduction to Internet Support
VersionStamper is fundamentally a distribution toolkit for
programmers who wish to safely distribute Visual Basic applications.
This differs from an installation program whose primary task is to
correctly install an application. VersionStamper is concerned with
what happens to your application after it has been installed in order to
make sure that your application will continue to run correctly as the
target system undergoes changes due to configuration changes,
updates, and installation of other applications that may use different
versions of the same components that your application uses.

There are two approaches to using VersionStamper. One is to use the
predefined objects and components that we provide in order to quickly
add component verification capabilities to any application. The other
is to modify the source code for these objects in order to add
customized component verification to your application.

Starting with version 5.0, the VersionStamper philosophy and
approaches were applied to the realm of the internet. The product
includes a number of components that can be used as-is, or modified
to suit your own needs. These components provide the following
features:

Flexible file list support: Prior editions of VersionStamper were
designed primarily to work with lists of files that were embedded into
the executable itself. This maintained an air-tight correspondence
between the required version information and the executable. Now
VersionStamper allows you to load file lists dynamically from a disk
file or from a web site that you maintain.

File Download support: Classes are provided that allow you to
download updated files from an FTP site or a web site. File download
using the FTP or HTTP protocols are supported.

Choose your Internet Support: The VersionStamper internet objects
are designed to work with any FTP or HTTP control. Samples are
included that use the Microsoft MSInet control, Crescent Internet
Toolkit control, and Desaware’s SpyWorks Winsock component. You
can easily adapt the package to use any TCP/IP internet component
package. The compiled VersionStamper components use the Desaware
SpyWorks Winsock component.

Page 129

EMail notification support: The product allows you to email conflict
information, allowing your technical support department to
automatically receive the detailed information about the target system
that is needed to resolve component conflicts. In some cases, if you
perform scans regularly, it may notify you of a developing problem
before it becomes apparent to the customer.

Automatic file updates: VersionStamper includes objects that can
download and install updated components automatically.

Custom messages for file conflicts: This edition of VersionStamper
allows you to assign custom conflict messages for a file conflict.
Custom messages may be displayed in addition to the normal file
conflict information. Use custom messages to specify additional
instructions your user must perform when updating a file, to notify
them of the changes with a new file, etc.

VersionStamper also includes a number of sample applications that
demonstrate how to effectively use the VersionStamper objects to take
full advantage of these internet based features.

Page 130

The Desaware Winsock Library
The addition of internet features to VersionStamper posed an
interesting dilemma to us. Exactly how do we provide access to
internet features from Visual Basic? We considered licensing one of
the multitude of internet controls available. We considered
standardizing on using the Microsoft internet controls. But ultimately
we decided to design the package with enough flexibility that you
could use whichever internet control you wished.

Then, to be sure that you would be able to use VersionStamper's new
32 bit internet features without having to purchase another software
package, we've included our own Desaware SpyWorks Winsock
component (dwsock?.dll).

For most cases, you do not need to access the SpyWorks WinSock
component directly as the VersionStamper Library objects exposes the
necessary properties and functions that you would use. In case you do
need to access the FTP or HTTP objects directly, their functions are
described in the VersionStamper Help file.

Page 131

Using a Different Internet Control
VersionStamper includes Desaware’s SpyWorks WinSock component
to handle internet transactions. But you can use another internet
control by replacing several files in the dwVsCmp? project. The files
to replace are verFtp.cls, verWebPg.cls, verDWINet.cls, and any BAS
files that are specific to a particular internet control. The following
outlines the steps necessary to use another internet component.

• Add the new internet component to this project.

• Replace the VerDWINet class with a class that specifically wraps
the internet component. This class can expose the necessary
internet properties for the higher level classes. At a minimum, it
should expose the RequestTimeout property and the
RetrieveBinaryFile and RetrieveURLPage functions. This class
name should have a similar naming convention as Ver??Net. This
class should be a private class.

• Replace the VerFTP class with a class that specifically wraps the
Ver??Net class. This class must expose the FTPFile function and
the RequestTimeout property which are accessed by the other
VersionStamper classes.

• Replace the VerWebPage class with a class that specifically wraps
the Ver??Net class. This class must expose the RetrieveURLPage
function and the RequestTimeout property which are accessed by
the other VersionStamper classes.

Page 132

VersionStamper Components
The VersionStamper components are written in Visual Basic and
include full Visual Basic source code. We encourage you to use the
actual component in your projects - it is quite efficient and has a great
deal of functionality.

Future VersionStamper releases will probably extend several of these
classes and include new ones. The classes exposed by the
VersionStamper Component Library are summarized in the next
section. Refer to the VersionStamper Help file for additional details on
each class. Also, please review the VersionStamper readme file for the
latest information.

Before you try to use or ship these components, please read the
following sections: Before You Begin and Distribution and Licensing.

Before You Begin
There are a few other issues that you should be aware of with regards
to this component.

• Not all of the functionality is available in both 16 and 32 bit. The
32 bit edition has additional capabilities.

• When using 32 bit, we recommend using the latest
VersionStamper Library (“Desaware VersionStamper ATL SW
VB? Component”), other 32 bit editions may not have the same
functionality.

• The different editions of the 32 bit VersionStamper components
are similar, the difference being which edition of Visual Basic
they were compiled and which VersionStamper control or
component was used. Refer to the Which VersionStamper file
Should I use? section for details on the different editions.

• If you recompile this project for any reason (such as to use
different internet controls), you need to rename your project and
rename the VersionStamper component file name to something
else. Otherwise, you may cause incompatibilities with other
applications that are using this particular file. For this reason, all
the project information for the VersionStamper component project
is cleared.

Page 133

Distribution and Licensing
This component is provided with the intent that it be used in
applications and components that offer significant and primary
functionality beyond that of this component. In other words - our
license does not permit you to use the code provided here or the
component itself to market another component that provides the same
or slightly modified functionality - like another version conflict
detection tool or utility.

You may not distribute the source code provided with the component
to anyone who has not purchased VersionStamper version 6 or later.

You may not, under any circumstances, distribute the files
dwverd36.dll, dwverd32.dll, dwverd16.dll, or dwverdes.dll.

You may distribute this component on a royalty free basis with your
compiled applications. You may distribute modified versions of this
component with your compiled applications as long as you include
either our licensing code or other code that will prevent the component
from being programmed without a valid VersionStamper license. If
you have any questions regarding distribution, please do not hesitate to
contact us directly.

The VersionStamper Component Library must be registered in order
for it to work. Refer to the Files Required for Distribution section
for details on required files to distribute for each component.

Page 134

VersionStamper Classes Summary
All of the VersionStamper classes including internet support are
compiled into several different permutations of the dwvercls.dll file.
All of the VersionStamper classes are written in Visual Basic, and will
run in Visual Basic 4.0 or later. All of the VersionStamper classes are
exposed from this DLL in 32 bit. Since you cannot compile an OLE
DLL in 16 bit Visual Basic, you need to add the appropriate classes to
your 16 bit projects. Furthermore, when running in 16 bit, you must
have a license for an internet control in order to use any of
VersionStamper’s internet features. The compiled DLL file must be
registered before it can be used. To use dwVerCls, select the
References menu command and add the “Desaware VersionStamper
Components” (or one of its permutations, “Desaware
VersionStamper* Components”) reference to your project. Please
refer to the Which VersionStamper File Should I Use section of this
manual should you need clarification on which component to select.

 The following briefly describes each of VersionStamper’s classes.

VerConflict
The VerConflict class holds conflict information for each file that
triggers a conflict situation during the verification process. The
VerConflict class’s LogFileConflict method is normally called
whenever a FileConflict event is triggered by the VersionStamper
ActiveX control. Calling this method logs all of the file conflict
information into the private data members of the class. All of the
conflict information can then be retrieved through properties exposed
by the VerConflict class. This class also includes additional exposed
methods that can fill a list box with a list of all conflicting files, or
retrieve the conflict information for a particular file in a report format.

VerControl
The VerControl object is used to set or retrieve global variables
exposed by the VersionStamper ActiveX Control or Component that
are not contained within any of the other VersionStamper Library
classes.

Page 135

VerDWInet
The VerDWInet object is a wrapper class that uses the Desaware
WinSock ActiveX component to handle FTP and HTTP file retrieval.
This class exposes the generic RetrieveURLPage and Retrieve-
BinaryFile functions. This class can be used by the VerFTP or
VerWebPage classes.

VerFileDateTime
The VerFileDateTime object is used to set and retrieve file times for
files. This class supports file creation, last access, and last write time
values that are supported by the FAT, NTFS, and HPFS file systems.
The file’s last write time value is normally referred to as the file’s
date/time value.

VerFTP
The VerFTP class is a generic class that higher level classes call to
handle FTP. This class should expose the generic FTPFile function
which retrieves a file from a specified location. This class should call a
wrapper class which uses a specific ActiveX control or component that
supports FTP.

VerParseCommandLine
The VerParseCommandLine class is used to parse a command line
containing valid VersionStamper formatted command data. After the
ParseLine method of this class is called, the class will contain the type
of VersionStamper data this line holds and the rest of the command
line. Depending on the command type, another class will be used to
interpret the rest of the command line.

VerParseFile1
The VerParseFile1 object is a high level class used to parse a file
containing valid VersionStamper command lines and carry out the
specified commands. This object is typically used to perform file
verification based on a local text file.

Page 136

VerParseFormat
The VerParseFormat class supercedes the VerParseFormat1 class and
is used to parse a command line containing VersionStamper formatted
data in the VerStampFileInfo1 or VerStampFileInfo2 format. The
VerifyObjectFile method is called to verify a file using the data
presented in the current command line. This class requires the use of a
VerConflict object and the VersionStamper ActiveX control or
component.

VerParseFormat1
The VerParseFormat1 class is used to parse a command line
containing VersionStamper formatted data in the VerStampFileInfo1
format. The VerifyObjectFile method is called to verify a file using the
data presented in the current command line. This class requires the use
of a VerConflict object and the VersionStamper ActiveX control or
component.

VerParseWebPage1
The VerParseWebPage1 class is a high level class used to retrieve a
text file from a URL address, parse the file, and return conflict
information in a VerConflict object or string. This class references
many of the other VersionStamper classes.

VerSecurity
The VerSecurity class deals with Windows NT security. Currently,
this edition sets the privilege for the current process to allow it to
reboot the system.

VerSmartReplaceFile
The VerSmartReplaceFile class can be used to install files retrieved
via FTP or other methods. This class supports replacing files that are
in use, as well as support for long file names. This class references the
VerSecurity class.

VerWarningFlags
The VerWarningFlags class converts warning flags into string
descriptions.

Page 137

VerVersionInfo
The VerVersionInfo class is used to retrieve version resource
information from files that contain a version resource. This class is not
exposed by the VersionStamper Component Library, but you may add
the class module file directly into your project.

VerWebPage
The VerWebPage class is a generic class that higher level classes call
to retrieve a text file from a URL address. This class should expose the
generic RetrieveURLPage function which retrieves a text file from a
specified URL location. This class should call a wrapper class which
uses a specific ActiveX control or component that supports HTTP.

VerMSINET
The VerMSINET class is a generic wrapper class that uses the
MSINET ActiveX control to handle FTP and HTTP file retrieval. This
class should expose the generic RetrieveURLPage and
RetrieveBinaryFile functions. This class can be used by the VerFTP or
VerWebPage classes. This class requires the form frmInet which
contains the actual ActiveX control. Not necessarily used in all
editions of the VersionStamper component.

VerCINET
The VerCINET class is a generic wrapper class that uses the Crescent
Internet Toolpak ActiveX controls to handle FTP and HTTP file
retrieval. This class should expose the generic RetrieveURLPage and
RetrieveBinaryFile functions. This class can be used by the VerFTP or
VerWebPage classes. This class requires the form frmInet which
contains the actual ActiveX control. Not necessarily used in all
editions of the VersionStamper component.

frmInet.frm
This form is used to hold the actual internet ActiveX controls used to
perform the internet operations. This form may be used by higher level
classes. This form is used only in combination with an Internet
ActiveX control.

Page 138

VsMain.frm
This form is used to hold the actual VersionStamper ActiveX control
used to perform the file verification. This form may be used by higher
level classes. This form is used only in combination with an Internet
ActiveX control.

Page 139

Technical Information
This part of the manual contains technical information that will help
you to work directly with the version API, or use VersionStamper
under other environments.

The Windows Version API
Version resource support is provided by a set of functions in the
VERSION.DLL (or VER.DLL in 16 bit Windows). This version API
can be called directly from Visual Basic. We have provided a set of
functions in the verinfo.bas file that provides an easy to use interface
to the version API, in addition to a great deal of sample code that
demonstrates how it is used. We also included a VB class
VerVersionInfo (vsverinf.cls) that wraps the version functions.

The information in this chapter will help you to understand the code in
the VerInfo project, and provide the information that you need to
access the version API directly should you choose to do so.

A word of thanks. Portions of this section are reprinted from the “Visual Basic
Programmer’s Guide to the Windows API” and “Dan Appleman’s
Visual Basic Programmer’s Guide To The Win32 API” with the
kind permission of Macmillan Press.

All of the version functions described here require that the dynamic
link library VERSION.DLL (or VER.DLL in 16 bit) be present on
your system. This dynamic link library is provided with Windows 3.1,
Windows 95/98, Windows NT, Windows 2000 and many other
applications. It is not included with VersionStamper.

The functions listed in the following table are used to support version
resources and to aid in the installation of files based on their version
stamp. Both 16 and 32 bit declarations are included.

Version Control API Functions
Function Description

GetFileResource

May be used to load a version resource.
GetFileVersionInfo is preferred how-
ever. This function is not supported in
Win32.

Page 140

GetFileResourceSize

May be used to determine the size of a
version resource.
GetFileVersionInfoSize is preferred
however. This function is not supported
in Win32.

GetFileVersionInfo

Loads a version information resource
block.

GetFileVersionInfoSize

Determines whether version information
is available. Returns the size of a version
information resource block.

VerFindFile

Determines the recommended destin-
ation directory in which to install a file.

VerInstallFile

A powerful function for installing a file
onto a system. Supports expansion of
compressed files and version checking.

VerLanguageName

Determines the text name of a language
based on a standard language code.

VerQueryValue

Determines the value of a version
attribute for a file.

The Version Data Structures
The version stamp for a file can have many different components
depending on the file. Three of these are commonly used by
installation programs and are used in virtually all programs that use
version stamping. The first component is a data structure known as the
FIXEDFILEINFO structure. It contains numeric version information
and flags defining the type of the file. The second component defines
the language and code page translations that exist in the version
resource. The third component consists of one or more strings called
StringFileInfo attributes.

The FIXEDFILEINFO Structure
The FIXEDFILEINFO data structure is present in every file that has a
version stamp. It is defined below.

VB Declaration:
Type FIXEDFILEINFO ‘ 52 Bytes
dwSignature As Long
dwStrucVersion As Long

Page 141

dwFileVersionMS As Long
dwFileVersionLS As Long
dwProductVersionMS As Long
dwProductVersionLS As Long
dwFileFlagsMask As Long
dwFileFlags As Long
dwFileOS As Long
dwFileType As Long
dwFileSubtype As Long
dwFileDateMS As Long
dwFileDateLS As Long
End Type

The following table describes each of these fields:

Field Type Description
dwSignature Long Always contains &HFEEF04BD.
dwStrucVersion

Long The version of this structure. Will
be greater than 29.

dwFileVersionMS

Long The high 32 bits of the file
version number.

dwFileVersionLS Long The low 32 bits of the file version
number.

dwProductVersionMS

Long The high 32 bits of the product
version number.

dwProductVersionLS

Long The low 32 bits of the product
version number.

Page 142

dwFileFlagsMask

Long Any combination of the constants
described in the Version File
Flags table that follows. The
presence of a flag in this
parameter indicates that the value
of the dwFileFlags parameter for
that bit is valid.

dwFileFlags

Long Any combination of the constants
shown in the Version File Flags
table.

dwFileOS

Long One of the constants defined later
in this chapter in the Version File
Operating System Types table.

dwFileType

Long One of the constants defined later
in this chapter in the Version File
Types table.

dwFileSubtype

Long One of the constants that begins
with the VFT2_ prefix. Defined
later in this chapter and in the
verinfo.bas file.

dwFileDateMS

Long The high 32 bits that specify the
date and time of the file’s
creation. The Microsoft resource
compiler does not set this value.

dwFileDateLS

Long The low 32 bits that specify the
date and time of the file’s
creation. The Microsoft resource
compiler does not set this value.

Version numbers are typically 64 bits long to allow for numeric
comparisons of versions. However, the internal structure of these
numbers deserves further clarification.

The most significant 32 bits, the high 16 bits comprise the major
revision number, and the low 16 bits comprises the minor revision
number. Thus Windows 3.10 will have &H0003000A as its major
version number. The 3 in the high order word indicates version 3, the
hexadecimal A represents the number 10 for a minor revision number
of .10.

Page 143

This technique is used on the lower 32 bits to allow an even finer
resolution of versions, but these numbers are typically used only in a
development environment and are rarely used by either application
programmers or users. Some programs that can read version
information do not even bother displaying the minor revision numbers.

When using dwvstamp.vbx, the control embeds a version resource,
that sets most of the fields in this structure automatically. The
FileVersion and ProductVersion properties set the
dwFileVersionMS, dwFileVersionLS, dwProductVersionMS and
dwProductVersionLS fields. The FlagDebug, FlagPatched,
FlagPrerelease, FlagPrivate and FlagSpecial properties set bits in
the dwFileFlags and dwFileFlagsMask fields.

Version File Flags
The following table lists the flags defined in the verinfo.bas file that
are used in the dwFileFlags parameter to specify general information
about the file.

Constants Description
VS_FF_DEBUG This file contains debugging

information.
VS_FF_INFOINFERRED

The version resource for this file is
dynamically allocated and some of
the blocks in the resource may be
incorrect.

VS_FF_PATCHED This file has been patched. It may
differ from the original file that has
the same version number.

VS_FF_PRERELEASE This is a pre-release version of the
file.

VS_FF_PRIVATEBUILD This version of the file is built
specially as defined by the
PrivateBuild StringFileInfo string.

VS_FF_SPECIALBUILD This version of the file is built
specially as defined by the
SpecialBuild StringFileInfo string.

Page 144

Version File Operating System Types
The following table lists the flags that are used in the dwFileOS
parameter to specify general information about the file.

Constant Target Operating System for this File
VOS_UNKNOWN Undefined or unknown to Windows.
VOS_DOS MS-DOS.
VOS_NT Windows NT.
VOS_WINDOWS16 16 bit Windows (includes Windows 3.0

and 3.1).
VOS_WINDOWS32 32 bit Windows (includes Windows 95 and

Windows NT).
VOS_OS216 16 bit OS/2.
VOS_OS232 32 bit OS/2.
VOS_PM16 16 bit Presentation Manager.
VOS_PM32 32 bit Presentation Manager.

The above flags can be combined (OR) to indicate that the file was
designed for one operating system running on another. Here are just a
few examples.

VOS_DOS_WINDOWS16

16 bit Windows (includes Windows
3.0 and 3.1) running under MS-DOS.

VOS_DOS_WINDOWS32

32 bit Windows running under MS-
DOS.

VOS_OS16_PM16

16 bit Presentation Manager running
under 16 bit OS/2.

VOS_NT_WINDOWS32

32 bit Windows running under
Windows NT.

Version File Types
The following table lists the constants defined in verinfo.bas that are
used in the dwFileType parameter to specify the type of the file.

Constant Type of file
VFT_UNKNOWN Unknown
VFT_APP Application

Page 145

VFT_DLL Dynamic Link Library. This includes most
Visual Basic custom controls.

VFT_DRV

Driver. The type is specified by the
dwFileSubType parameter.

VFT_FONT

Font. The type is specified by the
dwFileSubType parameter.

VFT_VXD Virtual device driver.
VFT_STATIC_LIB A static link library.

The Translation Table
This table defines the language and code page combinations that are
included in the version resource. It takes the form of an array of
integer pairs. The first integer is the language code as listed in the
Windows Languages table that follows. The second integer defines
the character set or code page to use for that language as shown in the
Windows Character Sets table that follows.

The language and code page definitions are not followed consistently
by every application. For this reason, it is important to look at the
translation table if one exists. You need accurate language and code
page information to access the StringFileInfo strings that are defined
in the next section.

If a translation table is not defined, the most common language/code
combinations are &H040904E4, indicating U.S. English and the
standard multilingual Windows character set, and &H04090000,
which indicates U.S. English and the 7 bit ASCII character set.

The VerInfo example program illustrates how the translation table for
a version resource can be read, and shows how to find the U.S. English
entry in the table.

The dwvstamp.vbx control allows you to specify up to 16 languages
character set pairs in an application. Each of these languages may
have its own set of StringFileInfo strings.

Windows Character Sets
Identifier Value Character Set
0 7 bit ASCII
&H3A4 Windows – Japan

Page 146

&H3B5 Windows – Korea
&H3B6 Windows – Taiwan
&H4B0 Unicode
&H4E2 Windows - Latin (Eastern Europe)
&H4E3 Windows – Cyrillic
&H4E4 Windows - Multilingual (U.S. Standard)
&H4E5 Windows – Greek
&H4E6 Windows – Turkish
&H4E7 Windows – Hebrew
&H4E8 Windows – Arabic

Windows Languages
Language Value Language
&H401 Arabic
&H402 Bulgarian
&H403 Catalan
&H404 Traditional Chinese
&H405 Czech
&H406 Danish
&H407 German
&H408 Greek
&H409 U.S. English
&H40A Castilian Spanish
&H40B Finnish
&H40C French
&H40D Hebrew
&H40E Hungarian
&H40F Icelandic
&H410 Italian
&H411 Japanese
&H412 Korean
&H413 Dutch

Page 147

&H414 Norwegian - Bokmål
&H415 Polish
&H416 Brazilian Portuguese
&H417 Rhaeto-Romanic
&H418 Romanian
&H419 Russian
&H41A Croato-Serbian (Latin)
&H41B Slovak
&H41C Albanian
&H41D Swedish
&H41E Thai
&H41F Turkish
&H420 Urdu
&H421 Bahasa
&H804 Simplified Chinese
&H807 Swiss German
&H809 U.K. English
&H80A Mexican Spanish
&H80C Belgian French
&H810 Swiss Italian
&H813 Belgian Dutch
&H814 Norwegian - Nynorsk
&H816 Portuguese
&H81A Serbo-Croatian (Cyrillic)
&HC0C Canadian French
&H100C Swiss French

Page 148

StringFileInfo Data
The StringFileInfo entries in a version resource are strings that
describe certain characteristics of the file. A file may contain unique
strings for each language supported, thus the language/code page
information is used to access this data as well. Refer to the description
of the VerQueryValue function for further information on retrieving
these values.

The dwvstamp.vbx control allows you to set the majority of these
strings. It supports up to 16 sets of strings at once, each with its own
language.

Version StringFileInfo Data Names
The standard StringFileInfo strings are listed in the following table.
Not all of the strings defined are present in every file.

StringFileInfo Name Description
Comments General comments.
CompanyName The name of the company.
FileDescription A description of the file.
FileVersion The version of the file in string form.
InternalName The internal module or application name.
LegalCopyright A copyright notice.
LegalTrademarks Trademark notices.
OriginalFilename The original name of the file. Useful in

determining if the file has been renamed.
PrivateBuild A description of this build if the

VS_FF_PRIVATEBUILD flag was set in the
dwFileFlags field of the FIXEDFILEINFO
structure.

ProductName The name of the product to which this file
belongs.

ProductVersion The version in string form of the product to
which this file belongs.

Page 149

SpecialBuild A description of this build if the
VS_FF_SPECIALBUILD flag was set in the
dwFileFlags field of the FIXEDFILEINFO
structure.

OLESelfRegister Indicates that this file can register itself into
the Registry. Most ActiveX controls are “self
register” controls. The dwvstamp.vbx does
not have a corresponding property for this
string.

Version API Function Declarations
GetFileVersionInfo
VB Declaration:
(32 bit) Declare Function GetFileVersionInfo& Lib "version.dll" Alias
"GetFileVersionInfoA " (ByVal lptstrFilename As String, ByVal
dwHandle As Long, ByVal dwLen As Long, lpData As Byte)
(16 bit) Declare Function GetFileVersionInfo% Lib "ver.dll" (ByVal
lpszFileName$, ByVal handle&, ByVal cbBuf&, ByVal lpvData&)
Description: Retrieves the file version information from a module that
supports version stamping.

Parameter Type Type/Description
lpszFileName String The name of the module file from

which to load version infor-
mation.

handle Long Not used with Win32 (set to
zero). Under Win16, the handle
returned by the
GetFileVersionInfoSize buffer.
May be zero to search for version
information in the file.

cbBuf Long The size of the lpvData buffer.
lpvData Long or Byte The address of a buffer to load

with version information. This
buffer must be at least cbBuf
bytes long. May reference the
first byte in a Byte array.

Page 150

Return Value: Long (32) or Integer (16): True (non-zero) on success,
zero otherwise.
Comments: The VerQueryValue API can be used to extract data from
the resource buffer loaded by this function.

GetFileVersionInfoSize
VB Declaration:
(32 bit) Declare Function GetFileVersionInfoSize& Lib "version.dll"
Alias "GetFileVersionInfoSizeA " (ByVal lptstrFilename As String,
lpdwHandle As Long)
(16 bit) Declare Function GetFileVersionInfoSize% Lib "ver.dll" (ByVal
lpszFileName$, lpdwHandle&)
Description: Retrieves the size of the buffer required to hold the file
version information for a module that supports version stamping.

Parameter Type Description
lpszFileName String The name of the module file from which

to load version information.
lpdwHandle Long A long variable to load with a handle to

the version resource information for the
specified file. This parameter is not used
under Win32, but must still be provided.

Return Value: Long (32) or Integer (16): True (non-zero) on success,
zero otherwise. Zero is also returned if the file does not support
version stamping.

VerFindFile
VB Declaration:
(32 bit) Declare Function VerFindFile& Lib "version.dll " Alias
"VerFindFileA” " (ByVal fl As Long, ByVal FileName As String, ByVal
WinDir As Long, ByVal szAppDir As String, ByVal szCurDir As String,
CurDirLen As Long, ByVal DestDir As String, DestDirLen As Long)
(16 bit) Declare Function VerFindFile% Lib "ver.dll " (ByVal fl%, ByVal
FileName$, ByVal WinDir&, ByVal AppDir$, ByVal CurrDir$,
CurDirLen%, ByVal DestDir$, DestDirLen%)
Description: This function is used to determine where a file should be
installed.

Page 151

Parameter Type Type/Description
fl Long (#@) or

Integer (16)
Currently only
VIFF_ISSHAREDFILE is
defined to indicate that the file
can be shared by multiple
applications. If this flag is
specified, this function will
recommend that the file be
installed in the Windows or
System directory. If this
parameter is zero, the function
will recommend that the file be
installed in the application
directory.

Filename String The name of the file to be
installed. This string should not
include the path of the file.

WinDir Long Zero
AppDir String The full path name of the

directory in which the
application and all its related
files are being installed.

CurrDir Long (32) or
Integer (16)

A buffer to load with the
directory containing the
existing version of the file. If a
version of the file is not already
present, the buffer will be
loaded with the directory of the
source file. Must be allocated to
be at least 260 bytes long.

CurrDirLen Integer The length of the CurrDir
buffer. This variable will be set
to the actual number of
characters loaded in the buffer.

DestDir String A buffer to load with the
directory in which the new file
should be installed. Must be
allocated to be at least 260
bytes long.

Page 152

DestDirLen Long (32) or
Integer (16)

The length of the DestDir
buffer. This variable will be set
to the actual number of
characters loaded in the buffer.

Return Value: LONG (32) or Integer (16) : One of the following
values defined in verinfo.bas:

VFF_CURNEDEST Indicates that the existing version of the
file is not in the directory specified by
DestDir, which is where this function
recommends that the new version be
installed.

VFF_FILEINUSE Indicates that the existing file is
currently in use and that it may not be
deleted at this time.

VFF_BUFFTOOSMALL Indicates that one or both of the
DestDir or CurrDir buffers are too
small to hold the directory name.

VerInstallFile
VB Declaration:
Declare Function VerInstallFile& Lib “version.dll” Alias “ VerInstallFileA”
(ByVal uFlags As Long, ByVal szSrcFileName As String, ByVal
szDestFileName As String, ByVal szSrcDir As String, ByVal szDestDir
As String, ByVal szCurDir As String, ByVal szTmpFile As String,
lpuTmpFileLen As Long)
Declare Function VerInstallFile& Lib “ver.dll” (ByVal fl%, ByVal
SrcFile$, ByVal DstFile$, ByVal SrcDir$, ByVal DstDir$, ByVal
CurrDir$, ByVal TmpFile$, TmpFileLen%)

Description: This function is used to install a file. It uses the
information provided by the VerFindFile function to determine where
a file should be installed. The function works by first comparing the
version stamps of the two files. If the source file is a newer and
compatible version, the source file is copied to a temporary file in the
destination directory, decompressing the file if it is compressed. Then
the existing version of the file is deleted and the temporary file is
renamed to match the destination file name.

Page 153

If the versions are not compatible, the temporary file may still exist in
the destination directory. At that time you have the option of either
deleting the temporary file, or installing the file with the
VIFF_FORCEINSTALL flag set to force the installation.

Parameter Type Description
fl Long (32)

or
Integer (16)

A combination of the following
constant values:
VIFF_FORCEINSTALL: Forces
installation of the source file without
version checking.
VIFF_DONTDELETEOLD: Does
not delete the existing version of the
file if it is not in the destination
directory. If it is in the destination
directory, it will be overwritten by
the new file.

SrcFile String

The name of the file to install. This
should not include the path name for
the file.

DestFile String

The name that should be given to the
file once it is installed. This is
usually the same as SrcFile.

SrcDir String The source directory from which the
new version of the file is copied.

DstDir String The directory in which to install the
new version of the file. The DestDir
buffer returned by the VerFindFile
function is typically used for this
parameter.

CurrDir String The directory that contains the
current version of the file. The
CurrDir buffer returned by the
VerFindFile function is typically
used for this parameter. If the string
is empty, no previous version of the
file exists on the system.

Page 154

TmpFile String A buffer to load with the name of a
temporary copy of the source file.
Must be allocated to be at least 260
bytes long.

TmpFileLen Long (32)
or
Integer (16)

The length of the TmpFile buffer.
This variable will be set to the actual
number of characters loaded in the
buffer including the terminating
NULL character. If
VIFF_FORCEINSTALL is specified
and TmpFileLen is not zero, the
temporary file will be renamed to the
name specified in the SrcFile
parameter.

Return Value: Long: An integer which contains a combination of one
or more of the constants listed in the table that follows:

VerInstallFile Result Constants
Constant Description
VIF_TEMPFILE A temporary file that is a copy of

the new file which is present in
the destination directory and
needs to be deleted.

VIF_MISMATCH The existing file differs from the
new file in one or more version
attributes. Can be overridden by
specifying
VIFF_FORCEINSTALL in the fl
parameter.

VIF_SRCOLD The new version of the file is
older than the existing file based
upon the version stamping of the
files. Can be overridden by
specifying
VIFF_FORCEINSTALL in the fl
parameter.

Page 155

VIF_DIFFLANG The new version of the file has a
different language or code page
value from the existing file. Can
be overridden by specifying
VIFF_FORCEINSTALL in the fl
parameter.

VIF_DIFFCODEPG The new version of the file needs
a code page that is not present in
the version of Windows now
running. Can be overridden by
specifying
VIFF_FORCEINSTALL in the fl
parameter.

VIF_DIFFTYPE The new version of the file differs
in type, subtype or target
operating system from the
existing version. Can be
overridden by specifying
VIFF_FORCEINSTALL in the fl
parameter.

VIF_WRITEPROT The pre-existing file is write
protected.

VIF_FILEINUSE The existing file is in use.
VIF_OUTOFSPACE There is insufficient disk space on

the destination drive.
VIF_ACCESSVIOLATION Operation failed due to an access

violation.
VIF_SHARINGVIOLATION Operation failed due to a sharing

violation.
VIF_CANNOTCREATE The temporary file could not be

created.
VIF_CANNOTDELETE The existing version of the file

could not be deleted.
VIF_CANNOTRENAME The temporary file could not be

renamed to the name of the
existing file. The existing file has
already been deleted.

Page 156

VIF_OUTOFMEMORY Operation failed due to lack of
memory.

VIF_CANNOTREADDISK The source file could not be read.
VIF_CANNOTREADDEST The existing destination file

cannot be read (thus version
information can not be checked).

VIF_BUFFTOOSMALL The TmpFileLen parameter is too
small to hold the name of the
temporary file.

VerLanguageName
VB Declaration:
Declare Function VerLanguageName& Lib “version.dll” Alias
“VerLanguageNameA” (ByVal wLang As Long, ByVal szLang As
String, ByVal nSize As Long)
Declare Function VerLanguageName% Lib “ver.dll” (ByVal Lang%,
ByVal lpszLang$, ByVal cbLang%)

Description: This function retrieves the name of a language based
upon the 16 bit language code. Language codes are used in the version
resource of a file to determine the language for which the file was
written. The list of language codes supported by Windows (also
located in this chapter).

Parameter Type Type/Description
Lang Long (32) or

Integer (16)
The language ID.

lpszLang String A buffer to load with the text name
of the specified language. This
buffer should be pre-allocated to at
least cbLang+1 bytes.

cbLang Long (32) or
Integer (16)

The length of the lpszLang buffer.

Return Value: Long (32) or Integer (16) : The number of characters
loaded into the lpszLang buffer, zero on error.

Page 157

VerQueryValue
VB Declaration:
Declare Function VerQueryValue& Lib “version.dll” Alias
“VerQueryValueA” (pBlock As Byte, ByVal lpSubBlock As String,
lplpBuffer As Long, puLen As Long)
Declare Function VerQueryValue% Lib “ver.dll” (ByVal lpvBlock&,
ByVal SubBlock$, lpBuffer&, lpcb%)

Description: This function is used to retrieve information from the
version resource. Before calling this function, the version resource
information must be retrieved using the GetFileVersionInfo structure.
This function examines the resource information and copies the
requested data into a buffer.

Parameter Type Description
lpvBlock Long The address of a block of memory

containing version information data as
retrieved by the GetFileVersionInfo
function.

String One of the following:
“\” to retrieve the FIXEDFILEINFO
structure for this file.
“\VarFileInfo\Translation” to retrieve
the translation table for this file.
“\StringFileInfo\.... Refer to the
Comments section for a full
description.

lpBuffer& Long The address of the buffer to load with
the requested version information.
This should be pre-allocated to at least
lpcb bytes long.

lpcb Long (32) or
Integer (16)

The length, in bytes, of the lpBuffer
buffer.

SubBlock

Return Value Long (32) or Integer (16): True (non-zero) on success,
zero if the requested information does not exist or lpvBlock does not
reference valid version information.

Page 158

Comments: When the SubBlock parameter is “\VarFileInfo\
Translation”, the buffer will loaded with an integer array. Each pair of
integers represents a language and code page pair describing available
string information.

The StringFileInfo string data is retrieved by specifying a string with
three parts as follows:
"\StringFileInfo\languagecodepage\stringname”
languagecodepage is an 8 character hex number in string form. If the
language codepage entry in the translation table is &H04090000, then
this string should be "04090000 ".

stringname is a string name from those listed in the StringFileInfo
table earlier in this chapter. An example of this parameter would be:

"\StringFileInfo\04090000\CompanyName"

The Windows Registry
The Windows Registry is a central depository containing a variety of
program and configuration information. In this manual, the term
“Registry” refers to two similar implementations: the Registration
Database in Microsoft Windows 3.1 and the Registry in Windows NT
and Windows 95/98. A thorough technical discussion of the Registry
is beyond the scope of this manual, this section will focus on the key
elements of the Registry that can affect the use of shared components,
in particular ActiveX controls and components, with executables.
Desaware also has a product available called “StorageTools” which
includes a complete registry and registration database toolkit including
ActiveX controls and extensive sample code.

Evolution of the Registry
One of the key features of Microsoft Windows is its ability to be
customized to suit the user. Not only can a user specify color schemes
or pictures on the desktop, but programs can remember where they
were last placed and which documents were most recently used.
Microsoft originally specified that Windows applications keep
configuration information inside a text file called WIN.INI. This
created a standard for programmers, while allowing applications and
users to change program and system settings directly. As the number
of Windows applications exploded, limitations in this standard became
apparent. Initialization files became large and—because of their flat
arrangement—hard to understand and edit. With the release of

Page 159

Windows 3.0, Microsoft tried to alleviate the first problem by creating
API functions for handling private .INI files. This, of course, created
problems of its own, -- filling the user’s \WINDOWS directory with
countless .INI files and making it difficult for applications to
communicate with each other.

The beginning of the solution was introduced in Windows 3.1. With
the introduction of inter-process forms of communication such as
Dynamic Data Exchange (DDE) and Object Linking & Embedding
(OLE), it became vital to create a centralized database of program
descriptions. The Registration Database is the result. It has a
hierarchical structure, allowing complex data structures to be stored
cleanly. It is in binary format for quicker access. In addition to
containing descriptions of DDE and OLE entry points, it also contains
associations between extensions and applications, user readable names
for programs and files, and other useful information.

The primary elements of the hierarchical structure are keys. Keys can
contain other keys. The key at the root of this structure is named
HKEY_CLASSES_ROOT. Any key can have one value associated
with it. This value is in the form of a string of characters.

Because the Registry is in binary format, it cannot simply be loaded
into a text editor as is customary with initialization files. Microsoft
provides a program called REGEDIT which allows the user to view
and modify the Registration Database. Running REGEDIT with the
command line flag “-v” turns on the advanced editing mode that
reveals more information from the registration database.

However, the Registration Database was (and still is) hampered by the
64K size limit. Additionally, the Registration Database is limited to
one file (REG.DAT), so it cannot be split when the size limit is
reached. It also has a limited purpose, and could not replace the .INI
file as an application configuration storage.

Page 160

One of Microsoft’s priorities in designing Windows NT was to
overcome limitations discovered in 16 bit Windows. To solve the
problems with initialization, Microsoft programmers created the
Registry. At its heart, it is similar to the Registration Database—but
much more useful. Instead of the lone HKEY_CLASSES_ROOT root
key, the Registry has four root keys—of which
HKEY_CLASSES_ROOT is one. These new keys provide the
structure and the space for any configuration information a program
might need to store. There is also space to put version information and
other data a program might want to make public. The whole database
can be of almost unlimited size. It is specially formatted and buffered
to allow extremely fast access.

Keys can now hold any number of named values, and these values can
be any of a number of different data types. The .INI files became
obsolete—in fact, when 16 bit applications make API calls to read or
write information to system .INI files, Windows NT actually re-routs
them to a special location inside the Registry. The 32 bit version of the
Registry editor is named REGEDT32.EXE (or RegEdit.exe) You may
not be able to locate this program on your machine as system
administrators do not always make it available to end users due to the
possibility of accidental destruction of important Windows data.

Windows 95 and 98 also depend heavily upon the Registry, although
not quite as much as Windows NT. Windows 95 and 98 do not need
WIN.INI and SYSTEM.INI files, but will use them if they exist. Any
attempt to change these initialization files will not result in a change in
the Registry. Windows 95 and 98 adds two new root keys to the NT
Registry while removing areas devoted to security and other Windows
NT-only features. The Windows 95 and 98 Registry editor is named
REGEDIT.EXE.

ActiveX Controls Must be Registered
Before you can use an ActiveX control, you must register it with the
system. Registering an ActiveX control places information about the
control such as version, path, and platform in the Registry. Once the
control has been registered, applications and development
environments can search the Registry to determine which controls
have been installed. Unlike a Visual Basic custom control (VBX), an
ActiveX control does not need to be registered by each application that
uses it. Once the control has been registered with the system, any
application can find it (until it is unregistered).

Page 161

Registering the ActiveX Control
Microsoft provides the REGEDIT.EXE program which can register
ActiveX components. Most executables that use ActiveX components
will register all the components automatically upon installation. By
definition, an ActiveX control must be “self-registering”, that is, it can
register and unregister itself.

Self-registration simplifies the process of registering a control because
the control does the actual work of adding the necessary information
to, or removing it from, the Registry. ActiveX controls export two
functions, DllRegisterServer and DllUnregisterServer to handle self
registering and unregistering. The ActiveX container need only call
the DllRegisterServer function from the .OCX file to get the control to
register itself. Most ActiveX containers also provide some method to
“Browse” for objects. When an ActiveX component is selected, the
container calls the exported function from the component file to
initiate the self-register sequence. One method to determine whether a
file is an ActiveX control is to check for the existence of the
“OLESelfRegister” string in the file’s StringFileInfo version section,
however - this approach is not 100% reliable as it assumes that the
control vendor has followed the standard. You can assume that any
control that has this string set is self-registering, but you may find self-
registering controls that do not have this string set. Refer to the
VerInfo project for an example on retrieving this field.

Missing ActiveX
Controls

You can delete an ActiveX control without unregistering it.
Therefore, the Registry may contain entries for ActiveX controls
that no longer exist on the system. VersionStamper confirms that
registered ActiveX controls actually exist.

Unregistering

ActiveX Controls
Care should be taken when unregistering an ActiveX control. If an
ActiveX control is unregistered while it is in use, the control can
stop functioning altogether in every application. In addition to
verifying the required components when your application loads,
you can also add a command to your application that invokes
VersionStamper to verify the required components at any time. You
can run this command if the ActiveX controls in your application
starts behaving differently to confirm that all ActiveX controls are
still registered.

Page 162

Some Important Keys in the Registry
 HKEY_CLASSES_ROOT: This is available in Windows 3.1,
Windows NT, Windows 95 and 98. It is mapped to
HKEY_LOCAL_MACHINE\Software\Classes in all but Windows
3.1., where it is the only root available. It is where file extensions are
mapped to applications, DDE links are described, and OLE objects are
defined. Keys in this root usually do not have any named values, and
all values are plain strings in order to be compatible with the Windows
3.1 Registration Database. OLE objects are defined in the CLSID
subkey.

HKEY_LOCAL_MACHINE\SOFTWARE\(Company Name)\(Program
Name)\CurrentVersion: Version information is placed in this key.
Some of the standardized value names you should use are:

Value Description
Description Text description of the software.
InstallDate Long integer holding the date.
RegisteredOwner The registered owner of the software.
MajorVersion A string containing the most significant

version number.
MinorVersion A string containing the least significant

version number.
ServiceName A short human-readable name.
SoftwareType The type of program (i.e. “driver”,

“service”, “application”, etc.).
Title The title of the program.

Any other version information should also be put here.

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\Current
Version\SharedDLLs:

For use with the Windows 95 style shell only. In this key are the
names and full paths of all .DLLs used by installed applications with
reference counts of how many applications use each one. This is the
method Windows 95 and 98 uses to decide if it can delete components
of uninstalled programs. Make sure your install and uninstall programs
correctly update this area.

HKEY_LOCAL_MACHINES\SOFTWARE\Microsoft\Windows\
CurrentVersion\AppPaths:

Page 163

For use with the Windows 95 style shell only. This area is used to
specify directories for applications and support files. Add a key named
after your application here. Set the default value to the path where
your .EXE files is located. If you need to, create a value named Path
and set it to the path where your DLL’s are located (if not in the same
place as your .EXE or \Windows\System). The Windows shell
automatically updates this area if you move the executable.

When creating a future update, you might not want to overwrite the
previous Registry entry. Doing so might render the previous version of
your software unusable. You can overcome this by setting up different
areas with keys for different version of you software. For example,
you could have a HKEY_LOCAL_MACHINE\Software\(Company
Name)\(ProgramName)\1.0 key and a HKEY_LOCAL_MACHINE\
Software\(CompanyName)\(ProgramName)\2.0 key to store confi-
guration information of both programs safely.

The best way to learn more about the Registry is to do some exploring
with the Registry browser tools (e.g. REGEDIT that comes with
Windows or REGBRSR that comes with StorageTools) that are
available.

Page 164

Other Sources of Information
Here are several other resources that we recommend for advance
Windows development.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special
interest to VersionStamper customers will be the chapters on OLE and
COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Page 165

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

Dan Appleman's Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-01-1). Appleman's Win32 API Guide
covers 700 API functions. This book covers the other 7800. How? By
teaching you everything you need to know to read and understand the
Microsoft C documentation and create correct API declarations for use
in Visual Basic. Presented in an entertaining puzzle/solution format
that challenges you to solve real world API problems. In depth
tutorials take you behind the scenes to understand what really happens
when you call an API function from VB.

The Desaware Visual Basic Bulletin
and other related technical articles. At the Desaware website:
http://www.desaware.com.

PC Magazine's Visual Basic Programmer's Guide
To The Windows API
Written by Daniel Appleman (president of Desaware) this book is
intended to help Visual Basic programmers navigate the complexities
of Windows. It is the only text on Windows that is designed
specifically for Visual Basic programmers, and the only one that
covers the interactions between Visual Basic and Windows.

Available on CD Rom only from Desaware. Call (408) 404-4760 or
email support@desaware.com.

Windows API Online Help
The Professional Edition of Visual Basic includes Win31api.hlp
and/or win32api.hlp - an online help reference for all API functions.
These functions are declared in C and do not consider Visual Basic
compatibility issues, however the information in chapter 3 of the
Visual Basic Programmer's Guide to the Windows API (chapters 3 and
4 of the 32 bit book) will provide you with information on how to
translate these functions to Visual Basic.

Page 166

mailto:support@desaware.com

Microsoft's Developers Network CD Rom
This amazing CD-ROM contains a wealth of information and sample
code, plus the latest Visual Basic knowledge base.

Microsoft's Windows Software Development Kit
and Win32 Software Development Kit
The sample code is all in C, but by the time you've read the Visual
Basic Programmer's Guide to the Windows API or Win32 API, you'll
know enough to be able to translate the C code to Visual Basic.

Page 167

Index
 Data Structures
32 Bit, Additional Components, 22 Components, 141
 Delaying a Verify or Scan Operation,

85 API Functions
Delphi, 18 Version Control, 140
Dependent File Version Declarations, 150

VersionStamper, 88, 123 Older Version Found, 67
Distribution AutoUpdate, 124

 Files Required, 30
Background Information, 47 Licensing and, 134

Typical Problems, 63
Distribution Problems, 63 Character Sets
dwvcls???.dll, 133 Windows, 146
dwvstamp.vbx, 3, 11, 21, 47, 49, 50, 51,

52, 72, 88, 122, 144, 146, 149, 150
Compatibility, 18
Components, 122

 ATL, 125
Deleted, 66 EnumComplete, 37, 41, 79, 83, 85, 121

Enumeration, 78, 79 Incompatible, 63
Events Incorrectly Registered, 63

EnumComplete, 37, 41, 79, 83, 85, 121 Library Class, 125
FileConflict, 37, 39, 41, 42, 44, 80, 83,

84, 86, 127, 135
Loading

16 Bit Applications, 53
FileConflict Event, 80 32 bit Applications, 57
FileScan, 79, 81, 84, 85, 86, 127 Visual Basic, 53
Form_Load, 43 Windows, 53
Scanning & Verification, 79 Windows and Visual Basic, 122

Executable New for 6.5, 128
Overwritten, 66 Newer Version, 64

 Older Version in System Directory, 65
File Older Version in Windows Directory,

68 Descriptions, 25
Older Version Present in Memory, 68 Required for Distribution, 30

FileConflict, 37, 38, 39, 41, 42, 43, 44,
78, 80, 83, 84, 86, 127, 135

Overwritten, 65
Problems Updating, 62

FileCurrentDir, 85 VersionStamper, 133
FileScan, 79, 81, 84, 85, 86, 127 Constants
FileVersion, 49, 66, 77, 144, 149 VerInstallFile Result, 155
Fixed File Information, 48 Custom Conflict Messages, 130
FIXEDFILEINFO, 48, 50, 51, 76, 141,

149, 150, 158
Customer Support, 18

Page 168

File & Directory Filtering, 121 Data Structure, 141
FlagDebug, 51, 144 FileCurrentDir, 85
FlagPatched, 51, 144 FileFilter, 121
FlagPreRelease, 51 FileFilterExt, 121

FileVersion, 49, 66, 144 FlagPrivate, 51, 144
FlagDebug, 51, 144 FlagSpecial, 51, 144
FlagPatched, 51, 144 FoundSize, 121
FlagPreRelease, 51, 144 frmInet.frm, 138
FlagPrivate, 51, 144
FlagSpecial, 51, 144 Information
FoundSize, 121 Other Sources, 165

Installation, 19 OtherPaths, 121
Internet, 138 OtherSize(), 121

PathFilter, 121 Different Control, 132
ProductVersion, 49, 144 Support, 129
ReferenceFileName, 82 AutoUpdate, 124
RefSize, 121
RequestTimeout, 132 Languages
ScanFile, 83, 84, 85 Windows, 146, 147
SelectFiles, 35, 38, 72, 73 Licensing
Slave, 84, 86 Distribution and, 134
UserDirectory, 77
VerifyFile, 84, 85 Migrating, 119
VerifyMode, 36, 78, 83, 84, 85, 86 ATL Control, 127
Version Resource, 72 Visual Basic 3.0 Projects, 122

 Multiple Languages
Quick Start, 34 Support, 51

RefSize, 121 Older Version, 68
Registration Database, 160 Operating System Types
Registry Version File, 143, 145

Keys, 163 OtherSize(), 121
 Windows, 159

RequestTimeout, 132 PATH Changed, 67
 ProductVersion, 49, 144, 149
ScanFile, 83, 84, 85 Properties
Scanning and Verification VerifyMode, 81

Properties Available During, 86 VerifyFile, 81
Search Order, 122 Available during Scanning &

Verification, 86 Select Files Dialog Box, 74, 120, 124,
126 Conflict Resolution, 72

SelectFiles Dialog, 72 Delay, 41, 85, 121

Page 169

Slave, 84, 86, 87 VerParse, 133
Starting a Verify or Scan Operation, 83 VerParseCommandLine, 136
Strategies VerParseFile1, 136

VerParseFormat, 137 Distributing Component Based
Programs, 69 VerParseFormat1, 137

String Information, 52 VerParseWebPage1, 137
StringFileInfo Data, 149 VerResQ, 33
 VerSecurity, 137
Technical Notes, 119 Version
Technical Support, 18 File Operating System Types, 145
Tools Version API

Additional, 17 Function Declarations, 150
Information, 17 Version Data Structures, 141

Translation Table, 146 Version File
 Operating System Types, 143
Updating Components Version File Flags, 143, 144

Problems, 62 Version File Types, 145
Upgrading. See Migrating Version Resource, 13, 47, 48, 72
UserDirectory, 77 VersionStamper
 About, 11
VerCINET, 138 API Functions, 88, 123
VerConflict, 133, 135, 137 Components, 133
VerControl, 135 Methods, 87
VerDepend, 33, 124 Strategies, 32

Using, 72 VerDWInet, 136
VerFileDateTime, 136 Using Multiple Controls, 86
VerFTP, 136, 138 VersionStamper Classes, 135
Verification VersionStamper Conflict Wizard. See

VsWizard Dynamic, 40
Embedded, 34 VersionStamper Script File, 35, 45, 88,

89, 90, 93, 100, 101, 126, 127, 128 VerifyFile, 35, 36, 78, 81, 84, 85
VerifyMode, 35, 36, 38, 78, 81, 83, 84,

85, 86
VerSmartReplaceFile, 137
VerstampMessages

VerifyObjectFile, 41, 81, 85, 86, 87, 121,
137

Custom Conflict Message, 127
VerVersionInfo, 138

VerifyObjectFile Method, 87 VerWarningFlags, 137
VerifyObjectFile2, 87 VerWebPage, 138
VerInfo, 17, 33, 51, 52, 85, 86, 140, 146,

162
Visual C++, 18, 119
Visual FoxPro, 85, 119

verinfo.bas, 50, 140, 143, 144, 145, 153 VsFileLs, 126
VerInstallFile Result Constants, 155 VsMail, 125
VerMSINET, 138 VsMain.frm, 139

Page 170

VsRescue, 33, 46, 126 New Features, 128
VsWebLst, 125 Reference File Paths, 114
VsWizard, 29, 33, 35, 40, 44, 67, 87, 88,

91, 94, 95, 96, 115, 117, 126
Scan Process, 96
Scanning Installation Script File, 94
Selecting Scanning Type, 90 Batch Commands, 115
Selecting Script Source, 91 Edit AutoUpdate, 112

 Edit File List, 99
Windows Edit File Messages, 113

Character Sets, 146 Edit File Search Paths, 109
Edit File Version, 104 Languages, 146, 147
Edit Verification Settings, 106 Registry, 159

Winsock, 129, 131, 173 Edit Warning Conditions, 106
Winsock Library, 131 File Save, 114

Installation Script Filter File, 117

Page 171

Desaware Product Descriptions
Thank you for your purchase of this Desaware product. We have
additional quality software to enhance your programming efforts.
Please visit our web site at www.desaware.com for detailed
descriptions and product demos.

SPYWORKS Standard 6/Professional 7

SpyWorks in a nutshell? Impossible!

You're going to want to download the SpyWorks demo to even begin
to understand its capabilities. This product has been evolving for
several years, and it includes so many features it's hard to know where
to begin. SpyWorks is a VB power tool. When you need to override
VB's default behavior or to extend VB's functionality, you will want to
use SpyWorks.

Do That in Visual Basic??

Want to put VB to the test? Want to learn advanced programming
techniques? Want to keep the productivity of VB and have the
functionality of C++? SpyWorks contains the low level tools that you
need to take full advantage of Windows. Here are just a few of the
features of this multi-faceted software package. For instance, have you
ever wanted to detect keystrokes on a system-wide basis or detect
when an event occurs in another application or thread using
subclassing or hooks? SpyWorks can help you solve these problems
by letting you tap into the full power of the Windows API without
having to be an expert. SpyWorks lets you export functions from VB
DLL's so that you can create function libraries, control panel applets,
and NT Services. With its ActiveX extension technology, you can call
and implement interfaces that VB5 or 6 do not support. SpyWorks
includes the Desaware API Class Library, which assists programmers
in taking advantage of the hundreds of functions that are built into the
Windows API. SpyWorks is available in either the Professional (Pro)
or Standard edition.

Page 172

http://www.desaware.com/

The Pro Edition includes a WinSock component with comprehensive
VB source code that gives you complete control for Internet/intranet
programming. Other features are the NT Service Toolkit Light Edition.
This new application is a subset of the Desaware NT Service Toolkit
product. It allows a developer to create true NT services using Visual
Basic. A background thread component that allows you to easily
create objects that run in a separate background thread.

It also contains extensive sample code and three product updates.

♦ The Professional Edition includes the Winsock Library, NT
Service support and many other additional features & samples,
plus three free updates. SpyWorks 2.1 (VBX Edition) is included
in the Pro Edition.

♦ SpyWorks Standard is a subset of Professional. A feature
comparison is available on our web site.

♦ Supports VB 4, 5 & 6, .NET (Pro), Windows 95, 98, NT, 2000 & XP.

VERSIONSTAMPER 6.5

Distributing Component-Based Applications? Beware DLL
HELL!

You've distributed your application and it's working fine. But your
end user is still in charge of their system. What happens when they
install a program that overwrites a component that your software needs
to run? Can you verify that your users have the correct files required
by your application? Can you really afford to spend two hours on the
phone trying to figure out exactly what went wrong? Now you can
easily avoid component incompatibilities by adding VersionStamper
to your toolkit. It lets you check the versions of your program's
components on your end user’s system, and correct the problem.

Page 173

You are in control!

DLL Hell is a big problem, and with VersionStamper you can be in
control of how this problem is detected and corrected. You determine
dependency scanning (file size, date, version or other parameter), how
and when the dependency scanning is done (upon start up, at midnight,
at user's discretion), and how you want the problem resolved
(automatically, an email message to your help desk, from a
dependency list on your web site and more). This means you can
handle versioning problems as simply as using a message box to call
tech support, or even automatically updating the invalid components
over the internet or corporate network. Imagine your application
updating itself without user (or programmer) intervention! Imagine the
hours and money saved in tech support calls! You can even use
VersionStamper for incremental updates and bug fixes.

Is This For Real?

No, you don't have to pay a fortune in distribution fees - there are no
run-time licensing fees. VersionStamper comes with a great deal of
sample code. Don't distribute a component-based application without
it!

♦ Checks the versions of your dependent files and notifies you or the
user of potential problems.

♦ Internet extensions allow you to update versions across the
Internet/intranets.

♦ Cool and USEFUL sample programs show you how it works.

Includes VB source code for the VersionStamper components that you
can use in your applications.

Page 174

NT SERVICE TOOLKIT 2.0

Create a fully featured service in minutes using Visual Basic – even
debug your service using the Visual Basic environment! Supports all
NT service options and controls. Adheres to all Visual Basic threading
rules. Background thread support allows easy waiting on system and
synchronization objects. Client requests supported on independent
threads for excellent scalability, with client impersonation available
allowing services to act on behalf of clients in their own security
context. Client requests and service control possible via
COM/COM+/DCOM.

Simulation mode for testing as an independent executable. Create
control panel applets for service control and other purposes.

DESAWARE EVENT LOG TOOLKIT 1.0

Visual Basic allows you to log events to the NT/2000 event
log, but does not allow you to create custom event sources - so every
event belongs to the application VB runtime, descriptions are limited,
and event categories unavailable. Even if you use the API to log
events, creating custom event sources for your application is not
supported by VB, and is difficult with C++.

Desaware's new Event Log Toolkit makes creation of event sources
easy, and provides all the tools needed to create and log custom
events. Now your applications and services can support event logs in a
professional manner, as recommended by Microsoft

Page 175

STORAGETOOLS ver 3.0

StorageTools is your key to the OLE 2.0 Structured Storage
Technology. Structured Storage allows you to create files that organize
complex data easily in a hierarchical system. It is like having an entire
file system in each file. OLE 2.0 takes care of allocating and freeing
space within a file, so just as you need not concern yourself with the
physical placement of files on disk, you can also disregard the actual
location of data in the file. Additionally, with its support for
transactioning you can easily implement undo operations and
incremental saves in your application. StorageTools allows you to
take advantage of the same file storage system used by Microsoft's
own applications. In fact, we include programs (with Visual Basic
source code) that let you examine the structure of any OLE 2.0 based
file so that you can see exactly how they do it!

StorageTools includes documentation and controls to make it easy to
work with the registration database under Windows 3.1, Windows NT
& Windows 95/98 and 2000. For Visual Basic 4-6. We also include a
simple resource compiler (with Visual Basic source code) so that you
can create your own .RES files for use with Visual Basic.

StorageTools version 3.0 also includes the Desaware File Property
component and .NET support.

StorageTools includes 16 & 32 bit ActiveX/ATL controls, extensive
documentation and sample code.

Page 176

Page 177

DESAWARE ACTIVEX GALLIMAUFRY Ver. 2

What is it?

gal·li·mau·fry (gàl´e-mô¹frê) noun
plural gal·li·mau·fries
A jumble; a hodgepodge.

[French galimafrée, from Old French galimafree, sauce, ragout :
probably galer, to make merry. See GALLANT + mafrer, to gorge
oneself (from Middle Dutch moffelen, to open one's mouth wide, of
imitative origin).]
(From The American Heritage® Dictionary of the English Language,
Third Edition copyright © 1992 by Houghton Mifflin Company)

What does a Twain control, spiral art program, set of linked list
classes, a quick sort routine, a hex editor and a myriad of other custom
controls have in
common?

They are all part of Desaware's ActiveX Gallimaufry.

You'll find most of these controls useful, the rest entertaining – but we
guarantee that you'll find them all educational, because they come with
complete Visual Basic 6.0 source code.

Curious?

Want to learn some advanced API programming techniques? Visit our
web site for a full description and demo.

THE CUSTOM CONTROL FACTORY V 4.0
The Custom Control Factory is a powerful tool for creating your own
animated buttons, multiple state buttons, toolbars and enhanced button
style controls in Visual Basic and other OLE control clients, without
programming. With 256 & 24 bit color support, automatic 3D
backgrounds, image compression, over 50 sample controls and more.
Plus MList2 - an enhanced listbox control. 16 & 32 bit ActiveX
controls and 16 bit VBXs included.

	Table of Contents
	About VersionStamper
	The Trouble with Distributing Component Based Applications
	Software Installation of Shared Dynamic Link Libraries
	The Trend Towards Component Based Solutions
	The Distribution Crisis

	Solving the Distribution Problem
	Embedding Component Version Information into Your Application
	Detecting Component Incompatibilities at Run-Time

	Additional Tools and Information
	Compatibility
	Customer Support
	Register! Register! Register!
	Installation

	Which VersionStamper File Should I Use?
	16 Bit
	32 Bit
	Additional 32 Bit Components
	File Descriptions
	
	
	Description
	Description
	VsWizard.exe

	Files Required for Distribution
	
	
	
	
	
	Dependent Files

	Strategies for Using VersionStamper
	Quick Start - Our Standard “No Code” Approach
	For Sophisticates - Customized Solutions
	Tools
	VsWizard - VersionStamper Component Conflict Wizard
	VsRescue - ATL Based Component Incompatibility Scan Program
	VerInfo - Version Information Spy Program
	VerResQ - Component Incompatibility Scan Program
	VerDepend - File Dependency Scanner Program

	Quick Start Samples
	Embedded Verification
	Dynamic Verification (OCX Edition Only)
	Emergency Rescue Program
	Creating a Component List at Run-Time

	Background Information
	The Version Resource
	Fixed File Information
	Support for Multiple Languages
	String Information

	How Windows and Visual Basic Load Components
	Searching for Components
	16 Bit Applications
	32 Bit Applications
	Problems with Updating Components

	Typical Distribution Problems: Why They Occur and How to Fix Them
	A Component was Incorrectly Registered, or an Incompatible Component was Registered
	A Newer Version of a Component Breaks Existing Code
	An Older Version of a Component is in the System Directory (32 bit Windows)
	Another Application Overwrote the Latest Version of a Component
	A VB Executable was Overwritten During a Re-install
	A Component was Accidentally Deleted
	The PATH has Changed
	An Older Version of a “Dependent” File was Found
	An Older Version of a Component is in the Windows Directory (16 bit Windows)
	An Older Version of a Component is Present in Memory (16 bit Applications)

	Strategies for Distributing Component Based Programs
	Expensive Strategy: Don’t Use Custom Controls
	Unreliable Strategy: Place Controls in the Project Directory
	(16 bit Windows)
	(32 bit Windows)

	Best Strategy: Use System Directory and VersionStamper

	Using VersionStamper
	OCX and VBX
	VBX Edition Only
	Embedded File Information
	SelectFiles Property
	Using the Select Files Dialog

	The Art of Enumeration
	Scanning and Verification Events
	FileConflict Event
	FileScan Event
	EnumComplete Event

	Starting a Verify or Scan Operation
	VerifyMode Property
	VerifyFile Property
	ScanFile Property
	FileCurrentDir Property

	Delaying a Verify or Scan Operation
	Properties Available During Scanning and Verification
	Using Multiple VersionStamper Controls in an Application
	Slave Property

	VersionStamper Methods (ActiveX Edition Only)
	VerifyObjectFile Method

	VersionStamper - API Functions
	VersionStamper Conflict Wizard
	Wizard Functionality Overview
	Selecting Scanning Type
	Visual Basic Projects
	Standalone files
	Currently Running Process
	Installation Script File

	Selecting Script Source
	Create new VersionStamper Script via Scanning
	QuickScript - Manually Add Files to List
	Load Existing VersionStamper Script File

	Scanning Installation Script File
	Limitations on Scanning InstallShield Express installation Scripts
	Scanning Currently Running Processes
	Editing and Filtering Files
	System File Filter

	Editing the File List
	Editing Selected Files

	Version Information Tab
	Verification Settings Tab
	File Locations Tab
	AutoUpdate Tab
	File Messages Tab
	Reference File Paths Tab
	Saving VersionStamper Script Files
	Conflict Wizard Command Line Commands
	Batch samples

	Installation Script File Filter Format

	Technical Notes
	Using VersionStamper with Visual C++ and Other Environments that Support ActiveX Controls

	Migrating From Version 1.0 to Versions 4.0 and Greater
	Features not Supported in Version 4.0
	New Features for Version 4.0 (OCX Only)
	Select Files Dialog Box
	File and Directory Filtering Properties
	File Size Properties
	VerifyObjectFile and VerifyObjectFiles Methods
	Delay Property

	Upgrading Visual Basic 3.0 Projects
	Search Order
	Using Components and DLLs

	VersionStamper API Functions 1.0 to 4.0 and Later
	New Features for Version 5.0
	Select Files Dialog Box for VersionStamper 5.0
	New Utilities and Samples

	New Features for Version 6.0
	New ATL Control and Component
	New VersionStamper Library Class Component
	Select Files Dialog Box for the ATL VersionStamper Control (dwvstp36.ocx)
	New Utilities and Samples

	Migrating from 4.0 or 5.0 to the ATL Control
	Code Changes

	New Features for Version 6.5
	New VersionStamper Script Command
	New Features in the VersionStamper Conflict Wizard
	New VersionStamper Library Class Component

	Introduction to Internet Support
	The Desaware Winsock Library
	Using a Different Internet Control
	VersionStamper Components
	Before You Begin
	Distribution and Licensing

	VersionStamper Classes Summary
	
	VerConflict
	VerControl
	VerDWInet
	VerFileDateTime
	VerFTP
	VerParseCommandLine
	VerParseFile1
	VerParseFormat
	VerParseFormat1
	VerParseWebPage1
	VerSecurity
	VerSmartReplaceFile
	VerWarningFlags
	VerVersionInfo
	VerWebPage
	VerMSINET
	VerCINET
	frmInet.frm
	VsMain.frm

	Technical Information
	The Windows Version API
	Version Control API Functions
	The Version Data Structures
	Version File Flags
	Version File Operating System Types
	Version File Types
	The Translation Table
	Windows Character Sets
	Windows Languages
	StringFileInfo Data
	Version StringFileInfo Data Names

	Version API Function Declarations
	GetFileVersionInfo
	GetFileVersionInfoSize
	VerFindFile
	VerInstallFile
	VerInstallFile Result Constants
	VerLanguageName
	VerQueryValue

	The Windows Registry
	Evolution of the Registry
	ActiveX Controls Must be Registered
	Registering the ActiveX Control
	Some Important Keys in the Registry

	Other Sources of Information
	
	Dan Appleman's Visual Basic Programmer's Guide To The Win32 API
	Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to the Perplexed
	Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers
	The Desaware Visual Basic Bulletin
	PC Magazine's Visual Basic Programmer's Guide To The Windows API
	Windows API Online Help
	Microsoft's Developers Network CD Rom
	Microsoft's Windows Software Development Kit and Win32 Software Development Kit

	Index�32 Bit, Additional Components, 22API FunctionsVersion Control, 140Version Declarations, 150VersionStamper, 88, 123AutoUpdate, 124Background Information, 47Character SetsWindows, 146Compatibility, 18Components, 122ATL, 125Deleted, 66Incompatible, 63

