
StorageTools
TM

Version 3.0
for Visual Basic

by

Desaware, Inc.

Rev: 3.0.1 (06/2005)

Information in this document is subject to change without notice and does not represent a commitment on the part of
Desaware, Inc. The software described in this document is furnished under a license agreement. The software may
be used or copied only in accordance with the terms of the agreement. It is against the law to copy the software onto
any medium except as specifically allowed in the license.

No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying and recording, for any purpose without the express written permission of Desaware, Inc.

Copyright © 1995-2005 Desaware, Inc. All rights reserved. Printed in the USA

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return
the disk package and all accompanying items to the place from which you obtained them for a
full refund.

This software is protected by United States copyright laws and international treaty provisions.

This program is licensed to you for your use. If you, personally, have more than one
computer, you may install it on all your computers as long as there is no possibility of it being
used at one location or on one computer while it is being used at another. Just as a book
cannot be read by two different people in two different places at the same time, neither can
this software be used by two different people in two different places at the same time. You
may (and should) make archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, manual, the
software and all other materials and retain no copies, and the recipient agrees to the terms of
this agreement.

You may not make copies of this software for other people or make copies of the manual.
Companies or schools interested in multiple copy licenses or site licenses should contact
Desaware directly at (408) 404-4760.

If you use this product to create a compiled Visual Basic program that you will distribute as
an executable (.exe) file, you may include with your program a copy of the dwReg.dll,
dwReg16.ocx, dwReg32.ocx, dwStg16.ocx, dwStg32.ocx, dwStg.dll or dwProp.dll (the
runtime libraries). In this case you must include a valid copyright notice on all copies of your
program. This can be either your own copyright notice, or the copyright notice that is on each
StorageTools medium. You may not modify the dwReg.dll, dwReg16.ocx, dwReg32.ocx,
dwStg16.ocx, dwStg32.ocx, dwStg.dll or dwProp.dll in any way.

Microsoft is a registered trademark of Microsoft Corporation.
Visual Basic, Windows, Windows 2000, Windows NT, Windows 95 and Windows 98 are trademarks of Microsoft Corporation.
SpyWorks, VersionStamper, StorageTools, Custom Control Factory , Desaware ActiveX Gallimaufry, NT Service Toolkit and Event Log Toolkit
are trademarks of Desaware, Inc.

Limited Warranty

Desaware, Inc. warrants the physical medium and documentation enclosed herein to be free of
defects in materials and workmanship for a period of sixty days from the purchase date.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be
limited to replacement of defective diskette(s) or documentation and shall not include or
extend to any claim for or right to recover any other damages, including but not limited to,
loss of profit, data or use of the software, or special, incidental or consequential damages or
other similar claims, even if Desaware, Inc. has been specifically advised of the possibility of
such damages. In no event will Desaware, Inc. 's liability for any damages to you or any other
person ever exceed the suggested list price or actual price paid for the license to use the
software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Specifically, Desaware, Inc. makes no representation or warranty that the software is fit for
any particular purpose and any implied warranty of MERCHANTABILITY is limited to the
sixty-day duration of the Limited Warranty covering the physical diskettes and documentation
only (not the software) and is otherwise expressly and specifically disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from
state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws
of the State of California, and any action hereunder shall be brought only in California. If any
provision is found void, invalid or unenforceable it will not affect the validity of the balance
of this License and Limited Warranty which shall remain valid and enforceable according to
its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park Drive, Suite 48, San Jose, CA
95136.

Page 5

Table of Contents
TABLE OF CONTENTS ...5

CUSTOMER SUPPORT...18

REGISTER! REGISTER! REGISTER!... 18

INSTALLATION...19

FILE DESCRIPTIONS AND REDISTRIBUTION TERMS ..20

DISTRIBUTION OF APPLICATIONS THAT USE STORAGETOOLS
COMPONENTS ...22

DIFFERENCES BETWEEN STORAGETOOLS 2.5 AND 3.0..24

PERSISTENCE OF DATA - A TECHNICAL WHITE PAPER..25

INTRODUCTION... 26
PERSISTENCE OF DATA.. 27

Private Initialization Files...28
The System Registry ..28
Independent Documents...29
Records..31
The Missing Technology ..32
OLE Structured Storage...34

THE NEED FOR STRUCTURED STORAGE...39

COMPOUND FILE ELEMENTS AND NAMES ...40

SUMMARY INFORMATION...41

THE DESAWARE STORAGE CONTROL..43

WHY ARE THERE TWO VERSIONS OF THE CONTROL?.. 43
HOW DO I CONVERT AN EXISTING PROGRAM THAT USES DWSTG32.OCX TO USE THE
DWSTG.DLL COMPONENT?.. 43
WHAT IF I WANT TO USE STORAGETOOLS IN MY OWN CCOMPONENT WHICH IS THEN USED IN
THE VISUAL BASIC OR .NET ENVIRONMENTS?... 44
.NET STORAGE COMPONENT EXAMPLE... 44
VISUAL BASIC STORAGE COMPONENT EXAMPLE... 47

Page 6

VISUAL BASIC ACTIVEX STORAGE CONTROL EXAMPLE .. 48

STORAGE COMPONENT METHODS (DWSTG.DLL)..50

NOTE FOR .NET USERS: .. 50
COMPONENT OBJECT .ALLOCATEMEMORYHANDLE () AS LONG ... 50
COMPONENT OBJECT .COMPRESSSTORAGEFILE... 50
COMPONENT OBJECT .CONVERT TOLOCALTIME .. 51
COMPONENT OBJECT .CREATESTORAGEFILE ... 51
COMPONENT OBJECT .CREATESTORAGEMEMORY... 53
COMPONENT OBJECT .DEALLOCATEMEMORYHANDLE... 54
COMPONENT OBJECT .ENABLECOMPONENT ... 55
COMPONENT OBJECT .ISSTORAGEFILE .. 55
COMPONENT OBJECT .ISSTORAGEMEMORY.. 56
COMPONENT OBJECT .ISTREAMTODSTREAM ... 57
COMPONENT OBJECT .OPENSTORAGEFILE .. 57
COMPONENT OBJECT .OPENSTORAGEMEMORY ... 58

DSTORAGE OBJECT METHODS (DWSTG.DLL)..60

DSTORAGE.COMMIT .. 60
DSTORAGE.COPYTO .. 60
DSTORAGE.CREATESTORAGE... 60
DSTORAGE.CREATESTREAM .. 61
DSTORAGE.DESTROYELEMENT ... 62
DSTORAGE.DIRECTORY... 63
DSTORAGE.ENUMDIRECTORY.. 64
DSTORAGE.FINALIZE ().. 65
DSTORAGE.GETCLASS (CLSIDPTR AS LONG) AS LONG .. 65
DSTORAGE.GETCREATIONDATE () AS DATE... 66
DSTORAGE.GETISTORAGE () AS LONG.. 66
DSTORAGE.GETLASTMODIFYDATE () AS DATE ... 66
DSTORAGE.GETLASTACCESSDATE () AS DATE.. 67
DSTORAGE.GETMISTORAGE () AS OBJECT .. 67
DSTORAGE.GETMODE () AS LONG... 67
DSTORAGE.LOADOBJECT (OLEOBJECT AS OBJECT) .. 68
DSTORAGE.MOVEELEMENT TO .. 68
DSTORAGE.OPENSTORAGE ... 69
DSTORAGE.OPENSTREAM ... 70
DSTORAGE.PUTOBJECT (OLEOBJECT AS OBJECT) ... 71
DSTORAGE.RENAMEELEMENT ... 71
DSTORAGE.REVERT ().. 72
DSTORAGE.SETCLASS (CLSIDPTR AS LONG).. 73
DSTORAGE.SETELEMENT TIMES... 74

Page 7

SUMMARY INFORMATION PROPERTY SET FUNCTIONS... 74
dStorage.siSetTitle ..75
dStorage.siGetTitle () as String ..76
dStorage.siSetSubject ...76
dStorage.siGetSubject () as String ...76
dStorage.siSetAuthor..76
dStorage.siGetAuthor () as String..76
dStorage.siSetKeywords...76
dStorage.siGetKeywords () as String...76
dStorage.siSetComments..76
dStorage.siGetComments () as String..76
dStorage.siSetLastAuthor..76
dStorage.siGetLastAuthor () as String ..77
dStorage.siIncrementRevNum ()...77
dStorage.siSetRevNum..77
dStorage.siGetRevNum () as Long...77
dStorage.siStartEditTimer () ...77
dStorage.siAddEditTimerToTotal () ...77
dStorage.siGetTotalEditTime () as Long ..77
dStorage.siSetTotalEditTime ...77
dStorage.siRecordPrintDate () ...77
dStorage.siGetLastPrintDate () as Date ...77
dStorage.siRecordCreateDate () ..78
dStorage.siGetCreateDate () as Date..78
dStorage.siRecordSaveDate () ..78
dStorage.siGetLastSaveDate () as Date..78
dStorage.siSetNumberOfPages ...78
dStorage.siGetNumberOfPages () as Long...78
dStorage.siSetNumberOfWords...78
dStorage.siGetNumberOfWords () as Long..78
dStorage.siSetNumberOfCharacters..78
dStorage.siGetNumberOfCharacters () as Long ...78
dStorage.siSetApplication..79
dStorage.siGetApplication () as Long ...79
dStorage.siSetTemplate..79
dStorage.siGetTemplate () as String..79
dStorage.siSetSecurity..79
dStorage.siGetSecurity () as Long ...79
dStorage.siOpenSummaryInfo () as Boolean ...80
dStorage.siSaveSummaryInfo ()..80

DOCUMENT SUMMARY INFORMATION PROPERTY SET FUNCTIONS... 81
dStorage.dsiSetScaleCrop ...82

Page 8

dStorage.dsiGetScaleCrop () as Boolean ...82
dStorage.dsiSetLinksUpToDate..83
dStorage.dsiGetLinksUpToDate () as Boolean..83
dStorage.dsiSetCategory..83
dStorage.dsiGetCategory () as String..83
dStorage.dsiSetPresentationTarget..83
dStorage.dsiGetPresentationTarget () as String..83
dStorage.dsiSetManager..83
dStorage.dsiGetManager () as String..83
dStorage.dsiSetCompany ...84
dStorage.dsiGetCompany () as String...84
dStorage.dsiSetNumBytes ..84
dStorage.dsiGetNumBytes () as Long..84
dStorage.dsiSetNumLines ..84
dStorage.dsiGetNumLines () as Long..84
dStorage.dsiSetNumParagraphs...84
dStorage.dsiGetNumParagraphs () as Long ..84
dStorage.dsiSetNumSlides ...84
dStorage.dsiGetNumSlides () as Long...84
dStorage.dsiSetNumNotes..85
dStorage.dsiGetNumNotes () as Long ...85
dStorage.dsiSetNumHiddenSlides..85
dStorage.dsiGetNumHiddenSlides () as Long..85
dStorage.dsiSetNumMMClips...85
dStorage.dsiGetNumMMClips () as Long...85
dStorage.dsiOpenDocSummaryInfo () as Boolean..85
dStorage.dsiSaveDocSummaryInfo () ..86

USER DOCUMENT SUMMARY INFORMATION PROPERTY SET FUNCTIONS..................................... 86
dStorage.dsiUserSet..89
dStorage.dsiUserGet...89
dStorage.dsiUserAdd..89
dStorage.dsiUserCount () as Long...89
dStorage.dsiUserDelete..90
dStorage.dsiUserDirectory..90
dStorage.dsiOpenUserSummaryInfo () as Boolean ..90
dStorage.dsiSaveUserSummaryInfo () ...90

DSTORAGE OBJECT PROPERTIES (DWSTG.DLL)...92

DSTORAGE.ISVALID ... 92
DSTORAGE.NAME... 92

DSTREAM OBJECT METHODS (DWSTG.DLL)...93

Page 9

DSTREAM.FINALIZE ().. 93
DSTREAM.FLUSH .. 93
DSTREAM.GET .. 93
DSTREAM.GETBLOCK.. 94
DSTREAM.GETBLOCKCOPY ... 95
DSTREAM.GETISTREAM () AS LONG.. 95
DSTREAM.GETMISTREAM () AS OBJECT .. 95
DSTREAM.GETMODE () AS LONG... 96
DSTREAM.GETOBJECT () AS OBJECT .. 96
DSTREAM.GETPICTURE () AS PICTURE ... 96
DSTREAM.GETRECORD ... 97
DSTREAM.GETSIZE () AS LONG.. 98
DSTREAM.GETSTRING... 99
DSTREAM.LOADOBJECT .. 99
DSTREAM.PUT ...100
DSTREAM.PUTBLOCK ..101
DSTREAM.PUTOBJECT (PERSISTEDOBJECT AS OBJECT) ..101
DSTREAM.PUTPICTURE (PIC AS PICTURE)..102
DSTREAM.PUTRECORD..102
DSTREAM.PUTSTRING ...102
DSTREAM.SEEK ..103
DSTREAM.SETSIZE ...104
DSTREAM.VARIANTGET ..104
DSTREAM.VARIANTGETEX...104
DSTREAM.VARIANTPUT ..105
DSTREAM.VARIANTPUTEX...106
WHICH METHODS SHOULD I USE TO READ AND WRITE DATA?...107

DSTREAM OBJECT PROPERTIES (DWSTG.DLL).. 108

DSTREAM.EOF..108
DSTREAM.ISVALID...108
DSTREAM.NAME...108

ACTIVEX STORAGE CONTROL METHODS ... 109

CONTROL.ALLOCATEMEMORYHANDLE () AS LONG ..109
CONTROL.COMPRESSSTORAGEFILE..109
CONTROL.CREATESTORAGEFILE...109
CONTROL.CREATESTORAGEMEMORY..110
CONTROL.DEALLOCATEMEMORYHANDLE..111
CONTROL.ISSTORAGEFILE ...111
CONTROL.ISSTORAGEMEMORY...111
CONTROL.OPENSTORAGEFILE...112

Page 10

CONTROL.OPENSTORAGEMEMORY ..112

ACTIVEX STORAGE OBJECT METHODS.. 114

STORAGEOBJECT .COMMIT ...114
STORAGEOBJECT .COPYTO ...114
STORAGEOBJECT .CREATESTORAGE ...114
STORAGEOBJECT .CREATESTREAM ...115
STORAGEOBJECT .DESTROYELEMENT ..115
STORAGEOBJECT .DIRECTORY..116
STORAGEOBJECT .ENUMDIRECTORY...116
STORAGEOBJECT .GETCREATIONDATE () AS DATE ..117
STORAGEOBJECT .GETLASTMODIFYDATE () AS DATE ..117
STORAGEOBJECT .GETLASTACCESSDATE () AS DATE ...117
STORAGEOBJECT .MOVEELEMENTTO ...117
STORAGEOBJECT .OPENSTORAGE ..118
STORAGEOBJECT .OPENSTREAM..119
STORAGEOBJECT .RENAMEELEMENT ..119
STORAGEOBJECT .REVERT ()...119
STORAGEOBJECT .SETELEMENT TIMES..120
SUMMARY INFORMATION PROPERTY SET FUNCTIONS...120

StorageObject.siSetTitle.. 121
StorageObject.siGetTitle () as String.. 121
StorageObject.siSetSubject... 121
StorageObject.siGetSubject () as String... 121
StorageObject.siSetAuthor.. 121
StorageObject.siGetAuthor () as String ... 121
StorageObject.siSetKeywords.. 121
StorageObject.siGetKeywords () as String .. 121
StorageObject.siSetComments ... 122
StorageObject.siGetComments () as String... 122
StorageObject.siSetLastAuthor.. 122
StorageObject.siGetLastAuthor () as String.. 122
StorageObject.siIncrementRevNum () .. 122
StorageObject.siSetRevNum... 122
StorageObject.siGetRevNum () as Long... 122
StorageObject.siStartEditTimer ()... 122
StorageObject.siAddEditTimerToTotal () .. 122
StorageObject.siSetTotalEditTime .. 123
StorageObject.siGetTotalEditTime () as Long.. 123
StorageObject.siRecordPrintDate () ... 123
StorageObject.siGetLastPrintDate () as Date... 123
StorageObject.siRecordCreateDate () .. 123

Page 11

StorageObject.siGetCreateDate () as Date ... 123
StorageObject.siRecordSaveDate () ... 123
StorageObject.siGetLastSaveDate () as Date ... 123
StorageObject.siSetNumberOfPages... 123
StorageObject.siGetNumberOfPages () as Long.. 123
StorageObject.siSetNumberOfWords.. 124
StorageObject.siGetNumberOfWords () as Long ... 124
StorageObject.siSetNumberOfCharacters ... 124
StorageObject.siGetNumberOfCharacters () as Long... 124
StorageObject.siSetApplication... 124
StorageObject.siGetApplication () as Long... 124
StorageObject.siSetTemplate ... 124
StorageObject.siGetTemplate () as String... 124
StorageObject.siSetSecurity ... 124
StorageObject.siGetSecurity () as Long... 125
StorageObject.siOpenSummaryInfo () as Boolean... 125
StorageObject.siSaveSummaryInfo () ... 126

DOCUMENT SUMMARY INFORMATION PROPERTY SET FUNCTIONS...126
StorageObject.dsiGetScaleCrop () as Boolean... 126
StorageObject.dsiGetLinksUpToDate () as Boolean... 126
StorageObject.dsiGetCategory () as String ... 127
StorageObject.dsiGetPresentationTarget as String... 127
StorageObject.dsiGetManager () as String ... 127
StorageObject.dsiGetCompany () as String .. 127
StorageObject.dsiGetNumBytes () as Long ... 127
StorageObject.dsiGetNumLines () as Long ... 127
StorageObject.dsiGetNumParagraphs () as Long.. 127
StorageObject.dsiGetNumSlides () as Long .. 127
StorageObject.dsiGetNumNotes () as Long... 127
StorageObject.dsiGetNumHiddenSlides () as Long... 127
StorageObject.dsiGetNumMMClips () as Long.. 127
StorageObject.dsiOpenDocSummaryInfo () as Boolean... 128

ACTIVEX STORAGE OBJECT PROPERTIES .. 129

STORAGEOBJECT .NAME..129

ACTIVEX STREAM OBJECT METHODS .. 130

STREAMOBJECT .FLUSH ...130
STREAMOBJECT .GET ...130
STREAMOBJECT .GETBLOCK ..131
STREAMOBJECT .GETPICTURE () AS PICTURE ..132
STREAMOBJECT .GETRECORD..132

Page 12

STREAMOBJECT .GETSIZE() AS LONG..132
STREAMOBJECT .GETSTRING..132
STREAMOBJECT .PUT ...133
STREAMOBJECT .PUTBLOCK...133
STREAMOBJECT .PUTPICTURE (PIC AS PICTURE)...134
STREAMOBJECT .PUTRECORD ..134
STREAMOBJECT .PUTSTRING ..134
STREAMOBJECT .SEEK ...135
STREAMOBJECT .SETSIZE..135
STREAMOBJECT .VARIANT GET ..136
STREAMOBJECT .VARIANT PUT ...136
WHICH METHODS SHOULD I USE TO READ AND WRITE DATA?...137

ACTIVEX STREAM OBJECT PROPERTIES ... 138

STREAMOBJECT .EOF...138
STREAMOBJECT .NAME ...138

FUNCTIONS IN THE DWADDR16.DLL... 139

DWGETADDRESSFORRECORD..139
DWGETBYTESFROMRECORD..139
DWGETRECORDFROMBYTES..139
STGCOPYDATA, STGCOPYDATABYNUM..140
STGGETADDRESSFOROBJECT ..140

FUNCTIONS IN THE DWADDR32.DLL... 141

DWGETBYTESFROMRECORD..141
DWGETRECORDFROMBYTES..141
STGCOPYDATA, STGCOPYDATABYNUM..141
STGGETADDRESSFOROBJECT ..142

CONSTANTS... 143

ACCESS FLAGS ..143
LIST OF ALL POSSIBLE FLAG COMBINATIONS:...145
SEEKPOSITION FLAG..146
SEEK FLAGS...146
MOVE FLAGS...147
COMMIT FLAGS...147
DIRECTORY FILE TYPE..148

POSSIBLE ERRORS .. 149

POSSIBLE COMPONENT ERRORS .. 153

Page 13

STORAGE BROWSER (STGBRWSR.EXE)... 155

STORAGE MENU ...156
OPTIONS MENU...157
HELP MENU...157

THE DESAWARE FILE PROPERTY COMPONENT.. 158

TECHNOLOGY OF FILE PROPERTIES...158
FILE PROPERTY COMPONENT EXAMPLE ...159

FILE PROPERTY COMPONENT PROPERTIES .. 162

COMPONENT OBJECT .FILENAME ..162

FILE PROPERTY COMPONENT METHODS.. 163

NOTE FOR .NET USERS:..163
COMPONENT OBJECT .OPENFILE ...163
COMPONENT OBJECT .RELEASEFILE ()...163
COMPONENT OBJECT .READSUMMARYINFO () AS LONG...163
COMPONENT OBJECT .SAVESUMMARYINFO ()..164
COMPONENT OBJECT .ISSTORAGEFILE ..164
COMPONENT OBJECT .ENABLECOMPONENT ...165
COMPONENT OBJECT .ISVALID () AS BOOLEAN..165
COMPONENT OBJECT .CONVERT TOLOCALTIME ..166

SUMMARY INFORMATION METHODS .. 167

COMPONENT OBJECT .SETTITLE..167
COMPONENT OBJECT .GETTITLE () AS STRING ...167
COMPONENT OBJECT .SETSUBJECT ..167
COMPONENT OBJECT .GETSUBJECT () AS STRING ..167
COMPONENT OBJECT .SETAUTHOR...167
COMPONENT OBJECT .GETAUTHOR () AS STRING ..167
COMPONENT OBJECT .SETKEYWORDS...167
COMPONENT OBJECT .GETKEYWORDS () AS STRING...167
COMPONENT OBJECT .SETCOMMENTS...168
COMPONENT OBJECT .GETCOMMENTS () AS STRING...168
COMPONENT OBJECT .SETLAST AUTHOR...168
COMPONENT OBJECT .GETLASTAUTHOR () AS STRING...168
COMPONENT OBJECT .INCREMENT REVNUM ()..168
COMPONENT OBJECT .SETREVNUM..168
COMPONENT OBJECT .GETREVNUM () AS LONG ..168
COMPONENT OBJECT .START EDIT TIMER () ...168
COMPONENT OBJECT .ADDEDIT TIMERTOTOTAL ()...168

Page 14

COMPONENT OBJECT .GETTOTALEDIT TIME () AS LONG...169
COMPONENT OBJECT .SETTOTALEDIT TIME ..169
COMPONENT OBJECT .RECORDPRINTDATE () ...169
COMPONENT OBJECT .GETLASTPRINT DATE () AS DATE ..169
COMPONENT OBJECT .RECORDCREATEDATE ()..169
COMPONENT OBJECT .GETCREATEDATE () AS DATE ..169
COMPONENT OBJECT .RECORDSAVEDATE () ..169
COMPONENT OBJECT .GETLASTSAVEDATE () AS DATE ...169
COMPONENT OBJECT .SETNUMBEROFPAGES..169
COMPONENT OBJECT .GETNUMBEROFPAGES () AS LONG ..169
COMPONENT OBJECT .SETNUMBEROFWORDS..170
COMPONENT OBJECT .GETNUMBEROFWORDS () AS LONG ..170
COMPONENT OBJECT .SETNUMBEROFCHARACTERS...170
COMPONENT OBJECT .GETNUMBEROFCHARACTERS () AS LONG..170
COMPONENT OBJECT .SETAPPLICATION..170
COMPONENT OBJECT .GETAPPLICATION () AS LONG...170
COMPONENT OBJECT .SETTEMPLATE...170
COMPONENT OBJECT .GETTEMPLATE () AS STRING...170
COMPONENT OBJECT .SETSECURITY..170
COMPONENT OBJECT .GETSECURITY () AS LONG ...171

DOCUMENT SUMMARY INFORMATION METHODS .. 172

COMPONENT OBJECT .SETSCALECROP ..172
COMPONENT OBJECT .GETSCALECROP () AS BOOLEAN..172
COMPONENT OBJECT .SETLINKSUPTODATE ..172
COMPONENT OBJECT .GETLINKSUPTODATE () AS BOOLEAN..173
COMPONENT OBJECT .SETCATEGORY..173
COMPONENT OBJECT .GETCATEGORY () AS STRING..173
COMPONENT OBJECT .SETPRESENTATIONTARGET ..173
COMPONENT OBJECT .GETPRESENTATIONTARGET () AS STRING ..173
COMPONENT OBJECT .SETMANAGER...173
COMPONENT OBJECT .GETMANAGER () AS STRING...173
COMPONENT OBJECT .SETCOMPANY..173
COMPONENT OBJECT .GETCOMPANY () AS STRING ...173
COMPONENT OBJECT .SETNUMBYTES ...174
COMPONENT OBJECT .GETNUMBYTES () AS LONG ..174
COMPONENT OBJECT .SETNUMLINES...174
COMPONENT OBJECT .GETNUMLINES () AS LONG..174
COMPONENT OBJECT .SETNUMPARAGRAPHS...174
COMPONENT OBJECT .GETNUMPARAGRAPHS () AS LONG..174
COMPONENT OBJECT .SETNUMSLIDES...174
COMPONENT OBJECT .GETNUMSLIDES () AS LONG..174

Page 15

COMPONENT OBJECT .SETNUMNOTES...174
COMPONENT OBJECT .GETNUMNOTES () AS LONG..175
COMPONENT OBJECT .SETNUMHIDDENSLIDES...175
COMPONENT OBJECT .GETNUMHIDDENSLIDES () AS LONG ...175
COMPONENT OBJECT .SETNUMMMCLIPS...175
COMPONENT OBJECT .GETNUMMMCLIPS () AS LONG..175

USER-DEFINED PROPERTY METHODS ... 176

COMPONENT OBJECT .USERSET ..178
COMPONENT OBJECT .USERGET ..178
COMPONENT OBJECT .USERADD...178
COMPONENT OBJECT .USERCOUNT () AS LONG..179
COMPONENT OBJECT .USERDELETE ...179
COMPONENT OBJECT .USERDIRECTORY ..179

FILE PROPERTY COMPONENT CONSTANTS ... 180

OPENFILE FLAGS PARAMETER..180
LIST OF ALL POSSIBLE FLAG COMBINATIONS:...181

THE REGISTRY.. 182

KEYS AND VALUES .. 186

ROOT KEYS..186

USEFUL LOCATIONS IN THE REGISTRY.. 188

VALUE DATA TYPES..192

THE REGISTRY COMPONENT AND ACTIVEX CONTROLS 193

REGISTRY COMPONENT EXAMPLE ..193
REGISTRY ACTIVEX CONTROLS ..194
PROPERTY PAGE FOR ACTIVEX CONTROLS ...194

REGISTRY PROPERTIES ... 196

REGISTRY - CURRENT KEY..196
REGISTRY - CURRENT ROOT ...196
REGISTRY - DEFAULT VALUE ...196
REGISTRY - FINDRESULT KEY ..197
REGISTRY - FINDRESULT VALUENAME ..197
REGISTRY - KEYLOCK...197
REGISTRY - NUMOFSUBKEYS ..197
REGISTRY - NUMOFVALUES...197

Page 16

REGISTRY - SUBKEYARRAY...198
REGISTRY - VALUENAMEARRAY..198

REGISTRY METHODS... 199

REGISTRY - CHANGEKEY..199
REGISTRY - CREATEKEY ..199
REGISTRY - DELETEKEY ...199
REGISTRY - DELETEVALUE ..199
REGISTRY - ENABLECOMPONENT ...200
REGISTRY - FINDFIRST KEY ..201
REGISTRY - FINDFIRST VALUE ...201
REGISTRY - FINDNEXT KEY () ..202
REGISTRY - FINDNEXT VALUE ()..202
REGISTRY - FINDNEXT VALUENAME ()...203
REGISTRY - FLUSHREGISTRY ()..203
REGISTRY - GETVALUEDATA..203
REGISTRY - GETVALUESIZE...203
REGISTRY - GETVALUETYPE ...204
REGISTRY - SETVALUE ...204

CONVERSION OF VALUE DATA TYPES FOR VISUAL BASIC.................................. 205

POSSIBLE ERROR CODES..205
REGISTRY BROWSER..206

Registry Menu... 208
Root Menu ... 208
Key Menu... 208
Value Menu ... 208
Find Menu ... 208
Help Menu ... 210
Data Editing Dialogs... 210

WARNING!.. 212

THE DESAWARE RESOURCE COMPILER... 213

FINAL COMMENTS - CUSTOMER SUPPORT... 215

OTHER SOURCES OF INFORMATION.. 216

Regular Expressions with .NET ... 216
Visual Basic.NET or C# ... Which to Choose? .. 216
Introduction to NT/2000 Security Programming with Visual Basic...................................... 216
Moving to VB.Net:Strategies, Concepts and Code... 217

Page 17

Dan Appleman's Visual Basic Programmer's Guide To The Win32 API.............................. 217
Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to
the Perplexed .. 217
Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers ... 218
How Computer Programming Works... 218
The Desaware Visual Basic Bulletin... 218
PC Magazine's Visual Basic Programmer's Guide To The Windows API 219
Msdn.microsoft.com... 219

DESAWARE PRODUCT DESCRIPTIONS... 220

INDEX.. 226

Page 18

Customer Support
We at Desaware have one very simple company policy - we do our
best to treat our customers as we would like to be treated (after all, we
are programmers too).

StorageTools is a sophisticated product, and while we have checked it
in as many environments as possible, it is conceivable that some bugs
slipped through our testing process. Once we are able to duplicate a
problem, we will provide you with a fix as quickly as possible.

If you have purchased this software directly from Desaware and you
feel that StorageTools is not for you or you are otherwise dissatisfied,
please feel free to return it for a full refund (if you purchased it
elsewhere you will need to contact your dealer for return or refund
information - also, we reserve the right to limit this offer to 30 days
from the invoice date). Your satisfaction is important to us, and we
are well aware that this is a very unusual product and not appropriate
for everyone.

Register! Register! Register!
We've found that the person who ends up using a software package is
frequently not the person who bought it. Therefore we really need
your registration card. This will allow us to send you information
about upgrades.

But we can't send this information to you without knowing who you
are!

And please send us your suggestions for features that you would like
to see in future editions of this project!

Page 19

Installation
Please refer to the readme file on the CD for the latest information
regarding installation.

• Place your StorageTools CD in your drive.

• Use the Windows Start Menu-Run command to run setup.exe
from the drive being used. You can also use Explorer to run this
program.

• Select the desired setup option to start the installation.

• The setup program will prompt you for a destination directory for
the StorageTools files. The default directory is Stgtools.

• Follow any further directions in the setup program. A summary of
files installed will appear in file install.log in your StorageTools
directory.

• Installation programs are tricky - and we have found that
occasionally a system is configured in such a way that the
installation program fails. Please refer to the readme file for the
latest information on these situations, and for instructions for
manual installation.

• The directory containing the StorageTools sample files may
contain files readme.txt or readme.wri. These files, if present,
will contain recent information that could not be incorporated into
the manual at time of printing. Use the Windows 'Notepad'
program to view readme.txt, and the Windows 'WordPad' program
to view readme.wri.

Page 20

File Descriptions and Redistribution Terms
The following files and controls may be distributed with your compiled Visual Basic
application without payment of license fees according to the terms on the License
Agreement.

dwStg.dll Component version of the Storage control. It is usually
installed in the System directory. It will be registered in the
Registry by the installation program.

dwStg32.ocx,
dwStg16.ocx

ActiveX versions of the Storage control. These are usually
installed in the system directory. They will be registered in
the Registry by your installation program.

dwProp.dll File Property component. It is usually installed in the System
directory. It will be registered in the Registry by your
installation program.

dwReg.dll The Registry component. It is usually installed in the System
directory. It will be registered in the Registry by your
installation program.

dwReg32.ocx,
dwReg16.ocx

The Registry control. These are usually installed in the
system directory. They will be registered in the Registry by
your installation program.

dwAddr32.dll,
dwAddr16.dll

These libraries used in programs that read and write User
Defined Types to Structured Storage files, and for memory
access. They are not used otherwise, and do not have to be
distributed with the Storage control unless the functions in
them are directly accessed.

OLE32.dll This file contains the core of OLE. If you are distributing the
component version of the Storage control (dwStg.dll), then
you may have to distribute a recent version of the file.

MFC40.dll (32 bit),
MSVCRT40.dll (32 bit),
OC25.dll (16 bit)

These files are required for our ActiveX controls. They will
also need to be distributed with your application if you use the
ActiveX controls.

Page 21

The following files may NOT be distributed and are subject to the terms in
your license agreement. However, you may incorporate the source code from
these files (where applicable) into your own programs.

StgDes32.dll,
StgDes16.dll

Design time license file for the Storage and Registry controls.

PropDes.dll
Design time license file for the Property component.

RegBrwsr.vbp and
associated files

Sample code for a full-featured Registry editor.

StgBrwsr.vbproj and
associated files,
StgBrwsr.csproj and
associated files

Sample code for a program that views the internal structure of
Structured Storage files written in the .NET languages
VB.NET and C#.

StgBrwsr.vbp and
associated files

Sample code for a program that views the internal structure of
Structured Storage files.

PropBrowser.vbproj and
associated files,
PropertyBrowser.csproj
and associated files

Sample code for a program that searches for files on the
computer with particular file properties written in the .NET
languages VB.NET and C#.

PropBrowser.vbp and
associated files

Sample code for a program that searches for files on the
computer with particular file properties.

OleObjct.vbp and
associated files

Sample code showing how to save objects in OLE Container
Controls into a single Structured Storage file.

Records.vbp and
associated files

Sample code showing how to read and write User Defined
Types to and from a Structured Storage file.

ClsTst.vbp and
associated files

Sample code of a Visual Basic class that reads and writes
information to a single stream. This allows you to write many
different classes, each of which handles its own file access
while only requiring one file.

dwProp.hlp
On-line help file for the Property component

Storage.hlp
On-line help file for StorageTools. This file contains context
sensitive help for the Storage control, Registry Control,
Storage Browser and Registry Browser.

Page 22

Distribution of Applications That Use
StorageTools Components

When you ship programs that use our components, you have to make
sure that the StorageTools components are properly installed on the
user’s machine.

First, the control must be registered. This is usually done by the
installation program you use. If you need to register a component
manually, you can use the command line program, regsvr.exe (for 16
bit components) or regsvr32.exe (for 32 bit components). These
programs can usually be found in the Visual Basic setup kit directory.
To use them, bring up a DOS prompt in the same directory as the
component and the regsvr program. Run regsvr with the name of the
component as the command line parameter. You can also unregister
components by using the ‘-u’ flag before the name of the component.
In either case, you will get a message box telling you if the action was
successful or not.

Second, you must ensure that the files upon which our controls are
dependent are also installed on the machine. For the 16 bit controls,
the only file that is required is the OC25.DLL library version 2.54 or
later. If you are distributing a program using the 32 bit ActiveX
controls, you must also install MFC40.DLL (version 4.0.5277 or later)
and MSVCRT40.DLL (version 4.0.5270 or later). Do not distribute
version "4.20 - OS USE ONLY DO NOT DISTRIBUTE" of
MSVCRT40.DLL. This file is meant for use in Windows NT 4.0
only, and it will take special care to get it to work in Windows 95 or
Windows 98 machines. It is usually smart to distribute the lowest
version of these files that will work - any good installation program
will not replace existing files of later versions, so this technique will
cause the least amount of change in the user’s machine.

If you are distributing the Storage component (dwStg.dll), the Registry
component (dwReg.dll) or the Property component (dwProp.dll), then
you may have to ship the OLE32.DLL library. If you use the
Summary Information methods (those that begin with "si" or "dsi" in
the dStorage object) or the Property component, then you need to
make sure the user's machine has version 4.0 or later. Windows NT 4,
Windows 98 and Internet Explorer all ship with version 4.0 or later of
this library. If you do not use these functions, then you will not get
any problems even with older versions of OLE32.DLL.

Page 23

You can locate the version number of a file by looking at the file's
properties in the Windows Explorer program.

Page 24

Differences Between StorageTools 2.5 and 3.0
1. The components have been modified to work in the .NET

environment, including Finalize methods where appropriate.

2. .NET versions of the samples are included.

3. StorageTools has new methods for reading and writing variants
holding data larger than MAX_INT number of bytes (32000
bytes). They are VariantPutEx and VariantGetEx.

4. StorageTools has a new method (IStreamToDStream) for
converting a pointer to an instance of an OLE IStream interface
into a dStorage object.

Page 25

Persistence of Data - A Technical White Paper
When should your VB programs use Databases, the Registry, .INI
files, or Disk files to save information? And what is OLE Structured
Storage? Find out in this new article by the author of the Visual Basic
Programmer's Guide to the Win32 API.

by Daniel Appleman

Copyright 2002 by Daniel Appleman. All Rights Reserved.

This article may be reproduced only in its entirety and may be freely
reproduced and distributed via both print and electronic means. In fact,
you are encouraged to do so, as this is my first experiment at
electronic publishing. All copies of the article must include the entire
article including the copyright notice and StorageTools product
information page. No other use of this article is permitted without
prior consent of the author except for brief quotations used in critical
articles and reviews, in which case such use must be properly
attributed.

=======================================

The following technology white paper is based on a talk that I
presented at the Silicon Valley Visual Basic User's Group in January
1996. It is being distributed in an effort to educate Visual Basic
programmers regarding available techniques for implementing data
storage in their applications. The paper focuses on matching an
appropriate data storage technology to the needs of individual
applications, and discusses the advantages and disadvantages of each
approach. The end of this article does discuss a Desaware product (the
company for which I work), however you will find that the bulk of the
article is an objective and technical discussion on storage techniques
that should prove valuable to every Visual Basic programmer. By
reading this article you will gain:

An understanding of many of the tradeoffs involved in data storage
technologies including initialization files, the system registry, disk
files, database systems and structured storage systems.

An excellent understanding of OLE structured storage as it relates to
application design - including where its use is and is not appropriate.
Also, you will see how OLE structured storage fits into Microsoft's
OLE strategy.

Page 26

Introduction
OLE structured storage is one of the most exciting technologies to
come along in quite a while. It will dramatically change the way you
work with files. It is......

Wait. Isn't this the way most articles begin when describing a cool
technology? They focus on the features and capabilities of the tool or
technique being described. But is this really the information that most
programmers need?

You see, most programmers (myself included) tend to fall in love with
technology. We hear about a cool new tool or technique, and it
becomes, for a while, the greatest thing that we've ever heard of. When
I was studying computer science I remember being introduced to a
new language every week or two, and each one instantly became the
"best" language in my repertoire - the language that I could surely use
to perform any task more efficiently and quickly than any other. And it
would remain the "best" language until the next one came along.

This is something that I think is common among many programmers
and engineers. We become passionate about technology. We tend to
love our work. Our preferences of languages, tools and machines are
almost religious in their intensity (in fact, I dare say that there are
programmers who are considerably more passionate about their
programming tools than their religion).

So before discussing this "cool new tool" called OLE structured
storage, I think it is important that we pause for a moment and place it
in perspective.

You see, as programmers our real job is not to fall in love with
technology. It is to solve problems using software. And as such, it is
our professional responsibility to choose the tools that will best help us
solve the problem at hand - not the one that we happen to be excited
about at the moment, or the one that the industry is busy hyping.

That said, here is the truth about OLE structured storage: It is a
powerful technology that is highly suited to solving particular
problems, and totally unsuitable for others. So, how does one
determine which problems are right for this technology? Let us start
with considering the entire class of problem at hand: that of
persistence of data.

Page 27

Persistence of Data
Imagine a program such as a word processor that was unable to save
information from one session to the next. With such a program, you
would have to type a document from scratch every time you needed a
printout - roughly akin to the way offices used typewriters just a few
decades ago. Much of the value of computers comes from the ability
of applications to store information - to persist their data. There are
many technologies available for persisting data, and not all of them are
appropriate for every situation.

1. There are three major reasons for persisting data in an application
and one or all may be appropriate for any given program. They
are as follows:

2. Application configuration information: Many applications save
state information from one session to the next. It may remember
user settings such as whether a backup should be generated for
each file, or the positions of windows so that the application will
restore itself to the same state that it was in when it was last
closed. The application might save general configuration
information as well as user specific configuration settings (for
applications that support multiple users).

3. Documents: Many applications work on documents that are
opened at the beginning of a session and saved or closed when the
session is over. Typical documents are word processing
documents, spreadsheets, pictures and so forth. Documents can
often contain many types of objects. The key thing to remember
about documents is that they generally correspond to a single disk
file. This makes a document easy to manage as an individual unit.
For example: it can be copied to a diskette, or sent via Email.

4. Records: Applications that need to keep track of multiple records
which are similar to each other will typically use some sort of
database storage mechanism. Databases support searching and
filtering and are designed to be easily shared by multiple
applications simultaneously.

Each of these reasons for storing data influences the choice of
technology that can best solve the particular storage problem. But the
choice of technology is not always obvious. Let's take a look at the
major storage technologies in use under Windows and how
appropriate each is for the problems listed above.

Page 28

Private Initialization Files
Initialization files are an older technology that goes back to Window
2.0 (version 1.0 did not support private initialization files, only
win.ini). While some of the newer Windows documentation suggests
that one should always use the registry instead of initialization files,
this is not necessarily the case. Initialization files maintain a number of
advantages over the registry for some applications. They can be edited
by hand using any text editor such as Notepad. They can be easily
copied or saved using simple file commands. They are very easy to
work with using a few simple API functions or Visual Basic
commands.

Are initialization files appropriate for saving application configuration
information? Yes - absolutely. A program's state can often be stored as
a relatively small number of short string entries or numeric entries -
exactly the kind of information that initialization files handle best. It
would take more effort to handle user specific configuration
information - each user would have to have their own section in the
file, but it is still a viable solution.

Are initialization files appropriate for saving documents? Probably
not. Their performance is not adequate for most documents. Each
entry is limited in size, as is the entire file (depending on the operating
system). They can only handle text data, limiting their flexibility for
general use.

Are initialization files appropriate for saving record information?
Certainly not, except perhaps for the most limited applications.

The System Registry
The system registry or registration database provides hierarchical
storage in a central location on each system. The registry is quite
limited under Windows 3.x, supporting only limited data types and
only one value at each node in the hierarchy. Under Windows 95 and
Windows NT, however, each key in the registry may have any number
of named values associated with it, and those values can be one of a
wide selection of available data types including raw binary data. Each
value is generally under 2k bytes in length.

Page 29

Is the registry appropriate for saving application configuration
information? Absolutely. It provides a far more sophisticated structure
for saving configuration information and you can easily save user
specific information by simply giving each user their own node in the
registry hierarchy. The registry is, however, harder for an end user to
edit (which is either an advantage or disadvantage, depending on your
application). Editing the registry always creates the risk that the user
might accidentally make a change that could interfere with the correct
operation of the system - since the registry, unlike private initialization
files, also contains configuration information for the system itself. The
registry is harder to access programmatically than private initialization
files, requiring the use of more sophisticated API commands (though a
simple set of Visual Basic commands are also available for basic
registry operations).

Is the registry appropriate for saving documents? Certainly not. There
is no clean mechanism for managing individual parts of the registry -
how would you copy part of the registry to a disk file or send it
through Email? The registry is, by its very nature, not document
oriented. It is also strongly recommended that each value in the
registry be kept relatively small.

Is the registry appropriate for saving record information? Not a chance
- all the reasons discussed for documents apply here as well.

Independent Documents
One of the most common methods used by applications to persist data
is to store the required information in document files on disk. There
are a number of standard formats for disk files, for example: .BMP
files (Windows bitmap format) is a standard file format for bitmap
images. RTF (rich text format) is a standard formatted text document
format. In many cases, applications define their own private file
formats - in fact, many standard formats originated in that manner.
Whether a private or public file format is appropriate for a given
application is one of the design choices that must be made by the
developer.

With document files, the contents of the file are the responsibility of
the application, as are all of the file operations. File operations are
implemented using either API commands or a wide variety of Visual
Basic commands that allow you to work with lines, records or binary
data.

Page 30

Are document files appropriate for saving application configuration
information? Yes - after all, a private initialization file is, essentially, a
document on disk. But document files are rarely used in this way. If
the configuration information is simple, it is easier to use an
initialization file. If the configuration information is complex or
requires the persistence of data that cannot be easily represented as
text, it is often easier to use the system registry.

Document files are easy to manage on disk. They can be copied,
moved, sent via Email, and managed using standard file management
software.

The task of reading and writing document files can range from very
simple to extremely complex, depending on the type of document. A
simple text document can be created by simply printing lines of text
into the file, each one separated by a carriage-return line-feed
combination. If, however, you wish to insert a line into the middle of
the file, or remove a line from the file, you will generally need to write
the entire file from scratch - there is no easy way to shift information
in a disk file.

What if you wish to save many different types of information in the
document? For example: a word processing file that contains both text
and pictures? In that case you need to define a more complex file
format that keeps track of where individual objects are located within
the disk file. You might need to actually define an internal directory
within the disk file that lists the various parts of the file and where
they are located. In fact, if you think about it, you might reach a level
of complexity in file organization that is used by database systems
(which routinely track large numbers of arbitrarily sized objects within
a disk file).

Which brings us to the subject of records. Is a document file
appropriate for storing multiple records of data that are similar to each
other? The answer here is yes and no. Let's say your application uses a
user defined type (data structure) internally to store data, and needs to
persist an array of these structures. In this case, a document file can be
an extremely efficient way to store this information. Visual Basic
includes record I/O file operations that are fast and have low overhead.

Page 31

The document approach towards storing records does, however, have a
number of potential disadvantages. Insertion and deletion of individual
records can be complex. If there is a chance that the structure format
might change, your application will need to keep track of document
versions and implement a scheme for updating documents from one
version to the next. Use of variable length records requires a more
complex storage scheme that includes some mechanism for finding the
start and end location of each record. Also, any searching or filtering
schemes need to be implemented by the application.

Records
In many cases you may need to persist groups of records, where the
records are similar to each other in structure. These often take the form
of tables of records, where each record contains the same fields. You
may need to work with different types of records in the same file
(multiple tables). In many cases, you will want the information to be
accessible to multiple users or applications at once. Clearly, this is the
type of information that is often stored using a database system. This
might include use of a specialized database command set or the
database controls and commands built into Visual Basic.

You may be thinking that this is a somewhat convoluted way of
talking about databases. Why go to all of the trouble to differentiate
between "saving records" and building a database? Because it is
important to distinguish between the goal and the solution. The goal is
to persist a certain type of data: records that are similar to each other.
One solution is a database - but it is not the only solution.

You have already seen that it is possible to store records in a document
file. However, if a database is clearly designed for record storage, why
would you ever want to store records in a document file? You might
want to do so if you do not need the database's searching and filtering
capability, if you have little or no need to share the file and if the
records are simple and of fixed length. In that case not only might the
document approach be easier to program - it will probably be faster
and will allow you to avoid the overhead of including a database
engine with your application.

The case for application configuration information is easier to see. A
database would almost always be extreme overkill for this type of data
persistence. Even storage of per user application information is more
easily accomplished using any of the other techniques.

Page 32

What about documents? Is it appropriate to use a database to store
document information - a word processing document, for example? It
certainly can be done. You can imagine a complex database structure
that includes one table for the lines of the document (perhaps with
formatting information), and other tables that contain different types of
objects, perhaps in blob format to hold images, video, sound, and so
forth. These tables can be linked through the relational capabilities of
the database.

This approach would work - but it can become quite complex - easily
as complex as implementing the document using a proprietary format
and performing your own disk operations. The database approach also
can have a significant impact on performance and involves significant
overhead.

The Missing Technology
All programmers have to deal with the problem of persisting data, and
there is a tendency to jump straight to a solution without considering
the problem in the context of the requirements of a particular software
project. It is true, as you have seen, that application configuration
information is usually best handled using either a private initialization
file or the system registry. It is true that record storage is usually best
handled by a database. It is true that simple documents are usually best
handled by reading and writing a disk file directly. But you have also
seen that each of the four technologies that we've discussed can be
applied for any of these persistence tasks, and the obvious choice is
not always the best.

It is also clear from the previous discussion that there is one type of
persistence problem for which none of the technologies is ideal. What
is the best way to store complex documents that contain different types
of information? Implementing a complex file format is a great deal of
work. And databases are designed for records that are similar to each
other - using them to store arbitrary types of information of arbitrary
length is possible in many cases, but can be even more work.

Until recently, there has been no obvious solution to this problem
available to Visual Basic programmers.

Page 33

Before looking at OLE structured storage in the context of this
problem, let's pause for a moment and consider the characteristics of
the ideal complex document storage system - a system able to manage
a complex document file. Assume for the moment, that the term
"object" refers to any block of data that you care to define.

• The file must be able to hold a very large number of objects, of
types defined by the application. Each of the objects must be of
any arbitrary size, efficiently handled whether it is a few bytes or
megabytes in size.

• It must be possible to insert and remove objects, or change their
size or contents without needing to rewrite the entire file.

• It must be possible to write data into the space allocated for an
object, without risk of interfering with other objects stored in the
file.

• The storage system must maintain an internal table of information
about the objects in the file, making it easy to find and reference
any object. It would be even nicer if it were possible to organize
these objects in some hierarchical manner of objects and sub-
objects.

The complexity of implementing such a system on your own is
substantial - and one of the reasons that it is so tempting to look for
alternatives to creating a private file format. At the same time, this
description might sound familiar - in fact, a storage system that meets
these criteria is present on every Windows and DOS based system.

It is the file system.

Think for a moment of files as objects. A file system can handle many
thousands of objects. Each file can range from zero bytes to gigabytes
in size. You can certainly add and remove files without fear of one file
interfering with the next. And writing into one file cannot corrupt any
other. Files are named, and can be organized in a hierarchy of
directories.

Page 34

In fact, you will find some applications that solve the problem of
complex document storage by using the file system - dividing their
documents into multiple disk files. An example that I worked with
recently is Corel Ventura Publisher, in which one publication can
consist of multiple chapters each of which contains links to documents
of different types. A single publication can thus be made up of
hundreds of files, which are typically organized in one or more
directories.

The disadvantages of this approach are clear when you try to copy a
document to a floppy disk, to another directory, or to send it via Email.
Copying the publication requires a special utility that can search out
all of the linked files and copy them to the correct destination. If even
one file is missing, the entire publication can fail to load at worst, have
missing information at best.

Which brings us to OLE Structured Storage.

OLE Structured Storage
It sometimes seems that part of the challenge of being a Windows
developer (whether you use Visual Basic or another language) is
coping with the multitude of new terms and acronyms that are
generated with great frequency from Redmond. OLE Structured
Storage is one of these.

Fortunately, this is where the somewhat long introductory material that
you have read up to now serves its purpose. Because it makes it
possible to understand exactly what OLE Structured Storage is and
why it exists and even how it might fit into your own development
plans.

Think again, for a moment, about a file system - both its advantages
and disadvantages, and how it might be used to address the problem of
creating complex documents. Consider then, that a file system exists
on a hard disk drive - a large area that is able to store information.
What would happen if, instead, you could place an entire file system
within a single disk file? Suddenly you would have all of the
advantages of a file system, with none of the disadvantages. Since the
entire file system is within a single disk file, you can copy, move and
Email all of the objects for that file system by simply copying, moving
or Emailing the file that contains the file system.

Page 35

OLE Structure Storage is a technology that places an entire file system
within a single disk file. Nothing more and nothing less. And
understanding that this is what OLE structured storage is, you know
nearly as much about it as any of the experts.

Terminology
In a file system you have directories and files. Each directory has a top
level root directory. Each directory can contain multiple subdirectories
and any number of files.

In OLE Structured Storage, the term Storage is used in place of
directory, and the term Stream is used in place of file. When working
with OLE Structured Storage Files, you start with a top level storage
(root storage) . This storage can contain additional sub storages and
streams. Streams can be created, opened and closed just like files. You
can write into streams without worrying that one might interfere with
another. OLE Structured Storage takes care of allocating space for
streams and storages, and managing space allocation within the disk
file.

OLE Structured Storage also defines a name for a disk file that is
managed by this technology. These files are called Compound
Documents.

Why is Structured Storage a part of OLE?
Structured Storage accurately describes what this compound document
technology does, but why is this part of OLE? - the "Object Linking
and Embedding" standard from Microsoft?

Part of this is the fact that OLE is in fact a collection of technologies -
a sort of grab back under which many of the new developments for
Windows falls. But part of it has to do with one of the major goals of
OLE - the ability for users to deal with documents instead of
applications.

Consider what happens when you embed an Excel spreadsheet into a
Word document. When you click on the spreadsheet part of the
document, the Excel user interface appears within Word - a
technology called "in-place editing". The document is a word
document, yet clearly, Word is able to somehow store and manipulate
the Excel spreadsheet object that is somehow embedded into the Word
file. Or can it?

Page 36

In fact, Word has no idea what data is contained in the Excel
spreadsheet or how to work with it. What actually happens is that the
Word file is a compound document. One of the storages in the
document is a place where objects foreign to Word are stored
including, in this case, the Excel spreadsheet. Each object is stored in
its own stream. When you save the word document, Word does not
know how to store the spreadsheet object, but it does not need to - all
it has to do is pass a handle to the stream to Excel. Excel then saves
the spreadsheet data into the stream.

When you reload the document, Word looks at the objects in its object
pool. Each of the streams starts with a GUID - a universal identifier.
Word looks at that identifier and calls the OLE libraries asking it to
create an object based on that stream information. OLE looks through
the system registry, sees that it is an Excel spreadsheet object, then
loads those parts of Excel that are necessary to display the object and
allow the user to edit it.

As you can see, OLE Structured storage fills the critical need of
allowing an application to store objects even though it does not know
their internal format - it can simply pass a stream handle to a server
that knows how to work with that object. You can use this same
technique in Visual Basic in conjunction with the OLE container
control to store foreign objects inside your own compound document
files.

A quick look with a compound document browser shows that OLE
Structured Storage is used by many Microsoft Applications including
most of the Microsoft Office applications.

Should you use a Compound Document or a
Database?
I've been asked this question any number of times. In fact, a large part
of the purpose of this article is to dispel this question. Note that I say
dispel - not answer. The question can't be answered because it is
intimately tied to the design of each individual application.

If your application is storing multiple groups of records, where all of
the records in a group are similar to each other, and requires
sophisticated search and filtering capabilities and support for the
definition of relationships between records in different groups (tables),
then you probably need a database.

Page 37

If you wish to create a private document format that contains arbitrary
types of data of different sizes, and perhaps objects from other
applications, Structured Storage might be a better choice.

In either case, the problem is first to determine the needs of your
particular application. Once the requirements are defined, the choice
of technology will, in most cases, be clear.

Private vs. Public Information
While the contents of any particular stream in a compound document
is defined entirely by the application or object that it contains, the
management of streams and storages within the document is the
responsibility of OLE itself. This means that it is possible for any
application to browse through the structure and contents of the
document - just as any application can open and read a disk file.

One of the nice results of this characteristic of compound document
files is that you can mix private and public data within a file. You can,
for example, place a plain text description in a stream with a given
name that any application can read.

Microsoft has actually defined a standard properties format stream
called the "SummaryInformation" field. This stream contains standard
summary information such as the document Title, Author, Comments
and so forth. This means that any application can read this summary
information. You can use it in your own documents, or use it to obtain
information about other documents that use this feature.

Self Persisting Classes
You've seen how OLE Structured Storage allows each application to
be responsible for its own objects within a single document. You can
use the same technique within your own application by creating self-
persisting classes.

Say you create an application that contains a number of different
classes and you wish to persist collections of objects from each class.
One technique involves creating high level routines for saving and
loading all of the objects. The disadvantage of this approach is that
any changes to a class require that you modify the high level routines.
This includes adding new classes, or changing the formats that a class
uses to save its data. This kind of centralized approach is necessary in
most cases where you are creating a private file format that you are
managing yourself.

Page 38

OLE structured storage makes possible a better approach in which
each class knows how to transfer its data to and from a stream. In this
case, all the high level routine has to do is call a "Save" or "Load"
method for each instance of each class. If a class needs to change its
data format, it can do so at will (assuming it maintains the ability to
load the older format). The high level persistence routines do not need
to be modified in any way.

Use of self-persisting classes can improve the long term reliability of
an application by making it less likely that the persistence operation of
one class might interfere with those of others used by the application -
even when the code or data formats for individual classes are
modified.

Other Capabilities of OLE Structured Storage
Compound document files support sharing - individual storages can be
opened for exclusive or shared access, in much the same way as disk
files support sharing.

OLE Structured Storage also supports transactioning. You can open a
storage in transacted mode. After modifying the contents of the
storage you then have the choice of committing those changes or
reverting to the original contents. This can be ideal for implementing
features such as incremental Undo operations.

OLE Structured Storage and Visual Basic
There is just one catch that exists when it comes to using OLE
Structured Storage technology from Visual Basic. That is that Visual
Basic does not support this technology. OLE Structured Storage is not
implemented using API calls but rather OLE interfaces, a system not
supported in VB.

Fortunately, you can access all of the capabilities of OLE structured
storage from Visual Basic using a third party package called
"StorageTools" from Desaware. This package includes 16 and 32 bit
OLE controls that support both structured storage and easy access to
the system registry.

Page 39

The Need for Structured Storage
Virtually every program needs to read and write information to disk.
This means that essentially every programmer has the problem of
determining how to organize information within a file. And of course,
this file format would, more than likely, be incompatible with that of
other programs.

OLE2 Structured Storage is Microsoft 's cross-platform standard for
organization within a file. This standard offers a number of
improvements to normal file storage:

• Organizes information inside files as a directory structure -- a “file
system within a file”.

• Supports easy incremental file saves -- allowing you to save only
that part of the file that was modified, drastically reducing disk
access times.

• Can be written and read from a block of memory, creating a ready
made, automatically expandable memory structure that can be
easily saved to disk.

• With Transactioning, information put into a structured storage is
automatically buffered, and any changes made to it can be
undone.

• Because structured storage is a standard file format, it allows any
Structured Storage-aware program to find information within a
file even if it does not have detailed information about the file
format. Different file formats can share a common information
block, called a Property Set, allowing you, for example, to look at
the title of a word processing document without knowing which
program originally created the file. Each application can choose to
publish this type of common information if it wishes.

OLE Structured Storage manages the allocation and organization of
data within a disk file. This means that if you add data to a stream
within a compound document, you need not worry about overwriting
other data within the file. The structured storage system will rearrange
the contents of the file as necessary.

Page 40

Compound File Elements and Names
Compound files have two primary structures, “Storages”, which act
like directories, and “Streams ” which act like files. A Storage can
contain any number of Streams and Storages.

Each Storage and Stream has a file name that can be up to thirty two
characters in length. The filenames can contain any character except
“\”, “/”, “:”, “!”, “.” or “..”. The Root Storage’s name is the same as the
name of the file itself, so it has the same restrictions in length and style
as the underlying file system. The first character in a file name can
occasionally contain a special value denoting the owner and purpose
of that Element. These special values are:

Character Description
ASCII 1, 2 These elements are for the exclusive use of

OLE libraries.
ASCII 3 These elements are for the exclusive use of the

OLE Container of the OLE Object that created
this Compound File.

ASCII 4 These elements are created by custom
Structured Storage implementations.

ASCII 5 This element holds a property set, a method for
sharing information about a document.

ASCII 6 - 31 Reserved for future use.
Storages retain the times that they were created, last changed and last
accessed (OLE currently does not support the same for Streams).
Streams can contain up to 232 bytes each. (That’s more than four
gigabytes.)

Each open Storage and Stream has its own buffering. Therefore, you
must remember to commit all of the parent Storages of an element in
order for that element to be saved to disk. For example, if you made
changes to a Stream in the root Storage, simply calling the Flush
method on the Stream is not sufficient to save it to disk -- you must
also Commit the Root Storage.

Page 41

Summary Information
Microsoft also created a standardized method of storing information,
called "Property Sets", providing a technique for other programs to
publish and extract information about a document. Two property sets
are common to almost any Structured Storage file. They are called the
“Summary Information Property Set” and the “Document Summary
Information Property Set”.

The Summary Information property set resides in a single stream
named “SummaryInformation”. Most programs expect it to be located
in the root storage of a file, but it is not uncommon to see files with
multiple SummaryInformation steams. The name, like that of all
Property Sets, begins with the special character ASCII 5. In recent
versions of Windows, the information in the Summary Information
property set is shown when you view the properties of a file.

The Summary Information Property Set contains the following
properties:

Property Name Type
Title String
Subject String
Author String
Keywords String
Comments String
Filename of template String
Last author String
Revision number String
Total editing time Date
Date last printed Date
Date of creation Date
Date last saved Date
Number of pages Long Integer
Number of words Long Integer
Number of characters Long Integer
Name of the application that created this file String
Security Level Long Integer

Page 42

Of course, not all of these properties may be useful for a given
document. For example, a file dealing with sound effects might not
have a word count. Simply leave blank the fields that you do not
require.

The Document Summary Information property set was created some
time after the original Summary Information set, once Microsoft
started using the Structured Storage file system in applications besides
Word. It resides in a single stream named “DocumentSummary-
Information”. Most programs expect it to be located in the root
storage of a file, but it is not uncommon to see files with multiple
Document Summary Information steams. The name begins with the
special character ASCII 5. In recent versions of Windows, the
information in the Document Summary Information property set is
shown when you view the properties of a file. Unlike the Summary
Information stream, the Document Summary Information stream
actually contains two blocks of data: a list of attributes similar to the
previously described property set and a section for user defined
properties.

These are the properties for the Document Summary Information
Property Set:

Property Name Type
Category String
Presentation Target String
Number of bytes Long Integer
Number of lines Long Integer
Number of paragraphs Long Integer
Number of slides Long Integer
Number of notes Long Integer
Number of hidden slides Long Integer
Number of multimedia clips Long Integer
Scale image to window or crop it. Boolean
Manager String
Company String
Are links up-to-date Boolean

User defined properties of the Document Summary Information set
can have any name and be a string, date, long integer or Boolean.
Some programs such as Microsoft Word provide a ready list of names,
but these are no different than any other that name you might use.

Page 43

 The Desaware Storage Control
The Desaware Storage Control (DWSTG.DLL, DWSTG32.OCX and
DWSTG16.OCX) provides an easy way to create Compound
Documents. It allows you to read compound document files as if they
were regular files, using familiar Visual Basic commands. This makes
it easy to learn and switch between file formats. The two parts of the
Structured Storage specification, “storages ” and “streams ” are
implemented as Visual Basic Objects, allowing the user to create as
many storages and streams as are needed (see the “Set” command in
the Visual Basic help file for more information). Any number of
storages and streams can be kept open, at the cost of only one file
handle per Structured Storage file. The control can read and write
information within a stream in a number of Visual Basic compatible
formats. Document Property Sets can be easily edited. The Storage
Control can even place a compound document into a dynamically
sized buffer in memory.

Why are There Two Versions of the Control?
We created the original ActiveX version when the ActiveX standard
was new. Since that time, there have been a number of changes to
Visual Basic and the original standard no longer matches the
capabilities of the modern language. It is single threaded, and must be
placed on a form in order to work. Its licensing scheme did not allow
its use in components. It also requires the programmer to distribute
two large Microsoft libraries.

The new component version is designed to provide superior
performance while maintaining a similar interface.

How do I Convert an Existing Program That Uses
dwStg32.ocx to Use the dwStg.dll Component?

There are only two major changes you must make to your program.
First, replace the ActiveX control with the component. Remove any
instances of the control from your forms, and uncheck the Desaware
Storage control from the Components dialog box in Visual Basic.

Select the "Desaware 3.0 Storage Type Library" from the References
dialog box. Where you declare your objects, add a Dim statement for
the component. It may make your conversion easier if you use the
same name as the control had:

Page 44

Dim dwStorage1 as New dwStorage.

Second, you must change the dimension statements for your storage
and stream objects. Where they both were declared as "Object"
under the ActiveX control, now you must specify "dStorage" for all
storage objects and "dStream" for all stream objects.

Those are all the changes you need to make - unless you want to use
some of the new features of the component.

What if I Want To Use StorageTools in My Own
Ccomponent Which is Then Used in the Visual
Basic or .NET Environments?

Like all Desaware components, the dwStg.dll storage component
requires that a license file be present in order to work during design
time. This poses no problem if you are using dwStg.dll as part of an
application or ActiveX server. However, it will cause a problem if
you try using it in an ActiveX control, ActiveX DLL or other object
that acts as a component. When the end-user attempts to load your
component within Visual Basic or the .NET envoronment, the
dwStg.dll storage component detects that it is running within Visual
Basic and raises a licensing error.

To allow you to use the dwStg component in your own controls, we
have created a license scheme that allows you to use it even when a
design-time license is not present, just by adding a line of code. See
the EnableComponent method for more information. Naturally, there
is no cost or royalty fee for you to use this mechanism. However, we
do remind you that under the terms of the StorageTools license, you
may only distribute our components when your component adds
significant and primary functionality. In other words, you can't use it
to ship your own general purpose Structured Storage access
component. This is similar to the license terms that Microsoft and
other companies use in cases like this – for example: Microsoft does
not allow you to use the JET redistributable components to implement
your own general purpose database product. If you have any questions,
don't hesitate to contact us.

.NET Storage Component Example
The Storage Component consists of three different types of objects
which you can use to access any number of storages and streams. This

Page 45

simple example illustrates how to create and use these objects. To use
the component, first check the item called "Desaware 3.0 Storage
Type Library" in the OLE section of the "Add Reference" dialog box.
Add the imports line that notifies .NET you are using the StorageTools
library:

Imports Desaware.StorageTools.dwStg ' VB.NET
using Desaware.StorageTools.dwStg; // C#

Next, create a dwStorage object and references for each storage or
stream you will need. The component automatically creates the
storage and stream objects as needed, so you do not need to use the
"New" keyword for them.

' VB.NET
Dim dwStorage1 As dwStorage = New dwStorage
Dim RootStorage As dStorage
Dim Stream As dStream

// C#
private dwStorage dwStorage1 = new

dwStorage();
private dStorage RootStorage;

private dStream Stream;Now we will create a file on disk. We will
use the Storage Control’s method CreateStorageFile, which returns a
storage object representing the root storage. The first parameter is the
filename and the second parameter is the access mode.

RootStorage = dwStorage1.CreateStorageFile
("c:\test.stg", dwstg.STG_CREATE Or
dwstg.STG_READWRITE Or dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE) ' VB.NET

RootStorage = dwStorage1.CreateStorageFile
("c:\test.stg", dwstg.STG_CREATE |
dwstg.STG_READWRITE | dwstg.STG_DIRECT |
dwstg.STG_SHARE_EXCLUSIVE); // C#

Now we open a new stream within the storage by using the
CreateStream function, one of the methods of the Storage Object.

Stream = RootStorage.CreateStream
("StreamName", dwstg.STG_CREATE Or
dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE Or
dwstg.STG_READWRITE) ' VB.NET

Page 46

Stream = RootStorage.CreateStream
("StreamName", dwstg.STG_CREATE |
dwstg.STG_DIRECT | dwstg.STG_SHARE_EXCLUSIVE
| dwstg.STG_READWRITE); // C#

The Stream Object’s Put method is one of the ways to actually place
information into the file. However, even in Direct mode, data is still
buffered. (See STG_DIRECT in the Access Flags section for a
discussion of Direct and Transacted modes.) Therefore, after
changing the stream, we have to clear the buffers and force the
information to disk with the Flush and Commit methods.

' VB.NET
Dim Info as Object
Info = "This string is the information to be

inserted into the file."
Stream.Put (0, Info)
Info = "This will be added after the first

sentence."
Stream.Put (dwstg.STG_SEEK_DONTMOVE, Info)
Stream.Flush (dwstg.STG_DEFAULT)
RootStorage.Commit (dwstg.STG_DEFAULT)

// C#
private object Info;
Info = "This string is the information to be

inserted into the file.";
Stream.Put (0, Info);
Info = "This will be added after the first

sentence.";
Stream.Put (dwstg.STG_SEEK_DONTMOVE, Info);
Stream.Flush (dwstg.STG_DEFAULT);
RootStorage.Commit (dwstg.STG_DEFAULT);

You have now successfully created a compound document with the
file name “c:\test.stg”. This compound document has a single stream
with the name “StreamName” which contains two single strings.

Finally, always delete Visual Basic objects to free any memory that
might be used. An important point is that .NET does not free these
objects right away – that takes place the next time there is garbage
collection. If you try to use one of these objects before they are
collected, it will cause errors. Before you set the objects to nothing,
use the Finalize method.

' VB.NET

Page 47

Stream.Finalize()
RootStorage.Finalize()
Stream = Nothing
RootStorage = Nothing

// C#
Stream.Finalize();
RootStorage.Finalize();
Stream = null;
RootStorage = null;

Visual Basic Storage Component Example
The Storage Component consists of three different types of objects
which you can use to access any number of storages and streams. This
simple example illustrates how to create and use these objects. To use
the component, first check the item "Desaware 2.0 Storage Type
Library" in the References dialog box of Visual Basic.

Create a dwStorage object and references for each storage or stream
you will need. The component automatically creates the storage and
stream objects as needed, so you do not need to use the "New"
keyword for them.

Dim dwStorage1 as New dwStorage
Dim RootStorage as dStorage
Dim Stream as dStream

Next, create a file on disk. We will use the Storage Control’s method
CreateStorageFile, which returns a storage object representing the
root storage. The first parameter is the file name and the second
parameter is the access mode.

Set RootStorage = dwStorage1.CreateStorageFile
("C:\TEST.STG", STG_CREATE Or STG_DIRECT Or
STG_WRITE Or STG_SHARE_EXCLUSIVE)

Now we open a new stream within the storage by using the
CreateStream function, one of the methods of the Storage Object.

Set Stream = RootStorage.CreateStream
("StreamName", STG_CREATE Or STG_DIRECT Or
STG_WRITE Or STG_SHARE_EXCLUSIVE)

Page 48

The Stream Object’s Put method is one of the ways to actually place
information into the file. However, even in Direct mode, data is still
buffered. (See STG_DIRECT in the Access Flags section for a
discussion of Direct and Transacted modes.) Therefore, after
changing the stream, we have to clear the buffers and force the
information to disk with the Flush and Commit methods.

Dim Info as Variant
Info = "This string is the information to be

inserted into the file. "
Stream.Put 0, Info
Info = "This will be added after the first

sentence."
Stream.Put STG_SEEK_DONTMOVE, Info
Stream.Flush STG_DEFAULT
RootStorage.Commit STG_DEFAULT

You have now successfully created a compound document with the
file name “c:\test.stg”. This compound document has a single stream
with the name “StreamName” which contains two single strings.

Finally, always delete Visual Basic objects to free any memory that
might be used.

Set dwStorage1 = Nothing
Set Stream = Nothing
Set RootStorage = Nothing

Visual Basic ActiveX Storage Control Example
The Storage Control takes advantage of the ability of Visual Basic to
work with objects by creating two different types of objects which you
can use to access any number of storages and streams. This simple
example illustrates how to create these objects and use them. First,
you must place the ActiveX control on a form that is loaded at the time
the following code is run.

Create objects for each storage or stream you will need.

Dim RootStorage as Object
Dim Stream as Object

Next, create a file on disk. The example uses the Storage Control’s
method CreateStorageFile, which returns a storage object
representing the root storage. The first parameter is the filename and
the second parameter is the access mode.

Page 49

Set RootStorage = DwStorage1.CreateStorageFile
("C:\TEST.STG", STG_CREATE Or STG_DIRECT Or
STG_WRITE Or STG_SHARE_EXCLUSIVE)

Now we open a new stream within the storage by using the
CreateStream function, one of the methods of the Storage Object.

Set Stream = RootStorage.CreateStream
("StreamName", STG_CREATE Or STG_DIRECT Or
STG_WRITE Or STG_SHARE_EXCLUSIVE)

The Stream Object’s Put method is one of the ways to actually place
information into the file. However, even in Direct mode, data is still
buffered (See STG_DIRECT in the Access Flags section for a
discussion of Direct and Transacted modes.) Therefore, after
changing the stream, we have to clear the buffers and force the
information to disk with the Flush and Commit methods.

Dim Info as Variant
Info = "This string is the information to be

inserted into the file. "
Stream.Put 0, Info
Info = "This will be added after the first

sentence."
Stream.Put STG_SEEK_DONTMOVE, Info
Stream.Flush STG_DEFAULT
RootStorage.Commit STG_DEFAULT

You have now successfully created a compound document with the
file name “c:\test.stg”. This compound document has a single stream
with the name “StreamName” which contains two single strings.

Finally, always delete Visual Basic Objects to free any memory that
they might use.

Set Stream = Nothing
Set RootStorage = Nothing

Page 50

Storage Component Methods (dwStg.dll)

Note for .Net users:
All function descriptions below use the Visual Basic standard of
"Long" for a 32 bit integer. In .NET languages, the correct type would
be "Integer" in VB.NET or "int" in C#. They also use the Visual Basic
data type "Variant". The .NET equivalent of that type is "Object".

Note that .NET does not correctly recognize the Boolean type of the
return value in OLE components. You will need to convert the type
back to a Boolean type using the Convert.ToBoolean () function.
Convert is an object in the "System" namespace – see the .NET
documentation for more information.

ComponentObject.AllocateMemoryHandle () as Long
This creates a global sharable block of memory suitable for Structured
Storages. The block of memory uses 0 bytes initially, but expands to
accommodate any data written to the Structured Storage. You may
have more than one memory handle open at a time. In the .NET
environment, you can use the Marshal.AllocHGlobal() function
instead – pass a zero for the length of the buffer to allocate (memory
will be allocated as needed by the system).

' VB
Dim hGlobal as LonghGlobal =

DwStg.AllocateMemoryHandle()

ComponentObject.CompressStorageFile
(Filename as String)

After heavy usage, Compound Files become fragmented and can
contain many gaps that take up disk space. This method unfragments
and compresses the Compound File. This method is time intensive,
and should not be used often (certainly not every time the file is
modified - when used on significantly compressed files it might
actually make the file larger).

DwStg.CompressStorageFile
("C:\MyDocuments\report.doc")

Page 51

ComponentObject.ConvertToLocalTime
(MeanTimeDate as Date) as Date

This converts a variable in Universal Coordinated Time (UCT time or
Greenwich Mean Time) to the local time. This is needed because the
storage creation, last modify and last addition dates are all stored in
UCT time to prevent confusion when the file is sent to other time
zones.

' VB
Dim CreateDate as Date
Dim UCTDate as Date

UCTDate = DwStg.GetCreationDate ()
CreateDate = DwStg.ConvertToLocalTime UCTDate
MsgBox "The storage " & DwStg.Name & " was created:

" & CStr (CreateDate)

' VB.NET
Dim CreateDate As DateTime
Dim UCTDate As DateTime

UCTDate = DwStg.GetCreationDate ()
CreateDate = DwStg.ConvertToLocalTime (UCTDate)
MessageBox.Show ("The storage " & DwStg.Name & "

was created: " & CreateDate.ToString())

// C#
private DateTime CreateDate;
private DateTime UCTDate;

UCTDate = DwStg.GetCreationDate ();
CreateDate = DwStg.ConvertToLocalTime (UCTDate);
MessageBox.Show ("The storage " + DwStg.Name + "

was created: " + CreateDate.ToString());

Page 52

ComponentObject.CreateStorageFile
(Filename as String, AccessMode as Long) as
dStorage

Creates a new blank Compound File on the disk. The Filename
parameter should contain the name (with full path, as necessary) of the
file to create. The file is opened in the style dictated by the flags in the
AccessMode parameter. The possible flags are detailed in the
Constants section of this manual. If CreateStorageFile is successful,
a dStorage Object is returned that represents the root directory of the
Structured Storage. If not, an error is triggered. (See the Possible
Errors section for a description of errors).

This method can be used to open files that are not in the Structured
Storage format. Include STG_CONVERT as one of the access mode
flags. The file will appear to have a single stream named "Contents",
which will contain the entire file contents. Simply reading from the
file will cause no changes, but modifying anything will change the file
into Structured Storage format permanently.

' VB
Dim dwStg as New dwStorage
Dim RootStorage as dStorage

' Create a file temp.stg if it does not exist
' or open it if it does. Let other programs
' access the file as well.
Set RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", STG_CREATE Or STG_DIRECT Or
STG_READWRITE Or STG_SHARE_DENYNONE)

' If the file temp.stg exists, overwrite it
' if it does not exist, create it
Set RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", STG_OVERWRITE Or STG_DIRECT
Or STG_READWRITE Or STG_SHARE_EXCLUSIVE)

' VB.NET
Dim dwStg As dwStorage = New dwStorage()
Dim RootStorage As dStorage

' Create a file temp.stg if it does not exist
' or open it if it does. Let other programs
' access the file as well.

Page 53

RootStorage = dwStg.CreateStorageFile
("C:\temp.stg", dwstg.STG_CREATE Or
dwstg.STG_DIRECT Or dwstg.STG_READWRITE Or
dwstg.STG_SHARE_DENYNONE)

' If the file temp.stg exists, overwrite it
' if it does not exist, create it
RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", dwstg.STG_OVERWRITE Or
dwstg.STG_DIRECT Or dwstg.STG_READWRITE Or
dwstg.STG_SHARE_EXCLUSIVE)

// C#
private dwStorage dwStg = new dwStorage();
private dStorage RootStorage;

// Create a file temp.stg if it does not exist
// or open it if it does. Let other programs
// access the file as well.
RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", dwstg.STG_CREATE |
dwstg.STG_DIRECT | dwstg.STG_READWRITE |
dwstg.STG_SHARE_DENYNONE);

// If the file temp.stg exists, overwrite it
// if it does not exist, create it
RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", dwstg.STG_OVERWRITE |
dwstg.STG_DIRECT | dwstg.STG_READWRITE |
dwstg.STG_SHARE_EXCLUSIVE);

ComponentObject.CreateStorageMemory
(Name as String, AccessMode as Long, hGlobal as
Long) as dStorage

Creates a new blank Structured Storage in memory at the location
specified by the global memory handle hGlobal. (See
AllocateMemoryHandle for information as to how to create one of
these handles.) The storage is given the name found in the Name
parameter, and is opened in the style dictated by the flags in the
AccessMode parameter. The possible flags are detailed in the
Constants section of this manual. Memory storages are useful as a
mode of organizing memory and allowing easy saving of data to disk.
The Structured Storage initially utilizes no memory but expands to
accommodate any data written to it.

Page 54

If CreateStorageMemory is successful, a Storage Object is returned
that represents the root directory of the Structured Storage. If not, an
error is invoked. This storage can be copied to an existing storage on
disk using the CopyTo or MoveElementTo methods.

' VB
Dim hGlobal as Long
Dim RootStgInMem as dStorage
Dim RootStgOnFile as dStorage

hGlobal = DwStg.AllocateMemoryHandle()
Set RootStgInMem = DwStg.CreateStorageMemory

("MemStg", STG_CREATE Or STG_READWRITE Or
STG_DIRECT Or STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
' You can copy the entire contents to a file
' with a command similar to this:
RootStgInMem.CopyTo RootStgOnFile
' After you are done with the storage:
Set RootStgInMem = Nothing
DwStg.DeallocateMemoryHandle(hGlobal)

' VB.NET
Dim hGlobal As Long
Dim RootStgInMem As dStorage
Dim RootStgOnFile As dStorage

hGlobal = DwStg.AllocateMemoryHandle()
RootStgInMem = DwStg.CreateStorageMemory ("MemStg",

dwstg.STG_CREATE Or dwstg.STG_READWRITE Or
dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
' You can copy the entire contents to a file
' with a command similar to this:
RootStgInMem.CopyTo (RootStgOnFile)
' After you are done with the storage:
RootStgInMem.Finalize()
RootStgInMem = Nothing
DwStg.DeallocateMemoryHandle(hGlobal)

// C#
private int hGlobal;

Page 55

private dStorage RootStgInMem;
private dStorage RootStgOnFile;

hGlobal = DwStg.AllocateMemoryHandle();
RootStgInMem = DwStg.CreateStorageMemory ("MemStg",

dwstg.STG_CREATE Or dwstg.STG_READWRITE Or
dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE, hGlobal);

// Now you can act on RootStgInMem just
// like any other storage.
// You can copy the entire contents to a file
// with a command similar to this:
RootStgInMem.CopyTo (RootStgOnFile);
// After you are done with the storage:
RootStgInMem.Finalize();
RootStgInMem = null;
DwStg.DeallocateMemoryHandle(hGlobal);

ComponentObject.DeallocateMemoryHandle
(hGlobal as Long)

This deallocates the block of memory allocated previously. Use this
method after the Structured Storage is cleared (after the object is set to
Nothing). In the .NET environment you can use the
Marshal.FreeHGlobal() function instead.

' VB
DwStg.DeallocateMemoryHandle hGlobal

ComponentObject.EnableComponent
(LicenseKey as String)

This method allows you to use the Storage component in your own
components that are used in Visual Basic or the .NET environment,
such as ActiveX controls or ActiveX documents.

You first create a key by using the dwLicGen.exe program. This
program will ask you to enter the compiled name of your component
(not including a path, but including an extension). Each key is unique
to a component name. If you change your component name, you'll
have to create a new license key. After the program generates the key,
you will have the option to copy it to the clipboard to post into your
application.

Page 56

You then call the EnableComponent method before you access any
of the component’s methods. It is best placed in your control's
Initialize or Sub Main functions. If you ever unload or remove the
last reference to the Storage component, you will have to go through
this process again upon creating a new reference.

 ' VB
 Private Sub UserControl_Initialize()
' Your key will be different.
 DwStg.EnableComponent "2E3499248E322D3636853B53"
End Sub

 ' VB.NET // C#
 ' Your key will be different.
 DwStg.EnableComponent ("2E3499248E322D3636853B53")

ComponentObject.IsStorageFile
(Filename as String) as Boolean

Returns True if the file specified by the Filename parameter is a
Compound File, False if it is not. If something goes wrong, an error is
generated. Remember that non-Compound Files can still be opened as
Compound Files. (This is done by using CreateStorageFile, specifying
the file to be converted, and setting the STG_CONVERT flag. See the
STG_CONVERT flag in the Constants section of this manual for
more information.) Note that .NET does not correctly recognize the
type of the return value. You will need to convert the type back to a
Boolean type – see the following code samples.

' VB
If (dwStg.IsStorageFile ("C:\report.doc")) Then
 MsgBox "Yes, report.doc is a storage file"
End If

' VB.NET
If (Convert.ToBoolean (dwStg.IsStorageFile

("C:\report.doc")) = True) Then
 MessageBox.Show ("Yes, report.doc is a storage

file")
End If

// C#
if (Convert.ToBoolean (dwStg.IsStorageFile

("C:\report.doc")) == true)
{

Page 57

 MessageBox.Show ("Yes, report.doc is a storage
file");

}

ComponentObject.IsStorageMemory
(hGlobal as Long) as Boolean

Returns True if the memory specified by the global memory handle
hGlobal contains a Structured Storage, False if not. Note that .NET
does not correctly recognize Boolean return types in OLE
components. You will need to convert the type back to a Boolean
type – see the following code samples.

If (dwStg.IsStorageMemory (hGlobal)) Then
 MsgBox "Yes, the memory referenced by handle

hGlobal does contain a storage"
EndIf

' VB.NET
If (Convert.ToBoolean (dwStg.IsStorageMemory

(hGlobal)) = True) Then
 MessageBox.Show ("Yes, memory referenced by

handle hGlobal does contain a storage ")
End If

// C#
if (Convert.ToBoolean (dwStg.IsStorageMemory

(hGlobal)) == true)
{
 MessageBox.Show ("Yes, memory referenced by

handle hGlobal does contain a storage ");
}

ComponentObject.IStreamToDStream
(Long lpIStream)as dStream

This allows you to take a pointer to an OLE IStream interface and
create a StorageTools dStream object from it. This is useful in cases
where you receive a pointer to an IStream interface from a 3rd party
component, but need StorageTools in order to access it.

 ' VB
 Dim lpIStream as Long
 Dim dStrm as dStream
 Dim NumBytes as Long

Page 58

 ' the pointer in lpIStream is provided from some
 ' 3rd party source
 dStrm = IStreamToDStream (lpIStream)
 ' all dStream methods now work
 NumBytes = dStrm.GetSize

ComponentObject.OpenStorageFile
(Filename as String, AccessMode as Long) as
dStorage

Opens a Compound File on disk. The Filename parameter contains
the name (with full path, if needed) of the file to open. The file is
opened in the style dictated by the flags in the AccessMode parameter.
The possible flags are detailed in the Constants section of this manual.
If OpenStorageFile is successful, a Storage Object is returned that
represents the root directory of the Structured Storage. If not, an error
is generated.

Dim dwStg as New dwStorage
Dim RootStorage as dStorage

' VB
' Open the file temp.stg for reading and
' writing and do not let anyone else access it.
Set RootStorage = dwStg.OpenStorageFile

("C:\temp.stg", STG_DIRECT or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

' Open the file temp.stg for reading only.
' Let anyone else read and write to the file.
Set RootStorage = dwStg.OpenStorageFile

("C:\temp.stg", STG_DIRECT or STG_READ or
STG_SHARE_DENYNONE)

' VB.NET
Dim dwStg As dwStorage = New dwStorage()
Dim RootStorage As dStorage

' Open a file temp.stg for reading and
' writing and do not let anyone else access it.
RootStorage = dwStg.OpenStorageFile ("C:\temp.stg",

dwstg.STG_DIRECT Or dwstg.STG_READWRITE Or
dwstg.STG_SHARE_EXCLUSIVE)

' Open the file temp.stg for reading only.
' Let anyone else read and write to the file.
RootStorage = dwStg.OpenStorageFile ("C:\temp.stg",

dwstg.STG_DIRECT Or dwstg.STG_READ Or
dwstg.STG_SHARE_DENYNONE)

Page 59

// C#
private dwStorage dwStg = new dwStorage();
private dStorage RootStorage;

// Open a file temp.stg for reading and
// writing and do not let anyone else access it.
RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", dwstg.STG_DIRECT |
dwstg.STG_READWRITE |
dwstg.STG_SHARE_EXCLUSIVE);

// Open the file temp.stg for reading only.
// Let anyone else read and write to the file
RootStorage = dwStg.CreateStorageFile

("C:\temp.stg", dwstg.STG_OVERWRITE |
dwstg.STG_DIRECT | dwstg.STG_READWRITE |
dwstg.STG_SHARE_DENYNONE);

ComponentObject.OpenStorageMemory
(Name as String, AccessMode as Long, hGlobal as
Long) as dStorage

Opens an already existing Structured Storage at the location in
memory specified by the global memory handle hGlobal . It is opened
in the style dictated by the flags in the AccessMode parameter. The
possible flags are detailed in the Constants section of this manual.
The Structured Storage expands to accommodate any data written to it.
If OpenStorageMemory is successful, a Storage Object is returned
that represents the root directory of the Structured Storage. This
storage can be copied to disk using the CopyTo or MoveElementTo
methods.

' VB
Dim RootStgInMem as dStorage

' In this case, we probably get hGlobal from
' another task or module.
Set RootStgInMem = DwStg.OpenStorageMemory

("MemStg", STG_READWRITE Or STG_DIRECT Or
STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
...
' After you are done with the storage:
Set RootStgInMem = Nothing

Page 60

' VB.NET
Dim RootStgInMem As dStorage

' In this case, we probably get hGlobal from
' another task or module.
RootStgInMem = DwStg.CreateStorageMemory ("MemStg",

dwstg.STG_READWRITE Or dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
...
' After you are done with the storage:
RootStgInMem.Finalize()
RootStgInMem = Nothing

// C#
private dStorage RootStgInMem;

RootStgInMem = DwStg.CreateStorageMemory ("MemStg",
dwstg.STG_READWRITE Or dwstg.STG_DIRECT Or
dwstg.STG_SHARE_EXCLUSIVE, hGlobal);

' Now you can act on RootStgInMem just
' like any other storage.
...
' After you are done with the storage:
RootStgInMem.Finalize();
RootStgInMem = null;

Page 61

dStorage Object Methods (dwStg.dll)

dStorage.Commit
(CommitFlags as Long)

If the storage is opened in Transacted mode (see Access Flags in the
Constants section of this manual), this procedure makes permanent all
changes made to the storage since it was opened or since the last
Commit. It makes reverting any changes up to this point impossible.
This call is also needed if the storage is opened in Direct mode to
flush the buffer. CommitFlags describes how the storage should be
committed (see the Constants section of this manual).

Dim RootStg as dStorage
' this performs a normal commit
RootStg.Commit 0

' VB.NET // C#
RootStg.Commit (0) ' "0" is shorthand for default

dStorage.CopyTo
(DestinationStorage as dStorage)

Copies the contents of this storage to the already opened Storage
Object passed to the DestinationStorage parameter.

Dim RootStg as dStorage
Dim backupStg as dStorage
' Copy the entire contents of one Storage file
' into the backupStg storage (which may be in
' another file or in memory).
' VB
RootStg.CopyTo backupStg

' VB.NET // C#
RootStg.CopyTo (backupStg)

Page 62

dStorage.CreateStorage
(StorageName as String, AccessMode as Long) as
dStorage

Creates a sub-Storage in this Storage. The Filename parameter
contains the name of the storage to be constructed. The file is opened
in the style dictated by the flags in the AccessMode parameter. The
possible flags are detailed in the Constants section of this manual. If
CreateStorage is successful, a Storage Object is returned that
represents the newly created storage. If not, an error is generated.

' VB
Dim RootStg as dStorage
Dim newStorage as dStorage
' Create a storage named DataBlocks in the
' RootStg storage if one does not exist, or
' open the storage named DataBlocks if it
' does. This storage (like all non-root
' storages under OLE Structured Storage must
' be) cannot be accessed by other applications
' while the newStorage object exists.
Set newStorage = RootStg.CreateStorage

("DataBlocks", STG_CREATE or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

' When you are done with the storage, get rid
' of the object.
Set newStorage = Nothing

' VB.NET
Dim RootStg As dStorage
Dim newStorage As dStorage
newStorage = RootStg.CreateStorage ("DataBlocks",

dwstg.STG_CREATE or dwstg.STG_READWRITE or
dwstg.STG_SHARE_EXCLUSIVE)

newStorage.Finalize()
newStorage = Nothing

// C#
private dStorage RootStg;
private dStorage newStorage;
newStorage = RootStg.CreateStorage ("DataBlocks",

dwstg.STG_CREATE | dwstg.STG_READWRITE |
dwstg.STG_SHARE_EXCLUSIVE);

newStorage.Finalize();
newStorage = null;

Page 63

dStorage.CreateStream
(StreamName as String, AccessMode as Long) as
dStream

Creates a sub-stream in this storage. The Filename parameter contains
the name of the stream to be constructed. The file is opened in the
style dictated by the flags in the AccessMode parameter. The possible
flags are detailed in the Constants section of this manual. If
CreateStream is successful, a Stream Object is returned that
represents the newly created stream. If not, an error is generated.

Dim RootStg as dStorage
Dim subStream as dStream
' Create a stream named Data1 in the RootStg
' storage if one does not exist, or open the
' stream named Data1 if it does. This stream
' (like all streams under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the newStream object
' exists.
Set subStream = RootStg.CreateStream ("Data1",

STG_CREATE or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

' When you are done with the stream, get rid
' of the object.
Set newStream = Nothing

' VB.NET
Dim RootStg As dStorage
Dim subStream as dStream
newStorage = RootStg.CreateStream ("Data1",

dwstg.STG_CREATE or dwstg.STG_READWRITE or
dwstg.STG_SHARE_EXCLUSIVE)

newStream.Finalize()
newStream = Nothing

// C#
private dStorage RootStg;
private dStream subStream;
newStorage = RootStg.CreateStream ("Data1",

dwstg.STG_CREATE | dwstg.STG_READWRITE |
dwstg.STG_SHARE_EXCLUSIVE);

newStream.Finalize();
newStream = null;

Page 64

dStorage.DestroyElement
(Name as String)

Deletes the named storage or stream from this storage. If the element
being deleted is a storage, then all the elements in that storage are also
deleted. If there is any problem, an error is sent.

' Deletes the stream or storage named Data1
' in the RootStg storage.
' VB
RootStg.DestroyElement "Data1"

' VB.NET // C#
RootStg.DestroyElement ("Data1")

dStorage.Directory
(Index as Long, Type as Integer) as String

This method can be used to obtain a catalogue of all storages and
streams contained in this storage. Each call to Directory returns the
name of the storage or stream specified by the Index. The Type
integer is changed to reveal the type of the element:
STG_TYPE_STREAM if the returned name represents a stream,
STG_TYPE_STORAGE if the returned name represents a storage,
and STG_TYPE_NONE if there are no more elements.

 ' VB
 ' enumerate through all the elements in the
 ' RootStg storage. After the loop is done, the
 ' variable i will contain the count of elements
 i = 0
 Do

ElementName = storage.Directory(i, FileType)
If FileType = STG_TYPE_NONE Then Exit Do
If FileType = STG_TYPE_STORAGE Then
 ' ElementName is a storage
ElseIf FileType = STG_TYPE_STREAM Then
 ' ElementName is a stream
End If
i = i + 1

Loop

 ' VB.NET
 i = 0
 Do

ElementName = storage.Directory(i, FileType)
If FileType = dwstg.STG_TYPE_NONE Then Exit Do
If FileType = dwstg.STG_TYPE_STORAGE Then

Page 65

 ' ElementName is a storage
ElseIf FileType = dwstg.STG_TYPE_STREAM Then
 ' ElementName is a stream
End If
i = i + 1

Loop

 ' C#
 i = 0;
 while (true)
{

ElementName = storage.Directory(i, FileType)
if (FileType == dwstg.STG_TYPE_NONE)
{
 break;
}
if (FileType == dwstg.STG_TYPE_STORAGE)
{
 ' ElementName is a storage
}
else if (FileType == dwstg.STG_TYPE_STREAM)
{
 ' ElementName is a stream
}
i = i + 1;

}

dStorage.EnumDirectory
(RelativePos as Long, Type as Integer) as String

This method can be used to obtain a catalogue of all storages and
streams contained in this storage. It is faster than the normal
Directory method, but it is less flexible. Each call to EnumDirectory
returns the name of the first storage or stream if RelativePos is equal
to 0, or the next storage or stream if RelativePos is not. The Type
integer is changed to reveal the type of the element:
STG_TYPE_STREAM if the returned name represents a stream,
STG_TYPE_STORAGE if the returned name represents a storage,
and STG_TYPE_NONE if there are no more elements.

' VB
' enumerate through all the elements in the
' RootStg storage. After the loop is done, the
' variable i will contain the count of elements
i = 0
ElementName = storage.EnumDirectory(0, FileType)
Do

Page 66

If FileType = STG_TYPE_NONE Then Exit Do
If FileType = STG_TYPE_STORAGE Then
 ' ElementName is a storage
ElseIf FileType = STG_TYPE_STREAM Then
 ' ElementName is a stream
End If
ElementName = storage.EnumDirectory(1,

FileType)
i = i + 1

Loop

' VB.NET
i = 0
ElementName = storage.EnumDirectory(0, FileType)
Do

If (FileType = dwstg.STG_TYPE_NONE) Then Exit
Do

If (FileType = dwstg.STG_TYPE_STORAGE) Then
 ' ElementName is a storage
ElseIf (FileType = dwstg.STG_TYPE_STREAM) Then
 ' ElementName is a stream
End If
ElementName = storage.EnumDirectory(1,

FileType)
i = i + 1

Loop

// C#
i = 0;
ElementName = storage.EnumDirectory(0, FileType);
while (true)
{

if (FileType == dwstg.STG_TYPE_NONE)
{
 break;
}
if FileType == dwstg.STG_TYPE_STORAGE)
{
 ' ElementName is a storage
}
else if (FileType == dwstg.STG_TYPE_STREAM)
{
 ' ElementName is a stream
}
ElementName = storage.EnumDirectory(1,

FileType);
i = i + 1;

}

Page 67

dStorage.Finalize ()
This clears any internal buffers and references within the dStorage
object. This method should be called before setting the dStorage
object to "Nothing" in any .NET project. It is not neccessary to call
this in Visual Basic 6 or any other programming environment that
does not use garbage collection.

 ' VB.NET
 Dim dStg as dStorage

 ' after you are done using dStg
 dStg.Finalize()
 dStg = Nothing

 // C#
 ' after you are done using dStg
 dStg.Finalize();
 dStg = null;

dStorage.GetClass (CLSIDptr as Long) as Long
Returns a pointer to a block of memory containing the CLSID
associated with the storage.

Dim myCLSID As CLSID
Dim tempAddr As Long

tempAddr = dwGetAddressForRecord (myCLSID.part1)
Storage.GetClass tempAddr
Debug.Print "clsid 1 "; Hex$(myCLSID.part1)

dStorage.GetCreationDate () as Date
Obtains the date this storage was created. Due to certain limitations in
Windows, the date must be between the years 1980 and 2107.

 ' VB
 Dim dt as Date
dt = Storage.GetCreationDate()

 ' VB.NET
 Dim dt as DateTime
dt = Storage.GetCreationDate()

 // C#
 DateTime dt;
dt = Storage.GetCreationDate();

Page 68

dStorage.GetIStorage () as Long
GetIStorage returns a pointer to the IStorage object inside the
dStorage. This can be useful with components that can directly access
an IStorage interface, or when you are dealing with OLE interfaces
that need an IStorage interface.

 ' Get a direct pointer to the IStorage interface
 Dim ptrIStorage as Long
ptrIStorage = Storage.GetIStorage ()

dStorage.GetLastModifyDate () as Date
Obtains the date this storage was last changed in any way. Due to
certain limitations in Windows, the date must be between the years
1980 and 2107.

' VB
 Dim dt as Date
dt = Storage.GetLastModifyDate()

 ' VB.NET
 Dim dt as DateTime
dt = Storage.GetLastModifyDate()

 // C#
 DateTime dt;
dt = Storage.GetLastModifyDate();

dStorage.GetLastAccessDate () as Date
Obtains the date this storage was last read. Not all file systems carry
this information -- in which case GetLastAccessDate will return a
zero as the last date of access. Due to certain limitations in Windows,
the date must be between the years 1980 and 2107.

 ' VB
 Dim dt as Date
 dt = Storage.GetLastAccessDate()
 If (dt = CDate(0)) Then
 MsgBox "Does not support Last Access time"
 Else
 MsgBox "Last Access: " & CStr (dt)
 End If

' VB.NET
 Dim dt as DateTime
 dt = Storage.GetLastAccessDate () If (dt =

DateTime.FromOADate (0)) Then

Page 69

 MessageBox.Show ("Does not support Last Access
time")

 Else
 MessageBox.Show ("Last Access:" &

dt.ToString())
 End If

 // C#
 private DateTime a dt;
 dt = Storage.GetLastAccessDate ();
 if (dt == DateTime.FromOADate (0))
 {
 MessageBox.Show ("Does not support Last Access

time");
 }
 else
 {
 MessageBox.Show ("Last Access: " +

dt.ToString());
 }

dStorage.GetMIStorage () as Object
GetMIStorage returns an IUnknown interface to the IStorage object
inside the dStorage. This is more useful when using StorageTools in a
language other than Visual Basic.

dStorage.GetMode () as Long
GetMode returns a Long that contains all the flags that were used to
open or create this storage.

' VB
' Did I open this storage with the STG_READWRITE
' flag?
Dim flags as Long
flags = Storage.GetMode ()
If (flags And STG_READWRITE) Then
 ' yes, I did open with the STG_READWRITE flag
Else
 ' no, I did not
End If

' VB.NET
Dim flags as Integer
flags = Storage.GetMode ()
If (flags And STG_READWRITE) Then

Page 70

 ' yes, I did open with the STG_READWRITE flag
Else
 ' no, I did not
End If

// C#
Dim flags as Long
flags = Storage.GetMode ()
If (flags And STG_READWRITE) Then
 ' yes, I did open with the STG_READWRITE flag
Else
 ' no, I did not
End If

dStorage.LoadObject (OLEobject as Object)
LoadObject will ask the object contained in the OLEobject parameter
to load itself from the data contained in this storage using its
IPersistStorage interface. If the object does not support that interface,
or if the storage does not conain valid persisted data, a Visual Basic
error will result.

' See PutObject for a sample

dStorage.MoveElementTo
(ElementName as String, NewName as String,
DestStorage as dStorage, MoveFlags as Long)

Copies or moves an element from within this storage to the already
open storage object passed to the DestStorage parameter. The
element can be renamed by putting a different name in NewName . If
NewName is Null, then the old name is kept. If MoveFlags is
STG_MOVEMOVE then the original is erased (a move); if
MoveFlags is STG_MOVECOPY then the original is not erased (a
copy).

' VB
' Copy the stream Data1 in the RootStg storage
' into the storage named DataBackup. Keep the
' same filename.
RootStg.MoveElementTo "Data1", vbNullString,

DataBackup, STG_MOVECOPY
' Move the stream Data1 in the RootStg storage
' into the storage named DataBackup. Change
' the filename to Yesterday1.
RootStg.MoveElementTo "Data1", "Yesterday1" ,

DataBackup, STG_MOVEMOVE

Page 71

' VB.NET
RootStg.MoveElementTo ("Data1", "Yesterday1" ,

DataBackup, dwStg.STG_MOVEMOVE)
// C#
RootStg.MoveElementTo ("Data1", "Yesterday1" ,

DataBackup, dwStg.STG_MOVEMOVE);

dStorage.OpenStorage
(StorageName as String, AccessMode as Long) as
dStorage

Opens a storage that is in the same file as this storage. The Filename
parameter contains the name (and path, as necessary) of the storage to
open. Like changing directories in DOS, the path can be relative to
the root (with a leading backslash (“\”)) or relative to this storage
(without the leading backslash). The storage is opened in the style
dictated by the flags in the AccessMode parameter. The possible flags
are detailed in the Constants section of this manual. If OpenStorage
is successful, a Storage OLE Object is returned that represents the
newly opened storage. If not, an error is generated.

Dim RootStg as dStorage
Dim subStorage as dStorage
' Open a storage named DataBlocks in the
' RootStg storage. This storage (like all
' non-root storages under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the subStorage object
' exists.
Set subStorage = RootStg.OpenStorage ("DataBlocks",

STG_DIRECT or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

' When you are done with the storage, get rid
' of the object.
Set subStorage = Nothing

' VB.NET
Dim RootStg as dStorage
Dim subStorage as dStorage
subStorage = RootStg.OpenStorage ("DataBlocks",

dwStg.STG_DIRECT Or dwStg.STG_READWRITE Or
dwStg.STG_SHARE_EXCLUSIVE)

' When you are done with the storage, get rid
' of the object.

Page 72

subStorage.Finalize()
subStorage = Nothing
// C#
private dStorage RootStg;
private dStorage subStorage;
subStorage = RootStg.OpenStorage ("DataBlocks",

dwStg.STG_DIRECT | dwStg.STG_READWRITE |
dwStg.STG_SHARE_EXCLUSIVE);

' When you are done with the storage, get rid
' of the object.
subStorage.Finalize();
subStorage = null;

dStorage.OpenStream
(StreamName as String, AccessMode as Long) as
dStream

Opens a sub-stream of this storage. The Filename parameter contains
the name of the stream to open. The stream is opened in the style
dictated by the flags in the AccessMode parameter. The possible flags
are detailed in the Constants section of this manual. If OpenStream
is successful, a Stream OLE Object is returned that represents the
newly opened stream. If not, an error is generated.

' VB
Dim RootStg as dStorage
Dim subStream as dStream
' Create a stream named Data1 in the RootStg
' storage if one does not exist, or open the
' stream named Data1 if it does. This stream
' (like all streams under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the newStream object
' exists.
Set subStream = RootStg.OpenStream ("Data1",

STG_READWRITE or STG_SHARE_EXCLUSIVE)
' When you are done with the stream, get rid
' of the object.
Set subStream = Nothing

' VB.NET
Dim RootStg as dStorage
Dim subStream as dStream
subStream = RootStg.OpenStream ("Data1",

dwStg.STG_READWRITE Or
dwStg.STG_SHARE_EXCLUSIVE)

Page 73

' When you are done with the stream, get rid
' of the object.
subStorage.Finalize()
subStream = Nothing

// C#
private dStorage RootStg;
private dStream subStream;
subStream = RootStg.OpenStream ("Data1",

dwStg.STG_READWRITE |
dwStg.STG_SHARE_EXCLUSIVE);

// When you are done with the stream, get rid
// of the object.
subStorage.Finalize();
subStream = null;

dStorage.PutObject (OLEobject as Object)
PutObject will ask the object contained in the OLEobject parameter
to save itself into this storage using its IPersistStorage interface. If the
object does not support that interface a Visual Basic error will result.

 ' VB
 ' The ListView control supports the IPersistStorage
 ' interface.
 stg.PutObject ListView1.object
 stg.Commit 0
 ' Make a change to the ListView1 control to see
 ' the effect of loading it.
 ListView1.View = lvwIcon
 Debug.Print ListView1.View
 ' Load the original state of the object.
 stg.LoadObject ListView1.object
 ' Now it will print the original state of the View
 ' property, not "lvwIcon".
 Debug.Print ListView1.View

dStorage.RenameElement
(OldName as String, NewName as String)

Renames one of the storages or streams in this storage. Compound
File names are limited to thirty-two characters in length.

' This renames the element named "Data" in
' storage RootStg to "ReserveData"
' VB
RootStg.RenameElement "Data", "ReserveData"

Page 74

' VB.NET
RootStg.RenameElement ("Data", "ReserveData")
// C#
RootStg.RenameElement ("Data", "ReserveData");

dStorage.Revert ()
When this method is called, if the storage is opened in Transacted
mode, then all changes made to the storage since it was created or
since the last Commit are discarded. Revert has no effect in Direct
mode.

' Open an existing file in Transacted mode.
Set RootStg = dwStorage1.OpenStorageFile

("C:\file.stg", STG_TRANSACTED or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

' Create a new stream.
Set subStream = RootStg.CreateStream ("Data1",

STG_CREATE or STG_DIRECT or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

' Now write the stream. If the RootStg was
' Commited, it would contain a blank stream
' named "Data1".
subStream.Flush 0
Set subStream = Nothing
' This undoes all the changes I made to the
' RootStg storage - the stream subStream does
' not get written to the file.
RootStg.Revert

' VB.NET
' Open an existing file in Transacted mode.
RootStg = dwStorage1.OpenStorageFile ("C:\file.stg",

dwStg.STG_TRANSACTED Or dwStg.STG_READWRITE Or
dwStg.STG_SHARE_EXCLUSIVE)

' Create a new stream.
subStream = RootStg.CreateStream ("Data1",

dwStg.STG_CREATE Or dwStg.STG_DIRECT Or
dwStg.STG_READWRITE Or dwStg.STG_SHARE_EXCLUSIVE)

' Now write the stream. If the RootStg was
' Commited, it would contain a blank stream
' named "Data1".
subStream.Flush (0)
subStream = Nothing
' This undoes all the changes I made to the
' RootStg storage - the stream subStream does
' not get written to the file.

Page 75

RootStg.Revert ()

// C#
// Open an existing file in Transacted mode.
RootStg = dwStorage1.OpenStorageFile ("C:\file.stg",

dwStg.STG_TRANSACTED | dwStg.STG_READWRITE |
dwStg.STG_SHARE_EXCLUSIVE);

// Create a new stream.
subStream = RootStg.CreateStream ("Data1",

dwStg.STG_CREATE | dwStg.STG_DIRECT |
dwStg.STG_READWRITE | dwStg.STG_SHARE_EXCLUSIVE);

// Now write the stream. If the RootStg was
// Commited, it would contain a blank stream
// named "Data1".
subStream.Flush (0);
subStream = null;
// This undoes all the changes I made to the
// RootStg storage - the stream subStream does
// not get written to the file.
RootStg.Revert ();

dStorage.SetClass (CLSIDptr as Long)
Sets the containing CLSID associated with the storage. CLSIDptr is
a pointer to a block of memory containing the CLSID.

' there are other valid ways to define this as well
Type CLSID
 part1 As Long
 part2 As Integer
 part3 As Integer
 part4 As Byte
 part5 As Byte
 part6 As Byte
 part7 As Byte
 part8 As Byte
 part9 As Byte
 part10 As Byte
 part11 As Byte
End Type

Dim myCLSID As CLSID
Dim tempAddr as Long

myCLSID.part1 = &H11111111
myCLSID.part2 = &H2222
myCLSID.part3 = &H3333

Page 76

myCLSID.part4 = &H44 ' and so on

tempAddr = dwGetAddressForRecord(myCLSID.part1)
Storage.SetClass tempAddr

dStorage.SetElementTimes
(Element as String, CreationDate as Date,
LastModifyDate as Date, LastAccessDate as Date)

Sets any or all of the dates for a sub-storage of the storage named in
Element (streams do not carry any date information in the current
implementation of OLE2). Use Null for any date you do not want
changed. LastAccessDate is not saved on FAT or NTFS file systems,
so changing it might not be useful. Due to certain limitations in
Windows, the date must be between the years 1980 and 2107.

Dim Date1 as Date
Dim Date2 as Date

Date1 = Now
Date2 = Now
' Set the creation and last modify dates for
' the storage named "DataBlock1" in storage
' RootStg to the current date and time. I only
' pass a zero for the last access time.
RootStg.SetElementTimes "DataBlock1", Date1, Date2,

CDate(0)

' VB.NET
Dim Date1 as DateTime
Dim Date2 as DateTime
RootStg.SetElementTimes ("DataBlock1", Date1, Date2,

DateTime.FromOADate (0))

// C#
private DateTime Date1;
private DateTime Date2;
RootStg.SetElementTimes ("DataBlock1", Date1, Date2,

DateTime.FromOADate (0));

Summary Information Property Set Functions
These functions deal with the Summary Information stream in the
relevant dStorage object.

Page 77

Here is an example of how you would use these methods to edit a
string in the Summary Information Property set:

' VB
' if the SummaryInformation stream exists, load
' its information
If (RootStorage.siOpenSummaryInfo = True) Then
 ' get the title
 titleString = RootStorage.siGetTitle()
 titleString = titleString & " version 2"
 ' set the new title
 RootStorage.siSetTitle titleString
 ' save the changes to the
 ' SummaryInformation stream
 RootStorage.siSaveSummaryInfo
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 RootStorage.Commit STG_DEFAULT
End If

' VB.NET
' if the SummaryInformation stream exists, load
' its information
If (Convert.ToBoolean (RootStorage.siOpenSummaryInfo

()) = True) Then
 ' get the title
 titleString = RootStorage.siGetTitle()
 titleString = titleString & " version 2"
 ' set the new title
 RootStorage.siSetTitle (titleString)
 ' save the changes to the
 ' SummaryInformation stream
 RootStorage.siSaveSummaryInfo()
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 RootStorage.Commit (dwStg.STG_DEFAULT)
End If

// C#
// if the SummaryInformation stream exists, load
// its information
if (Convert.ToBoolean (RootStorage.siOpenSummaryInfo

()) == true)
{
 // get the title
 titleString = RootStorage.siGetTitle();
 titleString = titleString + " version 2";

Page 78

 // set the new title
 RootStorage.siSetTitle (titleString);
 // save the changes to the
 // SummaryInformation stream
 RootStorage.siSaveSummaryInfo();
 // just like any stream, you must commit the
 // root storage to actually write to disk
 RootStorage.Commit (dwStg.STG_DEFAULT);
}

dStorage.siSetTitle
(Title as String)
Sets the title of the document.

dStorage.siGetTitle () as String
Returns the title of the document.

dStorage.siSetSubject
(Subject as String)
Sets the subject of the document.

dStorage.siGetSubject () as String
Returns the subject of the document.

dStorage.siSetAuthor
(Author as String)
Sets the author of the document.

dStorage.siGetAuthor () as String
Returns the author of the document.

dStorage.siSetKeywords
(Keyword as String)
Sets key words related to the subject of the document. These
keywords are typically used in search routines.

dStorage.siGetKeywords () as String
Returns keywords relating to the subject of the document.

Page 79

dStorage.siSetComments
(Comment as String)
Sets the comment field. This area might be used for making notes to
oneself or others.

dStorage.siGetComments () as String
Returns the comment field.

dStorage.siSetLastAuthor
(LastAuthor as String)
Sets the latest person to have modified the document.

dStorage.siGetLastAuthor () as String
Returns the last person who has modified the document.

dStorage.siIncrementRevNum ()
Increments the number of times a document has been revised.

dStorage.siSetRevNum
(TimesRevised as Long)
Sets the number of times the document has been revised.

dStorage.siGetRevNum () as Long
Returns the number of times the document has been revised.

dStorage.siStartEditTimer ()
This starts an internal timer. It is useful for determining how long a
document has been opened.

dStorage.siAddEditTimerToTotal ()
Adds the amount of time since siStartEditTimer was called to the field
recording the total amount of time the document has been opened.

dStorage.siGetTotalEditTime () as Long
Returns the total amount of time a document has been open since it
has been created, in minutes.

Page 80

dStorage.siSetTotalEditTime
(Minutes as Long)
Sets the total amount of time a document has been open, in minutes.

dStorage.siRecordPrintDate ()
Sets the field containing the last time this document was printed to the
current date and time.

dStorage.siGetLastPrintDate () as Date
Returns the last time the document was printed.

dStorage.siRecordCreateDate ()
Sets the field containing the time the document was created to the
current date and time.

dStorage.siGetCreateDate () as Date
Returns the time the document was created.

dStorage.siRecordSaveDate ()
Sets the field containing the last time this document was saved to the
current date and time.

dStorage.siGetLastSaveDate () as Date
Returns the last time the document was saved.

dStorage.siSetNumberOfPages
(NumPages as Long)
Sets the number of pages.

dStorage.siGetNumberOfPages () as Long
Returns the number of pages.

dStorage.siSetNumberOfWords
(NumWords as Long)
Sets the number of words.

Page 81

dStorage.siGetNumberOfWords () as Long
Returns the number of words.

dStorage.siSetNumberOfCharacters
(NumChars as Long)
Sets the number of characters.

dStorage.siGetNumberOfCharacters () as Long
Returns the number of characters.

dStorage.siSetApplication
(AppName as String)
Sets the name of the application that created the document.

dStorage.siGetApplication () as Long
Returns the title of the application that created the document.

dStorage.siSetTemplate
(Template as String)
Sets the filename of the template used in the document.

dStorage.siGetTemplate () as String
Returns the filename of the template used in the document.

dStorage.siSetSecurity
(SecurityLevel as Long)
Sets the recommended security level of the document. Note that this
does not actually supply any security, but only serves as a reminder to
the application that reads the file. The actions based on the values are
as follows:

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document. Other programs cannot view or edit this
document.

2 Read-Only recommend. The user will be warned if there is

Page 82

any attempt to edit the document.
3 Read-Only enforced. Does not allow any changes to the

document.
4 Locked for Annotations. Does not allow any changes to the

document.

dStorage.siGetSecurity () as Long
Returns the security level of the document. Your program should
behave as follows:

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document unless you know what type of password
protection is involved, and the password given is correct.

2 Read-Only recommend. Warn the user if there is any
attempt to edit the document.

3 Read-Only enforced. Do not allow any changes to the
document.

4 Locked for Annotations. Do not allow any changes to the
document.

dStorage.siOpenSummaryInfo () as Boolean
Retrieves information from the SummaryInformation property set
stream in the root storage of this Compound File. If there is no
SummaryInformation property set, siOpenSummaryInfo() generates
an error. Before the siOpenSummaryInfo() is called, using any
function beginning with “siGet“ will return the default value, which
will be either zero or a blank string depending on the type. Note that
.NET does not correctly recognize Boolean return types. You will
need to convert the type back to a Boolean type using the
Convert.ToBoolean () function.

dStorage.siSaveSummaryInfo ()
Saves any changes to the SummaryInformation property set stream in
the root storage. Just as with any stream, these changes are not
actually written to disk until the root storage object’s Commit method
is called.

 ' VB
 ' Create a new storage and create a new SI

Page 83

 Dim RootStg as dStorage

 Set RootStg = RootStorage.CreateStorage ("siTest",
STG_CREATE or STG_READWRITE Or STG_DIRECT Or
STG_SHARE_EXCLUSIVE)

 RootStg.dsiSetNumWords 412
 ' You do not have to set all properties – when you
 ' save, all the rest of the properties will be
 ' saved with their default values.
 RootStg.dsiSaveSummaryInfo
 RootStg.Commit 0
 Set RootStg = Nothing

 ' VB
 Dim RootStg as dStorage

 RootStg = RootStorage.CreateStorage ("siTest",
dwStg.STG_CREATE Or dwStg.STG_READWRITE Or
dwStg.STG_DIRECT Or dwStg.STG_SHARE_EXCLUSIVE)

 RootStg.dsiSetNumWords (412)
 RootStg.dsiSaveSummaryInfo()
 RootStg.Commit (0)
 RootStg.Finalize()
 RootStg = Nothing

 // C#
private dStorage RootStg;

 dStg = RootStorage.CreateStorage ("siTest",
dwStg.STG_CREATE | dwStg.STG_READWRITE |
dwStg.STG_DIRECT | dwStg.STG_SHARE_EXCLUSIVE);

 RootStg.dsiSetNumWords (412);
 RootStg.dsiSaveSummaryInfo();
 RootStg.Commit (0);
 RootStg.Finalize();
 RootStg = null;

Document Summary Information Property Set
Functions

These functions deal with the Document Summary Information stream
in the relevant dStorage object.

Page 84

Here is an example of how you would use these methods to edit a
string in the Document Summary Information Property set:

' VB
' if the DocumentSummaryInformation stream
' exists, load its information
If (RootStorage.dsiOpenSummaryInfo = True) Then
 ' get the name of the manager
 mngString = RootStorage.dsiGetManager()
 mngString = mngString & " and John Smith"
 ' set the new manager
 RootStorage.dsiSetManager mngString
 ' save the changes to the Document Summary
 ' Information stream
 RootStorage.dsiSaveSummaryInfo
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 RootStorage.Commit STG_DEFAULT
End If

' VB.NET
If (Convert.ToBoolean

(RootStorage.dsiOpenSummaryInfo ()) = True) Then
 ' get the name of the manager
 mngString = RootStorage.dsiGetManager()
 mngString = mngString & " and John Smith"
 ' set the new manager
 RootStorage.dsiSetManager (mngString)
 ' save the changes to the Document Summary
 ' Information stream
 RootStorage.dsiSaveSummaryInfo()
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 RootStorage.Commit (STG_DEFAULT)
End If

// C#
if (Convert.ToBoolean

(RootStorage.dsiOpenSummaryInfo()) == true)
{
 // get the name of the manager
 mngString = RootStorage.dsiGetManager();
 mngString = mngString + " and John Smith"
 // set the new manager
 RootStorage.dsiSetManager (mngString);
 // save the changes to the Document Summary
 // Information stream

Page 85

 RootStorage.dsiSaveSummaryInfo();
 // just like any stream, you must commit the
 // root storage to actually write to disk
 RootStorage.Commit (STG_DEFAULT);
}

dStorage.dsiSetScaleCrop
(Scale as Boolean)
Set this to True if this document is supposed to be scaled to the
dimensions of the window, False if it is to be cropped to the
dimensions of the window.

dStorage.dsiGetScaleCrop () as Boolean
Returns True if this document is supposed to be scaled to the current
dimensions of the window, False if it is to be cropped to the
dimensions of the window. Note that .NET does not correctly
recognize Boolean return types. You will need to convert the type
back to a Boolean type using the Convert.ToBoolean () function.

dStorage.dsiSetLinksUpToDate
(Links as Boolean)
Set this to True if all the links are up to date. Links may refer to
internal links in the document or links to web sites depending upon the
application.

dStorage.dsiGetLinksUpToDate () as Boolean
Returns True if all the links are up to date. Note that .NET does not
correctly recognize Boolean return types. You will need to convert
the type back to a Boolean type using the Convert.ToBoolean ()
function.

dStorage.dsiSetCategory
(Category as String)
Sets the category of the document.

dStorage.dsiGetCategory () as String
Returns the category of the document.

Page 86

dStorage.dsiSetPresentationTarget
(Target as String)
Sets the presentation target of the document. Used in Microsoft
PowerPoint.

dStorage.dsiGetPresentationTarget () as String
Returns the presentation target of the document.

dStorage.dsiSetManager
(Manager as String)
Sets the manager of the document writer.

dStorage.dsiGetManager () as String
Returns the manager of the document writer.

dStorage.dsiSetCompany
(Company as String)
Sets the company with which the document is associated.

dStorage.dsiGetCompany () as String
Returns the company with which the document is associated.

dStorage.dsiSetNumBytes
(NumBytes as Long)
Sets the size (in number of bytes) of the document. Usually refers to
the section of the document edited by the user, not the entire size of
the file.

dStorage.dsiGetNumBytes () as Long
Returns the size of the document in number of bytes.

dStorage.dsiSetNumLines
(NumLines as Long)
Sets the number of lines in the document.

Page 87

dStorage.dsiGetNumLines () as Long
Returns the number of lines in the document.

dStorage.dsiSetNumParagraphs
(NumParas as Long)
Sets the number of paragraphs in the document.

dStorage.dsiGetNumParagraphs () as Long
Returns the number of paragraphs in the document.

dStorage.dsiSetNumSlides
(NumSlides as Long)
Sets the number of slides in the document.

dStorage.dsiGetNumSlides () as Long
Returns the number of slides in the document.

dStorage.dsiSetNumNotes
(NumNotes as Long)
Sets the number of notes in the document.

dStorage.dsiGetNumNotes () as Long
Returns the number of notes in the document.

dStorage.dsiSetNumHiddenSlides
(NumHiddenSlides as Long)
Sets the number of hidden slides in the document.

dStorage.dsiGetNumHiddenSlides () as Long
Returns the number of hidden slides in the document.

dStorage.dsiSetNumMMClips
(NumClips as Long)
Sets the number of multimedia clips in the document.

Page 88

dStorage.dsiGetNumMMClips () as Long
Returns the number of multimedia clips in the document.

dStorage.dsiOpenDocSummaryInfo () as Boolean
Retrieves information from the Document Summary Information
Property Set stream. If there is no Document Summary Information
Property Set, dsiOpenDocSummaryInfo returns False. Before the
dsiOpenDocSummaryInfo method is called, or if there is no
Document Summary Information stream, using any "dsi" method
beginning with “dsiGet “ will return the default value, which will be
either zero or a blank string depending upon the type. To make a new
Document Summary Information stream where one does not yet exist,
set the above properties to the values you want and then call the
dsiSaveDocSummaryInfo method. Note that .NET does not
correctly recognize Boolean return types. You will need to convert
the type back to a Boolean type using the Convert.ToBoolean ()
function.

dStorage.dsiSaveDocSummaryInfo ()
Saves any changes to the Document Summary Information Property
Set stream. Just as with any stream, these changes are not actually
written to disk until the root storage object’s Commit method is called.

 ' Create a new storage and create a new Document SI
 Dim RootStg as dStorage

 Set RootStg = RootStorage.CreateStorage ("dsiTest",
STG_CREATE or STG_READWRITE Or STG_DIRECT Or
STG_SHARE_EXCLUSIVE)

 RootStg.dsiSetNumBytes 1024
 ' You do not have to set all properties – when you
 ' save, all the rest of the properties will be
 ' saved with their default values.
 RootStg.dsiSaveDocSummaryInfo

 ' VB.NET
 Dim RootStg As dStorage

 RootStg = RootStorage.CreateStorage ("dsiTest",
dwStg.STG_CREATE Or dwStg.STG_READWRITE Or
dwStg.STG_DIRECT Or dwStg.STG_SHARE_EXCLUSIVE)

Page 89

 RootStg.dsiSetNumBytes (1024)
 RootStg.dsiSaveDocSummaryInfo()
 RootStg.Commit (0)

 // C#
 private dStorage RootStg;

 RootStg = RootStorage.CreateStorage ("dsiTest",
dwStg.STG_CREATE | dwStg.STG_READWRITE |
dwStg.STG_DIRECT | dwStg.STG_SHARE_EXCLUSIVE);

 RootStg.dsiSetNumBytes (1024);
 RootStg.dsiSaveDocSummaryInfo();
 RootStg.Commit (0);

User Document Summary Information Property Set
Functions

These functions deal with the user-defined portion of the Document
Summary Information stream in the relevant dStorage object.

Here is an example of how you would use these methods to read and
print a list of existing properties, and adding a number and a string into
the Document Summary Information Property set:

' VB
Dim count as Long
Dim v as Variant
Dim i as Long

' if the DocumentSummaryInformation stream
' exists, load its information
count = 0
If (Stg.dsiOpenUserSummaryInfo = True) Then
 ' get the number of properties
 count = Stg.dsiUserCount
 ' print all the property names and data
 For i = 0 To count - 1
 Debug.Print "name:", Stg.dsiUserDirectory(i)
 Debug.Print "data:", Stg.dsiUserGet(i)
 Next i

 ' Add a property that contains a number
 v = 1234
 count = Stg.dsiUserAdd("NewEntry1", v)

Page 90

 ' Add a property that contains a string
 v = "String Value"
 count = Stg.dsiUserAdd("NewEntry2", v)

 Stg.dsiSaveUserSummaryInfo
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 Stg.Commit STG_DEFAULT
End If

' VB.NET
Dim count as Integer
Dim v as Object
Dim i as Integer

' if the DocumentSummaryInformation stream
' exists, load its information
count = 0
If (Convert.ToBoolean (Stg.dsiOpenUserSummaryInfo())

= True) Then
 ' get the number of properties
 count = Stg.dsiUserCount()
 ' print all the property names and data
 For i = 0 To count - 1
 MessageBox.Show ("name:" &

Stg.dsiUserDirectory(i) & " data:" &
Stg.dsiUserGet(i))

 Next i

 ' Add a property that contains a number
 v = 1234
 count = Stg.dsiUserAdd("NewEntry1", v)
 ' Add a property that contains a string
 v = "String Value"
 count = Stg.dsiUserAdd("NewEntry2", v)

 Stg.dsiSaveUserSummaryInfo()
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 Stg.Commit (STG_DEFAULT)
End If

// C#
int countv;
object v;
int i;

Page 91

// if the DocumentSummaryInformation stream
// exists, load its information
count = 0;
if (Convert.ToBoolean (Stg.dsiOpenUserSummaryInfo())

== true)
{
 // get the number of properties
 count = Stg.dsiUserCount();
 // print all the property names and data
 for (i = 0; i > count; i++)
 {
 MessageBox.Show ("name:" &

Stg.dsiUserDirectory(i) & " data:" &
Stg.dsiUserGet(i));

 }

 // Add a property that contains a number
 v = 1234;
 count = Stg.dsiUserAdd("NewEntry1", v);
 // Add a property that contains a string
 v = "String Value";
 count = Stg.dsiUserAdd("NewEntry2", v);

 Stg.dsiSaveUserSummaryInfo();
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 Stg.Commit (STG_DEFAULT);
}

dStorage.dsiUserSet
(PropertyID as Long, Name as String, Data as
Variant)
Modifies the existing property specified by PropertyID . Data can be
either an integer, a date, a string, or a boolean value. Regular integers
are converted to long integers to match the existing standard. If
PropertyID does not correspond to an existing property, an error is
generated. Due to certain limitations in Windows, dates must be
between the years 1980 and 2107. If you need to store a date outside
this range, you can use a string.

Page 92

dStorage.dsiUserGet
(PropertyID as Long) as Variant
Returns the data associated with the property specified by
PropertyID.

dStorage.dsiUserAdd
(Name as String, Data as Variant) as Long
Add a new property to the end of the list of user-defined properties in
this Document Summary Information stream. The new count of user-
defined properties is returned. Due to certain limitations in Windows,
dates must be between the years 1980 and 2107 – if you have to store
a date that is outside this range, you can use a string.

 ' VB
 ' Add a string
 Dim v as Variant
 v = "New String Data"
 count = RootStg.dsiUserAdd ("value name", v)

 ' VB.NET
 Dim v as Object
 v = "New String Data"
 count = RootStg.dsiUserAdd ("value name", v)

 // C#
 object v;
 v = "New String Data";
 count = RootStg.dsiUserAdd ("value name", v);

dStorage.dsiUserCount () as Long
Returns the number of user-defined properties in this Document
Summary Information stream.

dStorage.dsiUserDelete
(PropertyID as Long) as Long
This deletes the specified property. After the deletion, all properties
are renumbered to remove the empty space. The new count of user-
defined properties is returned.

 ' Delete the last property
 count = dwStg.dsiUserCount
 count = dwStg.dsiUserDelete(count - 1)

Page 93

dStorage.dsiUserDirectory
(PropertyID as Long) as String
Returns the name of the specified property.

dStorage.dsiOpenUserSummaryInfo () as Boolean
Retrieves information from the user-defined section of the Document
Summary Information Property Set stream. If there is no Document
Summary Information Property Set, dsiOpenUserSummaryInfo
returns False. To make a new Document Summary Information stream
where one does not yet exist, use dsiUserAdd to create the properties
you want and then call the dsiSaveUserSummaryInfo method. Note
that .NET does not correctly recognize Boolean return types. You
will need to convert the type back to a Boolean type using the
Convert.ToBoolean () function.

dStorage.dsiSaveUserSummaryInfo ()
Saves any changes to the user-defined section of the Document
Summary Information Property Set stream. Just as with any stream,
these changes are not actually written to disk until the root storage
object’s Commit method is called.

' VB
' Create a new Document SI
 Dim count As Long
 Dim v As Variant
 Dim RootStg as dStorage

 v = True ' Add a boolean property
 count = dwStg.dsiUserAdd("FirstElement", v)
 RootStg.dsiSaveUserSummaryInfo
 RootStg.Commit 0

' VB.NET
' Create a new Document SI
 Dim count As Integer
 Dim v As Object
 Dim RootStg as dStorage

 v = True ' Add a boolean property
 count = RootStg.dsiUserAdd("FirstElement", v)
 RootStg.dsiSaveUserSummaryInfo
 RootStg.Commit (0)

Page 94

// C#
// Create a new Document SI
 int count;
 object v;
 dStorage RootStg;

 v = true; // Add a boolean property
 count = RootStg.dsiUserAdd("FirstElement", v);
 RootStg.dsiSaveUserSummaryInfo();
 RootStg.Commit (0);

Page 95

dStorage Object Properties (dwStg.dll)

dStorage.IsValid
A Boolean value, True if the dStorage represents a storage and False if
not. A dStorage variable is not valid until it has been set using a
successful call to the CreateStorageFile, OpenStorageFile,
CreateStorageMemory, OpenStorageMemory, CreateStorage or
OpenStorage methods. Note that .NET does not correctly recognize
Boolean return types. You will need to convert this property back to a
Boolean type using the Convert.ToBoolean () function.

dStorage.Name
The name of the dStorage. Begins as the name of the storage itself.
For root storages, the storage name is the same as the filename. Use
the RenameElement method to rename the actual streams and
storages, or Windows file system methods to rename the file.

' If I have the object, I might still need the
' name for some function calls.
RootStg.RenameElement RootStg.Name, "NewName"

Page 96

dStream Object Methods (dwStg.dll)

dStream.Finalize ()
This clears any internal buffers and references within the dStream
object. This method should be called before setting the dStream object
to "Nothing" in any .NET project. It is not neccessary to call this in
Visual Basic 6 or any other programming environment that does not
use garbage collection.

 ' VB.NET
 Dim dStrm as dStream
 ' after you are done using dStrm
 dStrm.Finalize()
 dStrm = Nothing

 // C#
 ' after you are done using dStrm
 dStrm.Finalize();
 dStrm = null;

dStream.Flush
(CommitFlags as Long)

In the current implementation of OLE2, streams can only be opened in
Direct mode. Flush flushes any internal buffers (although this only
speeds up what would have been done by a few seconds in any case).
CommitFlags describes how the stream should be committed (see the
Constants section of this manual).

' Perform a normal flush of buffersStream.Flush 0 '
VB

Stream.Flush (0) ' VB.NET // C#

dStream.Get
(SeekPosition as Long, Buffer as Variant)

Reads information in Visual Basic Binary form from this stream. The
SeekPosition parameter specifies the position in number of bytes from
the start of the file, beginning with zero. Use the constant
SEEK_DONTMOVE to read at the location specified by the last
Seek or at where the last Get or Put operation concluded. The amount
of data read depends upon the size and type of the variant Buffer.

' VB
' Read in two 10-character strings from the start

Page 97

' of the stream (the first 20 bytes). No matter what
' the data originally meant, Get will interpret it
' as the type of the Variant passed to it.
Dim Buffer as Variant
' Pre-set the variant to 10 characters
Buffer = String (10, 0)
Stream.Get 0, Buffer
Debug.Print Buffer
' Now get the second 10 character string
Stream.Get SEEK_DONTMOVE, Buffer
Debug.Print Buffer

' VB.NET
Dim Buffer as Object
' Pre-set the variant to 10 characters
Buffer = String (10, 0)
Stream.Get 0, Buffer
MessageBox.Show (Buffer.ToString())
' Now get the second 10 character string
Stream.Get (dwStg.SEEK_DONTMOVE, Buffer)
MessageBox.Show (Buffer.ToString())

// C#
object Buffer;
// Pre-set the variant to 10 characters
Buffer = " "; // 10 spaces
Stream.Get (0, Buffer);
MessageBox.Show (Buffer.ToString());
// Now get the second 10 character string
Stream.Get (dwStg.SEEK_DONTMOVE, Buffer);
MessageBox.Show (Buffer.ToString());

Page 98

dStream.GetBlock
(SeekPosition as Long, NumOfBytes as Long) as Long

GetBlock can be used to get a large block of data from a stream. This
may be useful if you are trying to manipulate data in a stream larger
than the limits of what a string or array can hold. It returns a pointer
to an internally allocated block holding the data from the stream
starting at SeekPosition. If there is any problem in allocating the
block, the return value is 0. If NumOfBytes is larger than the number
of bytes in the stream, the buffer from the end of the data on is filled
with zeroes. The internal buffer is automatically deleted when the
stream object is destroyed (for example, when it is set to Nothing or
set to another stream), so be sure to keep the stream object as long as
you are accessing the memory block. Using this method will release
any previously allocated buffer.

' Points to the block of memory where I load
' the data from the stream.
Dim BlockPtr As Long
' Byte array where I will copy the data. This
' will make it easier to manage in Visual Basic
Dim datablock() As Byte

' Get all the data in the stream.
BlockPtr = stream.GetBlock(0, stream.GetSize())
' Adjust the size of the byte array to that of
' the block I just read.
ReDim datablock(stream.GetSize())

' Copy the data from the pointer to the byte
' array. The "stg*" functions are part of the
' dwAddr32.dll support library.
stgCopyDataBynum BlockPtr,

stgGetAddressForObject(datablock(0)),
stream.GetSize()

' Now all the data in the stream is in the
' datablock byte array. After you are done
' with the data, write it back:
stream.PutBlock 0, stream.GetSize(),

stgGetAddressForObject(datablock(0))

Page 99

dStream.GetBlockCopy
(Long SeekPosition, Long NumBytes, Long BlockPtr)

GetBlockCopy can be used to get a large block of data from a stream.
This is different than GetBlock in that it can copy the data into a block
of memory that already exists. The pointer to this block of memory is
passed in the BlockPtr parameter. Be sure that there is sufficient
space in memory for the number of bytes you are reading from the
stream.

dStream.GetIStream () as Long
GetIStream returns a pointer to the IStream object inside the dStream.
This can be useful with components that can directly access an
IStream interface, or when you are dealing with OLE interfaces that
need an IStream interface.

' Get a direct pointer to the IStream interface
Dim ptrIStream as Long
ptrIStream = Stream.GetIStream ()

dStream.GetMIStream () as Object
GetMIStream returns an IUnknown interface to the IStream object
inside the dStream. This is more useful when using StorageTools in a
language other than Visual Basic.

dStream.GetMode () as Long
GetMode returns a long that contains all the flags that were used to
open or create this stream.

' Did I open this stream with the STG_READWRITE
' flag?
Dim flags as Long
flags = Stream.GetMode ()
If (flags And STG_READWRITE) Then
 ' yes, I did open with the STG_READWRITE flag
Else
 ' no, I did not
End If

dStream.GetObject () as Object
GetObject returns an object that was previously saved to this
particular stream with PutObject or with the object’s own persistence
mechanism. This supports objects with an IPersistStream or
IPersistStreamInit interface.

Page 100

' Get the object in stream ObjStream
Dim myObject as Object
Set myObject = ObjStream.GetObject ()

dStream.GetPicture () as Picture
GetPicture is used to read a picture from the stream. See PutPicture
for information on how the picture is stored into a stream. GetPicture
is compatible with the Picture property of forms, picture boxes, image
boxes and other controls.

' Get the picture in stream PicStream
' Picture1 is a picture box control
Picture1.Picture = PicStream.GetPicture ()

dStream.GetRecord
(RecordNumber as Long, RecordSize as Long,
RecordAddress as Long)

Used for saving User Defined Types (UDT). Reads a block of
information from the record RecordNumber of size RecordSize. The
RecordNumber parameter specifies the number of records from the
start of the file, beginning with zero. All UDT’s in the stream must be
of the same size in order to prevent corruption of data. Records
containing variable length strings will not work. Use the constant
SEEK_DONTMOVE in the RecordNumber parameter to read at the
location specified by the last Seek or where the last GetRecord o r
PutRecord terminated. If you do use Seek , be sure to seek to a whole
multiple of the size of the record. You can get the address of a record
by using the stgGetAddressForRecord function from the
DWADDR32.DLL. In .NET

' VB
' Declare my type
 Private Type TypeX
 a As Integer
 b As String * 10
 c As Date
 End Type

 Dim Stream as dStream
 Dim RecordA As TypeX
 Dim RecordB As TypeX
 Dim adr As Long
 Dim tst As Integer

Page 101

 Set Stream = RootStg.CreateStream("UDT", STG_CREATE
Or STG_DIRECT Or STG_SHARE_EXCLUSIVE Or
STG_READWRITE)

 RecordA.a = 500
 RecordA.b = "qwertyuiop"
 RecordA.c = Now – 1
 ' To get the correct address for a UDT in 32-bit
 ' Visual Basic, you must get the address for the
 ' first element. As it is difficult to get the
 ' address for a string in 32-bit Visual Basic, you
 ' cannot make a string the first element in your
 ' UDT. See chapter 15 of the Visual Basic
 ' Programmers Guide to the Win32 API by Daniel
 ' Appleman for more information.
 adr = stgGetAddressForRecord(RecordA.a)
 ' Put the first record. Note that I use the LenB
 ' command to get the correct length
 Stream.PutRecord 0, LenB(RecordA), adr
 RecordA.a = 600
 RecordA.b = "abcdefghij"
 RecordA.c = Now
 ' Put the second record.
 adr = stgGetAddressForRecord(RecordA.a)
 Stream.PutRecord 1, LenB(RecordA), adr
 RecordA.a = 700
 RecordA.b = "lmnopqrstu"
 RecordA.c = Now + 1
 adr = stgGetAddressForRecord(RecordA.a)
 ' Put the third record
 Stream.PutRecord 2, LenB(RecordA), adr
 Stream.Flush 0
 RootStg.Commit 0

 ' Put some dummy values so we can see the changes
 RecordB.a = 1
 RecordB.b = ".........."
 RecordB.c = 0
 adr = stgGetAddressForRecord(RecordB.a)
 ' Get the first record
 Stream.GetRecord 0, LenB(RecordB), adr

 ' This prints "500","qwertyuiop" and the date
 Debug.Print xy.a, xy.b, xy.c

 RecordB.a = 1
 RecordB.b = ".........."
 RecordB.c = 0

Page 102

 ' Get the third record. This shows the random-
 ' access ability of the method.
 Stream.GetRecord 2, LenB(RecordB),

stgGetAddressForRecord(RecordB.a)

 ' This prints "700","lmnopqrstu"and tomorrow's
 ' date
 Debug.Print RecordB.a, RecordB.b, RecordB.c

dStream.GetSize () as Long
Returns the size, in bytes, of this stream.

' Get the size in number of bytes of a stream
NumBytes = PicStream.GetSize ()

dStream.GetString
(StringData as String)

Obtains a string from the Visual Basic Sequential formatted stream.
The string returned is changed to the correct size. You will need to
convert the string to the correct type using Visual Basic conversion
functions. The seek pointer should be pointing to the start of the item
to retrieve. After GetString is done the seek pointer will point to the
next item.

' VB
' If the next data item in the stream is the
' integer "123”, the statement
Stream.GetString InputString
' will return the string “123”, which you can
' convert to an integer with:
InputInteger = CInt(InputString)

' VB.NET
Stream.GetString (InputString)
InputInteger = Convert.ToInt32 (InputString)

// C#
Stream.GetString (InputString);
InputInteger = Convert.ToInt32 (InputString);

Page 103

dStream.LoadObject
(PersistedObject as Object)

LoadObject tells the PersistedObject object to load itself with the
data that was previously saved in this particular stream with
PutObject or with the object’s own persistence mechanism. This is
different than GetObject in that GetObject creates a new object and
returns it. You would use this when you deal with the "Object"
property of an object, like an ActiveX control. This supports objects
with an IPersistStream or IPersistStreamInit interface.

' VB
' There is a control called "NumberControl" already
' on the form.
NumberControl.SetNumber = 123
Stream.LoadObject NumberControl.Object
' This will not print "123", but whatever state was
' previously saved in this stream.
Debug.Print NumberControl.GetNumber

dStream.Put
(SeekPosition as Long, Buffer as Variant)

Writes information to this stream in the same way Visual Basic writes
binary data. The SeekPosition parameter specifies the position in
number of bytes from the start of the file, beginning with zero. Use
the constant SEEK_DONTMOVE to write at the location specified
by the last Seek or at where the last Get or Put concluded. The
amount of information written depends on the length of the data in the
variant Buffer. If the data is written past the end of the stream, the
stream automatically expands.

' VB
' Save a 10-character string at the start of
' the stream.
Dim Buffer as Variant
Buffer = "abcdefghij"
Stream.Put 0, Buffer
' Save a long integer to the place in the
' stream where the seek pointer currently is.
Buffer = 123456
Stream.Put SEEK_DONTMOVE, Buffer

' VB.NET
Dim Buffer as Object
Buffer = "abcdefghij"

Page 104

Stream.Put (0, Buffer)
Buffer = 123456
Stream.Put (SEEK_DONTMOVE, Buffer)

// C#
object Buffer;
Buffer = "abcdefghij";
Stream.Put (0, Buffer);
Buffer = 123456;
Stream.Put (SEEK_DONTMOVE, Buffer);

dStream.PutBlock
(SeekPosition as Long, NumOfBytes as Long, Pointer
as Long)

PutBlock is used to write a large block of data to a stream. This may
be useful if you are trying to manipulate data larger than the limits of
what a string or array can hold. The SeekPosition parameter specifies
the position in number of bytes from the start of the file, beginning
with zero. Use the constant SEEK_DONTMOVE to write to the
location specified by the last Seek or at where the last stream method
concluded. NumOfBytes specifies the number of bytes, starting at
memory location Pointer , that are written to the stream. The
dwAddress .DLL's come with functions for obtaining pointers and
manipulating data within the block.

See GetBlock for a sample.

dStream.PutObject (PersistedObject as Object)
PutObject will persist (save) an object to a particular stream. You
can only save one item per stream, and you should not write any other
information to that stream. This function supports objects with an
IPersistStream or IPersistStreamInit interface.

' VB
' Save a PersistTest object in stream ObjStream
Dim pn As New PersistTest
Dim dwStg1 As New dwStorage
Dim root As dStorage
Dim strm As dStream

' Set the state of the object.
pn.SetNumber 555

Page 105

Set root =
dwStg1.CreateStorageFile("C:\persist.stg", flags)

Set strm = root.CreateStream("number", flags)
strm.PutObject pn
' Make sure the information is flushed sometime
' after writing.
strm.Flush 0
root.Commit 0

Call strm.Seek(0, STG_STREAM_SEEK_SET)
' Change the state of the object. If we are not
' loading correctly, 333 will show instead of 555.
pn.SetNumber 333
' Load the data back into the same object.
Set pn = strm.GetObject
Debug.Print "State of object pn:"; pn.GetNumber

Set strm = Nothing
Set root = Nothing

dStream.PutPicture (Pic as Picture)
PutPicture is used to write a picture to the stream. The picture will
take up the entire stream, and it will not be possible to write other
information to the stream without corrupting the picture. This is
compatible with the Picture property of forms, picture boxes, image
boxes and other controls.

' Picture1 is a picture box control
PicStream.PutPicture Picture1.Picture

Page 106

dStream.PutRecord
(RecordNumber as Long, RecordSize as Long,
RecordAddress as Long)

Writes a block of information to the record RecordNumber of size
RecordSize. The RecordNumber parameter specifies the number of
records from the start of the file, beginning with zero. All records in
the stream must be the same size and must match the size of the record
exactly in order to prevent the corruption of data. Use the constant
SEEK_DONTMOVE to write at the location specified by the last
Seek or at where the last GetRecord or PutRecord concluded. If you
do use Seek , be sure to seek to a whole multiple of the size of the
record. You can obtain the address of a record by using the
GetAddressForRecord function from the DWADDR32.DLL. If the
user-defined-type you are using contains any strings, be sure to use the
"LenB" Visual Basic command to get the right size of the record.

See GetRecord for an example.

dStream.PutString
(StringData as String, VarType as Integer, Comma as
Integer)

This writes a string to the stream in Visual Basic Sequential format.
VarType should contain the type of the variable (obtained from
Visual Basic with the VarType() function). If Comma is True, then
commas are used to separate items; if not, then a Line Feed/Carriage
Return is used. The stream automatically expands if the data is written
past the end of the file.

' VB
' Write a string to the stream, with a comma
' afterwards
Dim StrData as String
StrData = "first string"
Stream.PutString StrData, VarType(StrData), -1
' Write a number without a comma
StrData = CStr(123)
Stream.PutString StrData, VarType(123), 0

' VB.NET
Dim StrData as String
StrData = "first string"
Stream.PutString (StrData, VarType(StrData), -1)

Page 107

StrData = 123.ToString();
Stream.PutString (StrData, VarType(123), 0)
// C#
string StrData;
StrData = "first string";
Stream.PutString (StrData, VarType(StrData), -1);
StrData = 123.ToString();
Stream.PutString StrData, VarType(123), 0);

dStream.Seek
(Position as Long, SeekFlag as Long) as Long

Sets the position at which the next Put or Get will be done. The
Position parameter specifies the number of bytes from the location
specified by the SeekFlag parameter. (See SeekFlag in the Constants
section of this manual.)

' Set seek pointer to 100 bytes from the start
' of the stream.
ret = Stream.Seek (100, STG_STREAM_SEEK_SET)
' Now this gets the 101th byte of information
Dim bt as Byte
Dim v as Variant
v = bt ' set the variant to act like a byte
Stream.Get SEEK_DONTMOVE, v

Seek returns a long integer which contains the current position of the
seek pointer. You can locate the current position of the seek pointer
with this line:

CurrPos = Stream.Seek (0, STG_STREAM_SEEK_CUR)

dStream.SetSize
(NewSize as Long)

This sets the probable maximum size of this storage. The Compound
File will then allocate the appropriate amount of (usually contiguous)
memory within the file. This improves the efficiency of the entire file
without limiting the size of the stream. You cannot set the size of a
stream smaller than the size of the data already stored within it.

' now the stream is 1000 bytes long
Stream.SetSize 1000

Page 108

dStream.VariantGet
(SeekPosition as Long, Buffer as Variant)

Reads information in Visual Basic Variant Binary form from this
stream (that is, the way Variants are read from Binary files). The
SeekPosition parameter specifies the position in number of bytes from
the start of the file, beginning with zero. Use the constant
SEEK_DONTMOVE to read at the location specified by the last
Seek or at where the last VariantGet or VariantPut concluded. The
amount of data read depends upon the size and type of the data written
before, because the type information is saved in the file with the data.
The Variant Buffer is automatically converted to the correct type. See
VariantPut for sample code.

dStream.VariantGetEx
(Long lSeekPosition, Variant pvBuffer)

This performs the same operation as VariantGet, except that a long
integer (32 bytes) is used to store the length of strings instead of the
short integer (16 bytes) of VariantGet. This allows the reading of
strings longer than 32K in length. This method is not compatible with
VariandPut - string data written by VariantPut will not be read
correctly by VariantGetEx.

 ' VB
 Dim v as Variant

 ' read it, starting at the start of the stream
 dStrm.VariantGetEx 0, v
 ' print our very long string
 Debug.Print v

 ' VB.NET
 Dim v as Object
 ' read it, starting at the start of the stream
 dStrm.VariantGetEx (0, v)

 // C#
 object v
 // note the use of the "ref" keyword in C#
 dStrm.VariantGetEx (0, ref v)

Page 109

dStream.VariantPut
(SeekPosition as Long, Buffer as Variant)

Writes information to this stream in the way Visual Basic writes
Variants to Binary data files. The SeekPosition parameter specifies
the position in number of bytes from the start of the file, beginning
with zero. Use the constant SEEK_DONTMOVE to write at the
location specified by the last Seek or at where the last VariantGet or
VariantPut concluded. The amount of information written depends
upon the length of the data in the variant Buffer. If the data is written
past the end of the stream, the stream automatically expands.

' VB
Dim v as Variant
Dim ByteArray(10) as Byte
Dim j as Integer

' Write a string to the start of the stream
v = "abcdefghij"
Stream.VariantPut 0, v
' Write a 10-byte byte array after the string
For j = 0 to 9
 ByteArray(j) = j
Next j
v = ByteArray
Stream.VariantPut SEEK_DONTMOVE, v

' Now read the string at the start of Stream
Stream.VariantGet 0, v
' This will print "abcdefghij" and the vartype
' of a string. Note that you do not have to
' pre-set the variant to any type - it is
' automatically set.
Debug.Print v, VarType(v)
' Now read the byte array after the string
Stream.VariantGet SEEK_DONTMOVE, v
' Print the first byte in the byte array ("0")
Debug.Print v(0)

' VB.NET
Dim v as Object
Dim ByteArray(10) as Byte
Dim j as Integer

' Write a string to the start of the stream
v = "abcdefghij"
Stream.VariantPut (0, v)

Page 110

' Write a 10-byte byte array after the string
For j = 0 to 9
 ByteArray(j) = j
Next j
v = ByteArray
Stream.VariantPut (SEEK_DONTMOVE, v)

' Now read the string at the start of Stream
Stream.VariantGet (0, v)
' Now read the byte array after the string
Stream.VariantGet (dwStg.SEEK_DONTMOVE, v)

// C#
object v;
byte [] ByteArray = new byte[10];
int j;

// Write a string to the start of the stream
v = "abcdefghij";
Stream.VariantPut (0, v);
// Write a 10-byte byte array after the string
for (j = 0; j < 10; j++)
{
 ByteArray[j] = j;
}
v = ByteArray;
Stream.VariantPut (dwStg.SEEK_DONTMOVE, v);

// Now read the string at the start of Stream
Stream.VariantGet (0, ref v);
// Now read the byte array after the string
Stream.VariantGet (dwStg.SEEK_DONTMOVE, ref v);

dStream.VariantPutEx
(Long lSeekPosition, Variant pvBuffer)

This performs the same operation as VariantPut, except that a long
integer (32 bytes) is used to store the length of strings instead of the
short integer (16 bytes) of VariantPut. This allows the writing of
strings longer than 32K in length. This method is not compatible with
VariandGet - string data written by VariantPutEx will not be read
correctly by VariantGet.

 ' VB
 Dim v as Variant

Page 111

 ' create a very long string
 v = String (100000, 65)
 ' write it, starting at the start of the stream
 dStrm.VariantPutEx 0, v

 ' VB.NET
 Dim v as Object
 v = New String (" ")
 v = v.PadLeft (1000000, "A"c)
 dStrm.VariantPutEx (0, v)

 // C#
 object v;
 v = new string (" ");
 v = v.PadLeft (1000000, "A"c)
 dStrm.VariantPutEx (0, v);

Which Methods Should I Use To Read And Write
Data?

Get and Put both access information in a stream in much the same
way that the Visual Basic Get and Put commands access information
in a file. This is the most efficient method because only the data itself
is placed into the stream. However, it means that you have to
remember the type and the length of every piece of information
exactly. VariantGet and VariantPut do not have this problem.
These methods identify the type and length of every piece of
information in the stream. This does result in some wasted space -
more if you are storing a number of individual items, less if you are
storing large arrays. GetString and PutString place information into
the stream in the form of strings. These are provided for compatibility
with the Visual Basic Sequential format, but their primary advantage
(creating a mostly human readable text file) is nullified by the binary
nature of Structured Storage files. GetRecord and SetRecord are also
provided, but are difficult to use. (The way in which user defined
types are formatted within Visual Basic prevents controls from
directly accessing them.) GetBlock and PutBlock are advanced
functions for those programmers dealing with large blocks of data.
GetPicture and PutPicture are used for Picture properties or
variables of type StdPicture only. If you are dealing with very long
strings (more than 32,000 characters) then you should use
VariantGetEx and VariantPutEx instead of VariantGet and VariantPut.

Page 112

dStream Object Properties (dwStg.dll)

dStream.EOF
This serves the same purpose as the Visual Basic EOF function - that
is, it returns True if the seek pointer is at the end of the stream. You
can use this to ensure that you do not read past the end of the stream
(remember that writing past the end of the stream, even if you set a
maximum size with SetSize, simply expands the stream). The
following is an example of how to use this function. Note that .NET
does not correctly recognize Boolean return types. You will need to
convert the type back to a Boolean type using the Convert.ToBoolean
() function.

' VB
If (Stream.EOF) Then
 ' Stop Reading.
End If

' VB.NET
If (Convert.ToBoolean (Stream.EOF) = True) Then
 ' Stop Reading.
End If

// C#
if (Convert.ToBoolean (Stream.EOF) == true)
{
 // Stop Reading.
}

dStream.IsValid
A Boolean value, True if the dStream represents a stream and False if
not. A dStream variable is not valid until it has been set using a
successful call to the CreateStream or OpenStream methods. Note that
.NET does not correctly recognize Boolean return types. You will
need to convert the type back to a Boolean type using the
Convert.ToBoolean () function.

dStream.Name
The name of the Object. Begins as the name of the stream itself. Use
the RenameElement method to rename the actual streams and
storages.

Page 113

ActiveX Storage Control Methods

Control.AllocateMemoryHandle () as Long
This creates a global sharable block of memory suitable for Structured
Storages. The block of memory uses 0 bytes initially, but expands to
accommodate any data written to the Structured Storage. You may
have more than one memory handle open at a time.

Dim hGlobal as Long

hGlobal = DwStorage.AllocateMemoryHandle()

Control.CompressStorageFile
(Filename as String)

After heavy usage, Compound Files become fragmented and can
contain several gaps that take up disk space. This method unfragments
and compresses the Compound File. This method is time intensive
and should not be used often, certainly not every time the file is
modified. When used on significantly compressed files it might
actually make the file larger.

DwStorage.CompressStorageFile
("C:\MyDocuments\report.doc")

Control.CreateStorageFile
(Filename as String, AccessMode as Long) as Object

Creates a new blank Compound File on the disk. The Filename
parameter should contain the name (with full path, as necessary) of the
file to create. The file is opened in the style dictated by the flags in the
AccessMode parameter. The possible flags are detailed in the
Constants section of this manual. If CreateStorageFile is successful,
a dStorage object is returned that represents the root directory of the
Structured Storage. If not, an error is triggered (see the Possible
Errors section for a description of such errors).

This method can be used to open files that are not in the Structured
Storage format. Include STG_CONVERT as one of the access mode
flags. The file will appear to have a single stream named "Contents",
which will contain the entire file contents. Simply reading from the
file will cause no changes, but modifying anything will change the file
into Structured Storage format permanently.

Page 114

Dim RootStorage as Object

' Create a file temp.stg if it does not exist
' or open it if it does. Let other programs
' access the file as well.
Set RootStorage = DwStorage.CreateStorageFile

("C:\temp.stg", STG_CREATE or STG_DIRECT or
STG_READWRITE or STG_SHARE_DENYNONE)

' If the file temp.stg exists, overwrite it
' if it does not exist, create it
Set RootStorage = DwStorage.CreateStorageFile

("C:\temp.stg", STG_OVERWRITE or STG_DIRECT
or STG_READWRITE or STG_SHARE_EXCLUSIVE)

Control.CreateStorageMemory
(Name as String, AccessMode as Long, hGlobal as
Long) as Object

Creates a new blank Structured Storage in memory at the location
specified by the global memory handle hGlobal. (See
AllocateMemoryHandle for information as to how to create one of
these handles.) The storage is given the name found in the Name
parameter, and is opened in the style dictated by the flags in the
AccessMode parameter. The possible flags are detailed in the
Constants section of this manual. Memory storages are useful as a
mode of organizing memory and allowing easy saving of data to disk.
The Structured Storage initially utilizes no memory but expands to
accommodate any data written to it.

If CreateStorageMemory is successful, a Storage Object is returned
that represents the root directory of the Structured Storage. If not, an
error is invoked. This storage can be copied to an existing storage on
disk using the CopyTo or MoveElementTo methods.

Dim hGlobal as Long
Dim RootStgInMem as Object
Dim RootStgOnFile as Object

hGlobal = DwStorage.AllocateMemoryHandle()
Set RootStgInMem = DwStorage.CreateStorageMemory

("MemStg", STG_CREATE Or STG_READWRITE Or
STG_DIRECT Or STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
...
' You can copy the entire contents to a file

Page 115

' with a command similar to this:
RootStgInMem.CopyTo RootStgOnFile
' After you are done with the storage:
Set RootStgInMem = Nothing
DwStorage.DeallocateMemoryHandle(hGlobal)

Control.DeallocateMemoryHandle
(hGlobal as Long)

This deallocates the block of memory allocated previously. Use this
method after the Structured Storage is cleared (after the object is set to
Nothing).

DwStorage.DeallocateMemoryHandle hGlobal

 Control.IsStorageFile
(Filename as String) as Boolean

Returns True if the file specified by the Filename parameter is a
Compound File, False if it is not. If something goes wrong, an error is
generated. Remember that non-Compound Files can still be opened as
Compound Files. (This is done by using CreateStorageFile, specifying
the file to be converted, and setting the STG_CONVERT flag. See the
STG_CONVERT flag in the Constants section of this manual for
more information.)

If (DwStorage.IsStorageFile ("C:\report.doc")) Then
 MsgBox "Yes, report.doc is a storage file"
EndIf

Control.IsStorageMemory
(hGlobal as Long) as Boolean

Returns True if the memory specified by the global memory handle
hGlobal contains a Structured Storage, False if not.

If (DwStorage.IsStorageMemory (hGlobal)) Then
 MsgBox "Yes, the memory referenced by handle

hGlobal does contain a storage"
EndIf

Page 116

Control.OpenStorageFile
(Filename as String, AccessMode as Long) as Object

Opens a Compound File on disk. The Filename parameter contains
the name (with full path, if needed) of the file to open. The file is
opened in the style dictated by the flags in the AccessMode parameter.
The possible flags are detailed in the Constants section of this manual.
If OpenStorageFile is successful, a Storage Object is returned that
represents the root directory of the Structured Storage. If not, an error
is generated.

Dim RootStorage as Object

' Open the file temp.stg for reading and
' writing and do not let anyone else access
' it.
Set RootStorage = DwStorage.OpenStorageFile

("C:\temp.stg", STG_DIRECT or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

' Open the file temp.stg for reading only.
' Let anyone else read and write to the file.
Set RootStorage = DwStorage.OpenStorageFile

("C:\temp.stg", STG_DIRECT or STG_READ or
STG_SHARE_DENYNONE)

Control.OpenStorageMemory
(Name as String, AccessMode as Long, hGlobal as
Long) as Object

Opens an already existing Structured Storage at the location in
memory specified by the global memory handle hGlobal . It is opened
in the style dictated by the flags in the AccessMode parameter. The
possible flags are detailed in the Constants section of this manual.
The Structured Storage expands to accommodate any data written to it.
If OpenStorageMemory is successful, a Storage Object is returned
that represents the root directory of the Structured Storage. This
storage can be copied to disk using the CopyTo or MoveElementTo
methods.

Dim RootStgInMem as Object

' In this case, we probably get hGlobal from
' another task or module.

Page 117

Set RootStgInMem = DwStorage.OpenStorageMemory
("MemStg", STG_READWRITE Or STG_DIRECT Or
STG_SHARE_EXCLUSIVE, hGlobal)

' Now you can act on RootStgInMem just
' like any other storage.
...
' After you are done with the storage:
Set RootStgInMem = Nothing

Page 118

ActiveX Storage Object Methods

StorageObject.Commit
(CommitFlags as Long)

If the storage is opened in Transacted mode (see Access Flags in the
Constants section of this manual), this procedure makes permanent all
changes made to the storage since it was opened or since the last
Commit. It makes reverting any changes up to this point impossible.
This call is also needed if the storage is opened in Direct mode to
flush the buffer. CommitFlags describes how the storage should be
committed (see the Constants section of this manual).

Dim RootStg as dStorage
' this performs a normal commit
RootStg.Commit 0

StorageObject.CopyTo
(DestinationStorage as Object)

Copies the contents of this storage to the already opened Storage
Object passed to the DestinationStorage parameter.

Dim RootStg as dStorage
Dim backupStg as dStorage
' Copy the entire contents of one Storage file
' into the backupStg storage (which may be in
' another file or in memory).
RootStg.CopyTo backupStg

StorageObject.CreateStorage
(StorageName as String, AccessMode as Long) as
Object

Creates a sub-Storage in this Storage. The Filename parameter
contains the name of the storage to be constructed. The file is opened
in the style dictated by the flags in the AccessMode parameter. The
possible flags are detailed in the Constants section of this manual. If
CreateStorage is successful, a Storage Object is returned that
represents the newly created storage. If not, an error is generated.

Dim RootStg as Object
Dim newStorage as Object
' Create a storage named DataBlocks in the
' RootStg storage if one does not exist, or

Page 119

' open the storage named DataBlocks if it
' does. This storage (like all non-root
' storages under OLE Structured Storage must
' be) cannot be accessed by other applications
' while the newStorage object exists.
Set newStorage = RootStg.CreateStorage

("DataBlocks", STG_CREATE or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

' When you are done with the storage, get rid
' of the object.
Set newStorage = Nothing

StorageObject.CreateStream
(StreamName as String, AccessMode as Long) as
Object

Creates a sub-stream in this storage. The Filename parameter contains
the name of the stream to be constructed. The file is opened in the
style dictated by the flags in the AccessMode parameter. The possible
flags are detailed in the Constants section of this manual. If
CreateStream is successful, a Stream Object is returned that
represents the newly created stream. If not, an error is generated.

Dim RootStg as Object
Dim subStream as Object
' Create a stream named Data1 in the RootStg
' storage if one does not exist, or open the
' stream named Data1 if it does. This stream
' (like all streams under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the newStream object
' exists.
Set subStream = RootStg.CreateStream ("Data1",

STG_CREATE or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

' When you are done with the stream, get rid
' of the object.
Set newStream = Nothing

StorageObject.DestroyElement
(Name as String)

Deletes the named storage or stream from this storage. If the element
being deleted is a storage, then all the elements in that storage are also
deleted. If there is any problem, an error is sent.

Page 120

' Deletes the stream or storage named Data1
' in the RootStg storage.
RootStg.DestroyElement "Data1"

StorageObject.Directory
(Index as Long, Type as Integer) as String

This method can be used to obtain a catalogue of all storages and
streams contained in this storage. Each call to Directory returns the
name of the storage or stream specified by the Index. The Type
integer is changed to reveal the type of the element:
STG_TYPE_STREAM if the returned name represents a stream,
STG_TYPE_STORAGE if the returned name represents a storage,
and STG_TYPE_NONE if there are no more elements.

' enumerate through all the elements in the
' RootStg storage. After the loop is done, the
' variable i will contain the count of elements
i = 0
Do

ElementName = RootStg.Directory(i, FileType)
If FileType = STG_TYPE_NONE Then Exit Do
If FileType = STG_TYPE_STORAGE Then
 ' ElementName is a storage
ElseIf FileType = STG_TYPE_STREAM Then
 ' ElementName is a stream
End If
i = i + 1

Loop

StorageObject.EnumDirectory
(RelativePos as Long, Type as Integer) as String

This method can be used to obtain a catalogue of all storages and
streams contained in this storage. It is faster than the normal
Directory method, but is less flexible. Each call to EnumDirectory
returns the name of the first storage or stream if RelativePos is equal
to 0, or the next storage or stream if RelativePos is not. The Type
integer is changed to reveal the type of the element:
STG_TYPE_STREAM if the returned name represents a stream,
STG_TYPE_STORAGE if the returned name represents a storage,
and STG_TYPE_NONE if there are no more elements.

' enumerate through all the elements in the
' RootStg storage. After the loop is done, the

Page 121

' variable i will contain the count of elements
i = 0
ElementName = RootStg.EnumDirectory(0, FileType)
Do

If FileType = STG_TYPE_NONE Then Exit Do
If FileType = STG_TYPE_STORAGE Then
 ' ElementName is a storage
ElseIf FileType = STG_TYPE_STREAM Then
 ' ElementName is a stream
End If
ElementName = RootStg.EnumDirectory(1,

FileType)
i = i + 1

Loop

StorageObject.GetCreationDate () as Date
Obtains the date this storage was created.

 Dim dt as Date
dt = RootStg.GetCreationDate

StorageObject.GetLastModifyDate () as Date
Obtains the date this storage was last changed in any way.

 Dim dt as Date
dt = RootStg.GetLastModifyDate

StorageObject.GetLastAccessDate () as Date
Obtains the date this storage was last read. Not all file systems carry
this information -- in which case GetLastAccessDate will return a
zero as the last date of access.

 Dim dt as Date
 dt = RootStg.GetLastAccessDate
 If (dt = CDate(0)) Then
 MsgBox "Does not support Last Access time"
 Else
 MsgBox "Last Access: " & CDate (dt)
EndIf

Page 122

StorageObject.MoveElementTo
(ElementName as String, NewName as String,
DestStorage as Object, MoveFlags as Long)

Copies or moves an element from within this storage to the already
open storage object passed to the DestStorage parameter. The
element can be renamed by putting a different name in NewName . If
NewName is Null, then the old name is kept. If MoveFlags is
STG_MOVEMOVE then the original is erased (a move); if
MoveFlags is STG_MOVECOPY then the original is not erased (a
copy).

 ' Copy the stream Data1 in the RootStg storage
 ' into the storage named DataBackup. Keep the
 ' same filename.
 RootStg.MoveElementTo "Data1", vbNullString,

DataBackup, STG_MOVECOPY
 ' Move the stream Data1 in the RootStg storage
 ' into the storage named DataBackup. Change
 ' the filename to Yesterday1.
RootStg.MoveElementTo "Data1", "Yesterday1",

DataBackup, STG_MOVEMOVE

StorageObject.OpenStorage
(StorageName as String, AccessMode as Long) as
Object

Opens a storage that is in the same file as this storage. The Filename
parameter contains the name (and path, as necessary) of the storage to
open. Like changing directories in DOS, the path can be relative to
the root (with a leading backslash (“\”)) or relative to this storage
(without the leading backslash). The storage is opened in the style
dictated by the flags in the AccessMode parameter. The possible flags
are detailed in the Constants section of this manual. If OpenStorage
is successful, a Storage OLE Object is returned that represents the
newly opened storage. If not, an error is generated.

Dim RootStg as Object
Dim subStorage as Object
' Open a storage named DataBlocks in the
' RootStg storage. This storage (like all
' non-root storages under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the subStorage object
' exists.

Page 123

Set subStorage = RootStg.OpenStorage ("DataBlocks",
STG_DIRECT or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

' When you are done with the storage, get rid
' of the object.
Set subStorage = Nothing

StorageObject.OpenStream
(StreamName as String, AccessMode as Long) as
Object

Opens a sub-stream of this storage. The Filename parameter contains
the name of the stream to open. The stream is opened in the style
dictated by the flags in the AccessMode parameter. The possible flags
are detailed in the Constants section of this manual. If OpenStream
is successful, a Stream OLE Object is returned that represents the
newly opened stream. If not, an error is generated.

Dim RootStg as Object
Dim subStream as Object
' Create a stream named Data1 in the RootStg
' storage if one does not exist, or open the
' stream named Data1 if it does. This stream
' (like all streams under OLE Structured
' Storage must be) cannot be accessed by other
' applications while the newStream object
' exists.
Set subStream = RootStg.OpenStream ("Data1",

STG_READWRITE or STG_SHARE_EXCLUSIVE)
' When you are done with the stream, get rid
' of the object.
Set subStream = Nothing

StorageObject.RenameElement
(OldName as String, NewName as String)

Renames one of the storages or streams in this storage. Compound
File names are limited to thirty-two characters in length.

' This renames the element named Data1 in
' storage RootStg to ReserveData1
RootStg.RenameElement "Data1", "ReserveData1"

Page 124

StorageObject.Revert ()
When this method is called, if the storage is opened in Transacted
mode, then all changes made to the storage since it was created or
since the last Commit are discarded. Revert has no effect in Direct
mode.

 Dim RootStg as Object
 Dim subStream as Object

 ' Open an existing file in Transacted mode.
 Set RootStg = dwStorage1.OpenStorageFile

("C:\file.stg", STG_TRANSACTED or STG_READWRITE
or STG_SHARE_EXCLUSIVE)

 ' Create a new stream.
 Set subStream = RootStg.CreateStream ("Data1",

STG_CREATE or STG_DIRECT or STG_READWRITE or
STG_SHARE_EXCLUSIVE)

 ' Now write the stream. If the RootStg was
 ' Commited, it would contain a blank stream
 ' named "Data1".
 subStream.Flush 0
 Set subStream = Nothing
 ' This undoes all the changes I made to the
 ' RootStg storage - the stream subStream does
 ' not get written to the file.
 RootStg.Revert

StorageObject.SetElementTimes
(Element as String, CreationDate as Date,
LastModifyDate as Date, LastAccessDate as Date)

Sets any or all of the dates for a sub-storage of the storage named in
Element (streams do not carry any date information in the current
implementation of OLE2). Use Null for any date you do not want
changed. LastAccessDate is not saved on FAT or NTFS file systems,
so changing it might not be useful.

Dim Date1 as Date
Dim Date2 as Date

Date1 = Now
Date2 = Now
' Set the creation and last modify dates for
' the storage named "DataBlock1" in storage
' RootStg to the current date and time. I only
' pass a zero for the last access time.

Page 125

RootStg.SetElementTimes "DataBlock1", Date1, Date2,
CDate(0)

Summary Information Property Set Functions
These functions deal with the Summary Information stream in the
relevant Storage object.

The following is an example of how you would use these methods to
edit a string in the Summary Information Property set.

' if the SummaryInformation stream exists, load
' its information
If (RootStorage.siOpenSummaryInfo = True) Then
 ' get the title
 titleString = RootStorage.siGetTitle()
 titleString = titleString & " version 2"
 ' set the new title
 RootStorage.siSetTitle titleString
 ' save the changes to the
 ' SummaryInformation stream
 RootStorage.siSaveSummaryInfo
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 RootStorage.Commit STG_DEFAULT
End If

StorageObject.siSetTitle
(Title as String)
Sets the title of the document.

StorageObject.siGetTitle () as String
Returns the title of the document.

StorageObject.siSetSubject
(Subject as String)
Sets the subject of the document.

StorageObject.siGetSubject () as String
Returns the subject of the document.

Page 126

StorageObject.siSetAuthor
(Author as String)
Sets the author of the document.

StorageObject.siGetAuthor () as String
Returns the author of the document.

StorageObject.siSetKeywords
(Keyword as String)
Sets key words related to the subject of the document. These
keywords are typically used in search routines.

StorageObject.siGetKeywords () as String
Returns keywords relating to the subject of the document.

StorageObject.siSetComments
(Comment as String)
Sets the comment field. This area might be used for making notes to
oneself or others.

StorageObject.siGetComments () as String
Returns the comment field.

StorageObject.siSetLastAuthor
(LastAuthor as String)
Sets the last person to have modified the document.

StorageObject.siGetLastAuthor () as String
Returns the last person who has modified the document.

StorageObject.siIncrementRevNum ()
Increments the number of times a document has been revised.

StorageObject.siSetRevNum
(TimesRevised as Long)
Sets the number of times the document has been revised.

Page 127

StorageObject.siGetRevNum () as Long
Returns the number of times the document has been revised.

StorageObject.siStartEditTimer ()
This starts an internal timer. It is useful for determining how long a
document has been opened.

StorageObject.siAddEditTimerToTotal ()
Adds the amount of time since siStartEditTimer was called to the
field recording the total amount of time the document has been
opened.

StorageObject.siSetTotalEditTime
(Minutes as Long)
Sets the total amount of time a document has been open, in minutes.

StorageObject.siGetTotalEditTime () as Long
Returns the total amount of time a document has been open since it
was created, in minutes.

StorageObject.siRecordPrintDate ()
Sets the field containing the last time this document was printed to the
current date and time.

StorageObject.siGetLastPrintDate () as Date
Returns the last time the document was printed.

StorageObject.siRecordCreateDate ()
Sets the field containing the time the document was created to the
current date and time.

StorageObject.siGetCreateDate () as Date
Returns the time the document was created.

StorageObject.siRecordSaveDate ()
Sets the field containing the last time this document was saved to the
current date and time.

Page 128

StorageObject.siGetLastSaveDate () as Date
Returns the last time the document was saved.

StorageObject.siSetNumberOfPages
(NumPages as Long)
Sets the number of pages.

StorageObject.siGetNumberOfPages () as Long
Returns the number of pages.

StorageObject.siSetNumberOfWords
(NumWords as Long)
Sets the number of words.

StorageObject.siGetNumberOfWords () as Long
Returns the number of words.

StorageObject.siSetNumberOfCharacters
(NumChars as Long)
Sets the number of characters.

StorageObject.siGetNumberOfCharacters () as Long
Returns the number of characters.

StorageObject.siSetApplication
(AppName as String)
Sets the name of the application that created the document.

StorageObject.siGetApplication () as Long
Returns the title of the application that created the document.

StorageObject.siSetTemplate
(Template as String)
Sets the filename of the template used in the document.

Page 129

StorageObject.siGetTemplate () as String
Returns the filename of the template used in the document.

StorageObject.siSetSecurity
(SecurityLevel as Long)
Sets the recommended security level of the document. Note that this
does not actually supply any security, but only serves as a reminder to
the application that reads the file. The actions based on the values are
as follows:

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document. Other programs cannot view or edit this
document.

2 Read-Only recommend. The user will be warned if there is
any attempt to edit the document.

3 Read-Only enforced. Does not allow any changes to the
document.

4 Locked for Annotations. Does not allow any changes to the
document.

StorageObject.siGetSecurity () as Long
Returns the security level of the document. Your program should
behave as follows:

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document unless you know what type of password
protection is involved, and the password given is correct.

2 Read-Only recommend. Warn the user if there is any
attempt to edit the document.

3 Read-Only enforced. Do not allow any changes to the
document.

4 Locked for Annotations. Do not allow any changes to the
document.

Page 130

StorageObject.siOpenSummaryInfo () as Boolean
Retrieves information from the SummaryInformation Property Set
stream in the root storage of this Compound File. If there is no
SummaryInformation Property Set, siOpenSummaryInfo() generates
an error. Before the siOpenSummaryInfo() is called, using any
function beginning with “siGet“ will return the default value, which
will be either zero or a blank string depending upon the type.

StorageObject.siSaveSummaryInfo ()
Saves any changes to the SummaryInformation Property Set stream in
the root storage. Just as with any stream, these changes are not
actually written to disk until the root storage object’s Commit method
is called.

' Create a new storage and create a new SI
 Dim dwStg as Object

 Set dwStg = RootStorage.CreateStorage ("siTest",
STG_CREATE or STG_READWRITE Or STG_DIRECT Or
STG_SHARE_EXCLUSIVE)

 dwStg.dsiSetNumWords 412
 ' You do not have to set all properties – when you
 ' save, all the rest of the properties will be
 ' saved with their default values.
 dwStg.dsiSaveSummaryInfo
 dwStg.Commit 0
 Set dwStg = Nothing

Document Summary Information Property Set
Functions

These functions deal with the Document Summary Information stream
in the relevant Storage object. Currently, the ActiveX control cannot
write to the Document Summary Information stream, nor can it access
the user-defined properties.

Here is an example of how you would use these methods to read a
string in the Document Summary Information Property set:

' if the DocumentSummaryInformation stream
' exists, load its information
If (RootStorage.dsiOpenSummaryInfo = True) Then
 ' get the name of the manager
 mngString = RootStorage.dsiGetManager()

Page 131

End If

StorageObject.dsiGetScaleCrop () as Boolean
Returns True if this document is supposed to be scaled to the current
dimensions of the window, False if it is to be cropped to the
dimensions of the window.

StorageObject.dsiGetLinksUpToDate () as Boolean
Returns True if all the links are up to date.

StorageObject.dsiGetCategory () as String
Returns the category of the document.

StorageObject.dsiGetPresentationTarget as String
Returns the presentation target of the document.

StorageObject.dsiGetManager () as String
Returns the manager of the document writer.

StorageObject.dsiGetCompany () as String
Returns the name of the company with which the document is
associated.

StorageObject.dsiGetNumBytes () as Long
Returns the size of the document in number of bytes.

StorageObject.dsiGetNumLines () as Long
Returns the number of lines in the document.

StorageObject.dsiGetNumParagraphs () as Long
Returns the number of paragraphs in the document.

StorageObject.dsiGetNumSlides () as Long
Returns the number of slides in the document.

StorageObject.dsiGetNumNotes () as Long
Returns the number of notes in the document.

Page 132

StorageObject.dsiGetNumHiddenSlides () as Long
Returns the number of hidden slides in the document.

StorageObject.dsiGetNumMMClips () as Long
Returns the number of multimedia clips in the document.

StorageObject.dsiOpenDocSummaryInfo () as
Boolean
Retrieves information from the Document Summary Information
Property Set stream. If there is no Document Summary Information
Property Set, dsiOpenDocSummaryInfo returns False. Before the
dsiOpenDocSummaryInfo method is called, or if there is no
Document Summary Information stream, using any "dsi" method
beginning with “Get“ will return the default value, which will be either
zero or a blank string depending on the type. To make a new
Document Summary Information stream where one does not yet exist,
set the above properties to the values you want and then call the
dsiSaveDocSummaryInfo method.

Page 133

ActiveX Storage Object Properties

StorageObject.Name
The name of the storage object. Begins as the name of the storage
itself. For root storages, the storage name is the same as the filename.
Use the RenameElement method to rename the actual streams and
storages, or Windows file system methods to rename the file.

' If I have the object, I might still need the
' name for some function calls.
RootStg.RenameElement subStg.Name, "NewName"

Page 134

ActiveX Stream Object Methods

StreamObject.Flush
(CommitFlags as Long)

In the current implementation of OLE2, streams can only be opened in
Direct mode. Flush flushes any internal buffers (although this only
speeds up what would have been done by a few seconds in any case).
CommitFlags illustrates how the stream should be committed. (See
the Constants section of this manual.)

' Perform a normal flush of buffers
Stream.Flush 0

StreamObject.Get
(SeekPosition as Long, Buffer as Variant)

Reads information in Visual Basic binary form from this stream. The
SeekPosition parameter specifies the position in number of bytes from
the start of the file, beginning with zero. Use the constant
SEEK_DONTMOVE to read at the location specified by the last
Seek or at where the last Get or Put operation concluded. The amount
of data read depends upon the size and type of the variant Buffer.

' Read in two 10-character strings from the start
' of the stream (the first 20 bytes). No matter what
' the data originally meant, Get will interpret it
' as the type of the Variant passed to it.
Dim Buffer as Variant
' Pre-set the variant to 10 characters
Buffer = String (10, 0)
Stream.Get 0, Buffer
Debug.Print Buffer
' Now get the second 10 character string
Stream.Get SEEK_DONTMOVE, Buffer
Debug.Print Buffer

Page 135

StreamObject.GetBlock
(SeekPosition as Long, NumOfBytes as Long) as Long

GetBlock can be used to get a large block of data from a stream. This
may be useful if you are trying to manipulate data in a stream larger
than the limits of what a string or array can contain. It returns a
pointer to an internally allocated block holding the data from the
stream starting at SeekPosition. If there is any problem in allocating
the block, the return value is 0. If NumOfBytes is larger than the
number of bytes in the stream, the buffer from the end of the data
onward is filled with zeroes.

The internal buffer is automatically deleted when the stream object is
destroyed (for example, when it is set to Nothing or set to another
stream), so be sure to keep the stream object as long as you are
accessing the memory block. Using this method will release any
previously allocated buffer.

' Points to the block of memory where I load
' the data from the stream.
Dim BlockPtr As Long
' Byte array where I will copy the data. This
' will make it easier to manage in Visual Basic
Dim datablock() As Byte

' Get all the data in the stream.
BlockPtr = stream.GetBlock(0, stream.GetSize())
' Adjust the size of the byte array to that of
' the block I just read.
ReDim datablock(stream.GetSize())

' Copy the data from the pointer to the byte
' array. The "stg*" functions are part of the
' dwAddr16.dll and dwAddr32.dll support libraries.
stgCopyDataBynum BlockPtr,

stgGetAddressForObject(datablock(0)),
stream.GetSize()

' Now all the data in the stream is in the
' datablock byte array. After you are done
' with the data, write it back:
stream.PutBlock 0, stream.GetSize(),

stgGetAddressForObject(datablock(0))

Page 136

StreamObject.GetPicture () as Picture
GetPicture is used to read a picture from the stream. See PutPicture
for information on how the picture is stored into a stream. GetPicture
is compatible with the Picture property of forms, picture boxes, image
boxes and other controls.

' Get the picture in stream PicStream
' Picture1 is a picture box control
Picture1.Picture = PicStream.GetPicture ()

StreamObject.GetRecord
(RecordNumber as Long, RecordSize as Long,
RecordAddress as Long)

(Currently available in 16 bit Windows only. See DWADDR32.dll for
32 bit Windows.)

Reads a block of information from the record RecordNumber of size
RecordSize. The RecordNumber parameter specifies the number of
records from the start of the file, beginning with zero. All records in
the stream must be of the same size and must match the size of the
record exactly in order to prevent corruption of data. Use the constant
SEEK_DONTMOVE to read at the location specified by the last
Seek or where the last GetRecord or PutRecord terminated. If you
do use Seek , be sure to seek to a whole multiple of the size of the
record. You can get the address of a record by using the
dwGetAddressForRecord function from the DWADDR16.DLL.

StreamObject.GetSize() as Long
Returns the size, in bytes, of this stream.

' Get the size in number of bytes of a stream
NumBytes = PicStream.GetSize

StreamObject.GetString
(StringData as String)

Obtains a string from the Visual Basic Sequential formatted stream.
The string returned is changed to the correct size. You will need to
convert the string to the correct type using Visual Basic conversion
functions. The seek pointer should be pointing to the start of the item
to retrieve. After GetString is complete, the seek pointer will point to
the next item.

Page 137

' If the next data item in the stream is the
' integer “123”, the statement
Stream.GetString InputString
' will return the string “123”, which you can
' convert to an integer with:
InputInteger = CInt(InputString)

StreamObject.Put
(SeekPosition as Long, Buffer as Variant)

Writes information to this stream in the same way Visual Basic writes
Binary data. The SeekPosition parameter specifies the position in
number of bytes from the start of the file, beginning with zero. Use
the constant SEEK_DONTMOVE to write at the location specified
by the last Seek or at where the last Get or Put concluded. The
amount of information written depends upon the length of the data in
the variant Buffer. If the data is written past the end of the stream, the
stream automatically expands.

' Save a 10-character string at the start of
' the stream.
Dim Buffer as Variant
Buffer = "abcdefghij"
Stream.Put 0, Buffer
' Save a long integer to the place in the
' stream where the seek pointer currently is.
Buffer = 123456
Stream.Put SEEK_DONTMOVE, Buffer

StreamObject.PutBlock
(SeekPosition as Long, NumOfBytes as Long, Pointer
as Long)

PutBlock is used to write a large block of data to a stream. This may
be useful if you are trying to manipulate data larger than the limits of
what a string or array can contain. The SeekPosition parameter
specifies the position in number of bytes from the start of the file,
beginning with zero. Use the constant SEEK_DONTMOVE to write
to the location specified by the last Seek or at where the last stream
method concluded. NumOfBytes specifies the number of bytes,
starting at memory location Pointer, that are written to the stream.
The dwAddress .DLL’s come with functions for obtaining pointers
and manipulating data within the block.

See GetBlock for a sample.

Page 138

StreamObject.PutPicture (Pic as Picture)
PutPicture is used to write a picture to the stream. The picture will
take up the entire stream, and it will not be possible to write other
information to the stream without corrupting the picture. This is
compatible with the Picture property of forms, picture boxes, image
boxes and other controls.

' Picture1 is a picture box control
PicStream.PutPicture Picture1.Picture

StreamObject.PutRecord
(RecordNumber as Long, RecordSize as Long,
RecordAddress as Long)

(Currently available in 16 bit Windows only.)

Writes a block of information to the record RecordNumber of size
RecordSize. The RecordNumber parameter specifies the number of
records from the start of the file, beginning with zero. All records in
the stream must be the same size and must match the size of the record
exactly in order to prevent the corruption of data. Use the constant
SEEK_DONTMOVE to write at the location specified by the last
Seek or at where the last GetRecord or PutRecord concluded. If you
do use Seek , be sure to seek to a whole multiple of the size of the
record. You can obtain the address of a record by using the
GetAddressForRecord function from the DWADDR16.DLL.

StreamObject.PutString
(StringData as String, VarType as Integer, Comma as
Integer)

This writes a string to the stream in Visual Basic Sequential format.
VarType should contain the type of the variable (obtained from
Visual Basic with the VarType() function). If Comma is True, then
commas are used to separate items; if not, then a Line Feed/Carriage
Return is used. The stream automatically expands if the data is written
past the end of the file.

' Write a string to the stream, with a comma
' afterwards
Dim StrData as String
StrData = "first string"

Page 139

Stream.PutString StrData, VarType(StrData), -1
' Write a number without a comma
StrData = CStr(123)
Stream.PutString StrData, VarType(123), 0

StreamObject.Seek
(Position as Long, SeekFlag as Long) as Long

Sets the position at which the next Put or Get will be done. The
Position parameter specifies the number of bytes from the location
specified by the SeekFlag parameter. (See SeekFlag in the Constants
section of this manual.)

' Set seek pointer to 100 bytes from the start
' of the stream.
ret = Stream.Seek (100, STG_STREAM_SEEK_SET)
' Now this gets the 101th byte of information
Dim bt as Byte
Dim v as Variant
v = bt ' set the variant to act like a byte
Stream.Get SEEK_DONTMOVE, v

Seek returns a long integer which contains the current position of the
seek pointer. You can locate the current position of the seek pointer
with this line:

CurrPos = Stream.Seek (0, STG_STREAM_SEEK_CUR)

StreamObject.SetSize
(NewSize as Long)

This sets the probable maximum size of this storage. The Compound
File will then allocate the appropriate amount of (usually contiguous)
memory within the file. This improves the efficiency of the entire file
without limiting the size of the stream. You cannot set the size of a
stream smaller than the data already stored within it.

' now the stream is 1000 bytes long
Stream.SetSize 1000

Page 140

StreamObject.VariantGet
(SeekPosition as Long, Buffer as Variant)

Reads information in Visual Basic Variant Binary form from this
stream (that is, the way variants are read from binary files). The
SeekPosition parameter specifies the position in number of bytes from
the start of the file, beginning with zero. Use the constant
SEEK_DONTMOVE to read at the location specified by the last
Seek or at where the last VariantGet or VariantPut concluded. The
amount of data read depends upon the size and type of the data written
before, because the type information is saved in the file with the data.
The variant Buffer is automatically converted to the correct type.

StreamObject.VariantPut
(SeekPosition as Long, Buffer as Variant)

Writes information to this stream in the way Visual Basic writes
variants to binary data files. The SeekPosition parameter specifies the
position in number of bytes from the start of the file, beginning with
zero. Use the constant SEEK_DONTMOVE to write at the location
specified by the last Seek or at where the last VariantGet or
VariantPut concluded. The amount of information written depends
upon the length of the data in the variant Buffer. If the data is written
past the end of the stream, the stream automatically expands.

Dim v as Variant
Dim ByteArray as Byte(10)
Dim j as Integer

' Write a string to the start of the stream
v = "abcdefghij"
Stream.VariantPut 0, v
' Write a 10-byte byte array after the string
For j = 0 to 9
 ByteArray(j) = j
Next j
v = ByteArray
Stream.VariantPut SEEK_DONTMOVE, v

' Now read the string at the start of Stream
Stream.VariantGet 0, v
' This will print "abcdefghij" and the vartype
' of a string. Note that you do not have to
' pre-set the variant to any type - it is
' automatically set.

Page 141

Debug.Print v, VarType(v)
' Now read the byte array after the string
Stream.VariantGet SEEK_DONTMOVE, v
' Print the first byte in the byte array ("0")
Debug.Print v(0)

Which Methods Should I Use To Read And Write
Data?

Get and Put both access information in a stream in much the same
way that the Visual Basic Get and Put commands access information
in a file. This is the most efficient method because only the data itself
is placed into the stream. However, it means that you have to
remember the type and the length of every piece of information
exactly. VariantGet and VariantPut do not have this problem.
These methods identify the type and length of every piece of
information in the stream. This does result in some wasted space -
more if you are storing many individual items, less if you are storing
large arrays. GetString and PutString place information into the
stream in the form of strings. These are provided for compatibility
with the Visual Basic Sequential format, but their primary advantage
(creating a mostly human readable text file) is nullified by the binary
nature of Structured Storage files. GetRecord and SetRecord are also
provided but are difficult to use. (The way in which user defined types
are formatted within Visual Basic prevents controls from directly
accessing them.) GetBlock and PutBlock are advanced functions for
those programmers dealing with large blocks of data. GetPicture and
PutPicture are used for Picture properties or variables of type
StdPicture only.

Page 142

ActiveX Stream Object Properties

StreamObject.EOF
This serves the same purpose as the Visual Basic EOF function - that
is, it returns True if the seek pointer is at the end of the stream. You
can use this to ensure that you do not read past the end of the stream.
(Remember that writing past the end of the stream, even if you set a
maximum size with SetSize, simply expands the stream). The
following is an example of how to use this function.

Dim IsAtEndOfStream as Boolean

IsAtEndOfStream = Stream.EOF
If (IsAtEndOfStream) Then

' Do nothing.
Else

' I can read more information.
End If

StreamObject.Name
The name of the stream object. Begins as the name of the stream
itself. Use the RenameElement method to rename the actual streams
and storages.

Page 143

Functions in the DWADDR16.DLL
(16 bit Windows only)

dwGetAddressForRecord
Declare Function dwGetAddressForRecord& Lib "dwaddr16.dll"
(Record as Any). Returns the address of the specified record as a long
integer. These addresses often change, so it should only be used right
after this call, and not kept for any length of time. Use with
GetRecord and PutRecord. When using this to get pointers to user
defined types, try getting the address of the first element in the record:

Private Type x
 a as integer
 b as date
End Type

Dim RecordX as x
ValidAddr = dwGetAddressForRecord (RecordX.a)

dwGetBytesFromRecord
Declare Sub dwGetBytesFromRecord Lib
"dwaddr16.dll" (ByVal RecordSize As Integer,
Record As Any, Bytes As Variant)
Copies the information in the user-defined type Record into the array
of bytes held in the variant Bytes. Bytes need not be defined.
RecordSize is the length, in bytes, of the entire user-defined type.
You can then use Put or VariantPut to save the array to a stream.

dwGetRecordFromBytes
Declare Sub dwGetRecordFromBytes Lib
"dwaddr16.dll" (ByVal RecordSize As Integer,
Record As Any, Bytes As Variant)
Copies the information held in the array of bytes in the variant Bytes
into the user defined type record. RecordSize is the length in bytes of
the entire user defined type. Verify that the Bytes variant array
contains as many bytes as are needed to fill the record structure. In
order to use this function to read a record from a stream, first read the
required number of bytes into an array of bytes using Get or
VariantGet. Then you can use this function to populate the record
properly.

Page 144

stgCopyData, stgCopyDataBynum
Private Declare Sub stgCopyData Lib
"dwaddr16.dll"(ByVal source As Any, ByVal dest
As Any, ByVal NumBytes As Any)
Private Declare Sub stgCopyDataBynum Lib
"dwaddr16.dll" Alias "stgCopyData" (ByVal
source&, ByVal dest&, ByVal NumBytes%)
These subroutines allow you to copy blocks of memory from one place to
another. Use the "Bynum" version with the stgGetAddressForObject function
for a higher degree of safety.

stgGetAddressForObject
Declare Function stgGetAddressForObject & Lib
"dwaddr16.dll" alias "dwGetAddressForRecord"
(Object as Any)
Returns the address of the specified variable as a long integer. These
addresses often change, so it should only be used right after this call, and not
kept for any length of time. Although you can get pointers to many types of
Visual Basic variables, not all the pointers will actually be meaningful. For
example, pointers to strings may not actually point to the place where the
string is located. When using this to get pointers to arrays, try getting the
address of the first element in the array:

Dim ary(20) as long
ValidAddr = stgGetAddressForObject (ary(0))

Page 145

Functions in the DWADDR32.DLL
(32 bit Windows only)

dwGetBytesFromRecord
Declare Sub dwGetBytesFromRecord Lib "dwaddr32.dll" (ByVal
RecordSize As Integer, Record As Any, Bytes As Variant)Copies the
information in the user-defined type Record into the array of bytes
held in the variant Bytes . Bytes need not be defined. RecordSize is
the length, in bytes, of the entire user-defined type. You can then use
Put or VariantPut to save the array to a stream.

dwGetRecordFromBytes
Declare Sub dwGetRecordFromBytes Lib
"dwaddr32.dll" (ByVal RecordSize As Integer,
Record As Any, Bytes As Variant)
Copies the information held in the array of bytes in the variant Bytes
into the user defined type record. RecordSize is the length in bytes of
the entire user defined type. Verify that the Bytes variant array
contains as many bytes as are needed to fill the record structure. In
order to use this function to read a record from a stream, first read the
required number of bytes into an array of bytes using Get or
VariantGet. Then you can use this function to populate the record
properly.

stgCopyData, stgCopyDataBynum
Private Declare Sub stgCopyData Lib
"dwaddr32.dll" (ByVal source As Any, ByVal dest
As Any, ByVal NumBytes As Any)
Private Declare Sub stgCopyDataBynum Lib
"dwaddr32.dll" Alias "stgCopyData" (ByVal
source&, ByVal dest&, ByVal NumBytes%)
These subroutines allow you to copy blocks of memory from one
place to another. Use the "Bynum" version with the
stgGetAddressForObject function for a higher degree of safety.

Page 146

stgGetAddressForObject
Declare Function stgGetAddressForObject & Lib
"dwaddr32.dll" alias "dwGetAddressForRecord"
(Object as Any)
Returns the address of the specified variable as a long integer. These
addresses often change, so it should only be used right after this call,
and not kept for any length of time. Although you can get pointers to
many types of Visual Basic variables, not all the pointers will actually
be meaningful. For example, pointers to strings may not actually point
to the place where the string is located. When using this to get
pointers to arrays, try getting the address of the first element in the
array:

 Dim ary(20) as long
 ValidAddr = stgGetAddressForObject (ary(0))

Page 147

Constants

Access Flags
Use these with CreateStorageFile, OpenStorageFile,
CreateStorageMemory, OpenStorageMemory, CreateStorage,
OpenStorage, CreateStream, or OpenStream.

any one of:
STG_READ = 0

Read from, but not write to the element. Put and
other routines that write information will still work,
but any attempt to Flush or Commit will result in an
error. With STG_DIRECT set, this is faster and
takes less memory and disk space than almost any
other way of opening a file.

 STG_WRITE = 1

Write to, but not read from the element.

 STG_READWRITE = 2

Allows both reading and writing to the element.

any one of:
 STG_SHARE_DENY_READ = 30 (hex)

Does not allow any other to read from this element.

 STG_SHARE_DENY_WRITE = 20 (hex)

Does not allow any other to write to this element.

 STG_SHARE_EXCLUSIVE = 10 (hex)

Does not allow any other to access this element in
any way. All child streams and storages must
have this flag set.

 STG_SHARE_DENY_NONE = 40 (hex)

Allows any other to read from or write to this
element as long as it is open.

Page 148

either one of:

 STG_DIRECT = 0

All changes are made directly to the file. This is
faster and requires less memory, but is less flexible.
All streams must have this flag set.`

 STG_TRANSACTED = 10000 (hex)

All changes are made to an internally kept copy of
the storage. It is possible to undo any changes made
since opening the storage or the last Commit() by
using the Revert method. The parent of a storage
that is transacted need not be transacted itself.

if creating a new storage or stream (including a new
Compound File) either one of:
 STG_CREATE = 1000 (hex)

Create the new storage or stream, writing over any
file that has the same name (if such a file exists).

 STG_FAILIFTHERE = 0

Create the new storage or stream unless one with the
same name currently exists.

if creating a new Compound File, one can use:
 STG_CONVERT = 20000 (hex)

This will convert any normal file with the name and
path specified to be converted into a Compound File
with a single stream labeled “CONTENTS”. All of
the data that the file held previously will be in the
“CONTENTS” stream. No changes are made to the
original file until the root storage is committed, so it
is possible to read any file as if it was a Compound
File without changing the original in any way.

 STG_DELETEONRELEASE = 4000000 (hex)

Automatically deletes the file as soon as the object
that represents it is released (that is, set equal to
“Nothing”). Useful for temporary files.

Page 149

if opening a Compound file, one can use:

 STG_PRIORITY = 20000 (hex)

Opens files with a minimum of overhead. Useful in
cases where you are opening a storage just to copy it
to another location. Must be used in conjunction
with STG_READ and STG_DIRECT . Do not keep
a STG_PRIORITY storage open any longer than
necessary, as it prevents the Compound File from
having any changes committed.

List of all Possible Flag Combinations:
CreateStorageFile and CreateStorageMemory

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_TRANSACTED or STG_DENY_READ or STG_READWRITE
STG_TRANSACTED or STG_DENY_READ or STG_WRITE

CreateStorage

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_WRITE

CreateStream

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE

OpenStorageFile and OpenStorageMemory

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READ
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READ
STG_TRANSACTED or STG_DENY_WRITE or STG_READWRITE
STG_TRANSACTED or STG_DENY_WRITE or STG_WRITE
STG_TRANSACTED or STG_DENY_WRITE or STG_READ
STG_TRANSACTED or STG_DENY_READ or STG_READWRITE
STG_TRANSACTED or STG_DENY_READ or STG_WRITE
STG_TRANSACTED or STG_DENY_READ or STG_READ

Page 150

STG_TRANSACTED or STG_DENY_NONE or STG_READWRITE
STG_TRANSACTED or STG_DENY_NONE or STG_WRITE
STG_TRANSACTED or STG_DENY_NONE or STG_READ

OpenStorage

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READ
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READ

OpenStream

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READ

When you open a sub-storage or a stream, it must be at least as restricted
as its parent. For example, if the parent is read-only the child must be as
well. An exception exists if the parent of a stream is opened in a
transacted, read-only mode - then the stream can be opened in a mode that
allows writes. However, no writes are recorded to disk when this happens.

SeekPosition Flag
For use with the Stream object functions Get, Put, VariantGet,
VariantPut , VariantGetEx, VariantPutEx, GetString , PutString ,
GetRecord, SetRecord, GetBlock, PutBlock .

 STG_SEEK_DONTMOVE = -1

For reading or writing at the current location of the
seek pointer.

Seek Flags
For use with Stream object procedure Seek .

 STG_STREAM_SEEK_SET = 0

Position parameter is a count in bytes from the front
of the stream.

 STG_STREAM_SEEK_CUR = 1

Position parameter is a count in bytes forwards from
the current seek position.

Page 151

 STG_STREAM_SEEK_END = 2

This flag means that the Position parameter is a
count in bytes backwards from the end of the stream.

Move Flags
For use with Storage object procedure MoveElement.

 STG_MOVEMOVE = 0

MoveElement will erase the original element.

 STG_MOVECOPY = 1

MoveElement will not erase the original.

Commit Flags
For use with Commit and Flush. You can specify STG_DEFAULT
or any combination of the others.

 STG_DEFAULT = 0

Writes to those sections of this storage that have
changed, but does not touch those that have not.
This flag should be generally employed, as it faster
than using STG_OVERWRITE.

 STG_OVERWRITE = 1

Writes all information held in this element, whether
or not it has been modified. This will occasionally
result in smaller files than using STG_DEFAULT.
See CompressStorageFile.

 STG_ONLYIFCURRENT = 2

Prevents multiple users of a storage from
overwriting the other’s changes. STG_ONLY-
IFCURRENT commits changes only if no one else
has made changes since the last time this user
opened or committed this storage. If other changes
have been made, the error STG_E_NOTCURRENT
is sent. You can overwrite the changes by
attempting another Commit with STG_DEFAULT
set.

Page 152

 STG_DANGEROUSLYCOMMITMERELYTODISKCACHE = 4

Only commits to the disk cache.

Directory File Type
For use with the Storage object method Directory. These flags
indicate the type of object returned.

STG_TYPE_STREAM = 2

The name belongs to a stream.

STG_TYPE_STORAGE = 1

The name belongs to a storage.

STG_TYPE_NONE = 0

The end of the directory has been reached. There
are no more names.

Page 153

Possible Errors
 STG_E_FILENOTFOUND = 30002

The specified file does not exist in the specified
directory. This could also refer to a storage or
stream that does not exist within a certain
Compound File.

 STG_E_PATHNOTFOUND = 30003

The specified file path or storage path does not exist.

 STG_E_TOOMANYOPENFILES = 30004

There is a finite limit as to how many files can be
kept open at any given time. In Windows 3.1, the
limit is twenty file handles, while the 32 bit
operating systems can keep far more open.
Compound files can take up to three file handles
each. Close unused open files before trying to open
this file again.

 STG_E_ACCESSDENIED = 30005

The file, storage, or stream cannot be accessed.
More than likely there are permissions set to prevent
writing to the file or it is locked by another
application. This is usually caused by attempting to
Commit a read-only storage or Flush a read-only
stream.

 STG_E_INVALIDHANDLE = 30006

The memory handle does not point to a valid place
in memory, and is probably uninitialized.

 STG_E_INSUFFICIENTMEMORY = 30008

Compound files require various amounts of memory
for buffering. If there is insufficient memory,
certain functions (such as opening a storage) will not
work. If you need to open a Compound File for
saving and get this error, you can try to reduce your
memory requirements by using the STG_DIRECT
instead of STG_TRANSACTED. Commit and
Flush are designed to work without taking up any

Page 154

memory, so you can prevent this error by keeping a
Compound File open throughout the time it is used
by your program.

 STG_E_INVALIDPOINTER = 30009

An incorrect parameter was passed to a method.

 STG_E_NOMOREFILES = 30018

There is a finite limit as to how many files can be
kept open at any given time. In Windows 3.1, the
limit is twenty file handles, while the 32 bit
operating systems can keep far more open.
Compound files can take up to three file handles
each. Close unused open files before attempting to
open this file again.

 STG_E_DISKISWRITEPROTECTED = 30019

The disk cannot be written to. Disable disk write
protection before trying again.

 STG_E_SEEKERROR = 30025

An attempt was made to seek past the end of the
stream.

 STG_E_WRITEFAULT = 30029

A problem was encountered while trying to write
information to the Compound File. The file may be
corrupted, or there may be a problem with the
storage medium.

 STG_E_READFAULT = 30030

A problem was encountered while trying to read
information from the Compound File. The file may
be corrupted, or there may be a problem with the
storage medium.

Page 155

 STG_E_SHAREVIOLATION = 30032

An attempt was made to access a section of the
Compound File that is being used by another
program. Try again later. This error sometimes
happens after a program that was reading a
Compound File crashes or exits without properly
closing the file.

 STG_E_LOCKVIOLATION = 30033

An attempt was made to access a section of the
Compound File that has been locked by another
program. Try again later. This error may occur
after a program that was reading a Compound File
crashes or exits without properly closing the file.

 STG_E_FILEALREADYEXISTS = 30080

This operation would have overwritten an already
existing file, and was therefore terminated. See the
STG_CREATE flag to find out how to purposefully
overwrite an existing file.

 STG_E_INVALIDPARAMETER = 30087

A method parameter was of the incorrect type or
held invalid information.

 STG_E_MEDIUMFULL = 30112

There is no more space on this disk or partition. Try
another disk or partition, or try using the
STG_OVERWRITE flag.

 STG_E_ABNORMALAPIEXIT = 30250

An internal OLE function failed.

 STG_E_INVALIDHEADER = 30251

The Compound File is probably corrupt, or was
written by a program that did not fully adhere to the
Structured Storage specifications.

Page 156

 STG_E_INVALIDNAME = 30252

The name you chose for this storage or stream is
invalid. Names are limited to thirty two characters,
and cannot include the characters “\”, “/”, “:”, “!”, “.”
or “..”.

 STG_E_UNKNOWN = 30253

An internal undetermined error occurred.

 STG_E_INVALIDFLAG = 30255

An illegal combination of flags or an incorrect flag
was used. Review the documentation and confirm
flags may be used in conjunction with others.

 STG_E_NOTCURRENT = 30257

Another opening of the Storage object has modified
it. If you want to Commit anyway, overwriting any
changes, try using the STG_OVERWRITE flag.

 STG_E_REVERTED = 30258

You have attempted to access a section of the
Compound File that no longer exists because the
Compound File has been reverted to its original
status.

 STG_E_CANTSAVE = 30259

Cannot save for reasons other than lack of access or
lack of space.

 STG_E_OLDFORMAT = 30260

The file you have attempted to read is an OLE 1.0
DocFile, and is incompatible with the Structured
Storage format.

 STG_E_OLDDLL = 30261

Your OLE DLL’s' are probably out of date. It is
likely that some software that was recently installed
overwrote the correct ones.

Page 157

Possible Component Errors
Because of the nature of ATL components, the dwStg.dll component
will usually trigger standard Visual Basic and .NET errors when
something goes wrong. For example, when you are attempting to
open a file that is already opened, you will get the error "Path/Access
error" (error 75 in Visual Basic). This is the same error you would get
in similar regular file access functions. See the Visual Basic or .NET
documentation for other errors related to file access.

There are still some errors that are unique to the dwStg.dll component.
They are listed below.

STG_E_INVALIDHEADER = 800300FB (hex)

The file is not a standard structured storage file. It
may have been written using a non-standard
implementation of the structured storage interfaces,
or it may be corrupt.

STG_E_INVALIDNAME = 800300FC (hex)

The name of the stream or storage given is not valid.
Names are limited to thirty two characters, and
cannot include the characters “\”, “/”, “:”, “!”, “.” or
“..”.

STG_E_NOTCURRENT = 80030101 (hex)

The storage has been changed since the last commit.
You will only get this error if you try to Commit
using the STG_ONLYIFCURRENT flag, and there
have in fact been changes.

STG_E_REVERTED = 80030102 (hex)

This error means that the action you are trying to do
cannot be completed because the dStorage or
dStream object has been invalidated by a Revert in
a storage above your object.

STG_E_CANTSAVE = 80030103 (hex)

The object you are trying to persist using
dStorage.PutObject or dStream.PutObject has
reported that it cannot save itself.

Page 158

STG_E_DOCFILECORRUPT = 80030109 (hex)

The file has been corrupted and cannot be read.
There is a bug in ole32.dll that can cause this error
in large files (over 80mb) – be sure to use version
4.0 or later.

STG_E_NULLPOINTER = 32112

This error is caused by sending a null pointer to
PutPicture.

STG_E_RECORDEOF = 32113

This error is sent when you try to access a record
past the end of the stream using the GetRecord
method.

Page 159

Storage Browser (StgBrwsr.exe)
Storage Browser is a program that allows you to peek into Compound
Files and see how they are organized. Several Microsoft programs
(for example, Word for Windows 6.0) already use Structured Storage
for their files. Storage Browser will run under Windows 95, Windows
98, Windows NT and Windows 3.1. The Visual Basic source code for
this program is included, and may be used in your own projects.

Figure 1 depicts the Main Window of Storage Browser.

Figure 1
The Primary Window of the Storage Browser

The box on the left depicts a hierarchical list of the elements in the
file. Storages are identified by file folder icons, and streams by
document icons. By double-clicking on a storage, the elements
contained in the storage are shown or hidden. Above this box is the
name and path of the file being browsed.

When an element is highlighted, information about that element is
presented in the area on the right. This information includes the name,
type, size (if it is a stream), date (if it is a storage), and purpose (if the
name begins with a special character).

Page 160

To view the contents of a stream, select it and click the View
Contents button on the lower right. If the element selected is the
Summary Information stream or Document Summary Information
stream, a window containing information about the document will
appear. Otherwise, it will bring up the window titled View of Stream:

Figure 2
View of Stream Window

The data is always shown in binary format. The column on the
extreme left is the number of the row. The column in the middle
depicts the contents in hexadecimal form. The column on the extreme
right presents the same information as the second column, but as
characters.

Storage Menu
The first menu entry is Load Compound File. This will bring up the
File Open common dialog box, which will allow you to choose the file
you would like to browse. If you choose a file that is not a Compound
File, the program will give you the option of viewing it anyway. The
Save Changes menu entry lets you permanently save any changes you
made to the Compound File.

Page 161

The menu entry Compress Compound File also brings up the File
Open command dialog box. Select the Compound File that you wish
to compress. (See the description of the CompressStorageFile
method for an explanation as to when and why you would wish to use
this function.)

Options Menu
The following commands operate on the currently selected element.

Command Description
Rename Element Brings up a dialog box that allows you to type in

a new name for the element.

Delete Element Erases the currently selected element, including
any streams and storages it might contain.

Help Menu
This menu allows you to access the about box.

Page 162

The Desaware File Property Component
Since the introduction of the structured storage format, many programs
use it as the basis of the files they save to disk. Most applications,
however, still use their own proprietary format. This is a problem
because one of the key features of structured storage files – the ability
to have a commonly readable table of file properties – is most useful if
all documents have them. Otherwise, searching for files with certain
authors or word counts will miss all those files without these
properties. In response to this, Microsoft has introduced the ability to
add many of these file properties to any file located on a Windows
2000 NTFS formatted drive. The Desaware Property control is
designed to let you read and write file properties for files on such a
drive, as well as structured storage files like Office documents on any
drive or operating system.

Technology of File Properties
Structured storage files consist of blocks of data (called streams) held
in hierarchical directories (called storages). At first, a single stream
called "SummaryInformation" held file properties. Because this
information was only being used by Microsoft Word at the time, it
only held properties that related to word processor documents. As
other Microsoft Office applications started using the structured storage
format, these were no longer sufficient. Microsoft added a second
stream, called "DocumentSummaryInformation", which added new
properties specific to other Office products and a section for user-
defined properties. The Desaware File Property Component, like the
Desaware Storage Component, can read and write any of these
properties, and can add them to any structured storage file that does
not have them.

Every implementation of the NTFS disk format has supported multiple
"streams" (not to be confused with structured storage streams) of
information per file, although this is a little known or used feature. A
NTFS stream is another section of the file, but it is not shown in the
size of the file in Explorer, nor is it seen if you look at a file in a text
or binary editor. You can experiment with streams on a command
line. The following line will copy a list of files in the current directory
into a new text file entitled "directory.txt".

dir > directory.txt

Page 163

The next line will do the same, but the list of files will go into the
stream named "section2"

dir > directory.txt:section2

Note how the file has not grown in size (at least according to the dir
command or Explorer), and how Notepad only shows the single list.
You can see what is in the "section2" stream by using the
following command line:

more < directory.txt:section2

Windows 2000 uses NTFS streams to save file properties for any file,
so setting properties for a file does not change its internal data.
However, note that not all Microsoft operating systems support
streams. If you copy a file to a non-NTFS drive you will lose the file
properties. If you use an operating system that does not know about
streams, like Windows 95, to copy a file on an NTFS drive, you will
also lose any streams, even if the destination drive is also NTFS
formatted. Windows 2000 only stores those properties found in the
SummaryInformation stream, so you cannot add custom properties to
non-structured storage files on NTFS drives. For more information on
NTFS file streams, see article Q105763 in the Microsoft Developer's
Network CDROM or on the Microsoft web site.

File Property Component Example
The following is an example of how you would use the File Property
Component to read and write file properties:

' VB
' Make sure that "Desaware Property component"
' is selected in the Visual Basic references dialog.
' Create an instance of the Property component.
Dim dwProp As New dwProperty

' This determines if the file is a structured
' storage file or not.
IsStorage = dwProp.IsStorageFile ("C:\file.txt")

' Open a file. This should be a structured storage
' file, or a file on a Windows 2000 NTFS drive. If
' it is not one of these, you will get a runtime
' error.
dwProp.OpenFile "C:\file.txt", STG_FLAGS_NORMAL

Page 164

' Read the summary information from the file.
If (dwProp.ReadSummaryInfo = True) Then
 ' get the title of the document
 titleString = dwProp.GetTitle()
 ' add something to the string
 titleString = titleString & " version 2"
 ' set the new title
 dwProp.SetTitle titleString
 ' save the changes to the
 ' SummaryInformation stream
 dwProp.SaveSummaryInfo
 ' when done making changes, release the file.
 dwProp.ReleaseFile
End If

' VB.NET
' Make sure that "Desaware Property component"
' is selected in the Visual Basic references dialog.
' Create an instance of the Property component.
Dim Prop As dwProperty = New dwProperty()

' This determines if the file is a structured
' storage file or not.
IsStorage = Prop.IsStorageFile ("C:\file.txt")

' Open a file. This should be a structured storage
' file, or a file on a Windows 2000 NTFS drive. If
' it is not one of these, you will get a runtime
' error.
Prop.OpenFile ("C:\file.txt",

dwPropConsts.STG_FLAGS_NORMAL)

' Read the summary information from the file.
If (Convert.ToBoolean (Prop.ReadSummaryInfo ()) =

True) Then
 ' get the title of the document
 titleString = Prop.GetTitle()
 ' add something to the string
 titleString = titleString & " version 2"
 ' set the new title
 Prop.SetTitle (titleString)
 ' save the changes to the
 ' SummaryInformation stream
 Prop.SaveSummaryInfo()
 ' when done making changes, release the file.
 Prop.ReleaseFile()
End If

Page 165

// C#
// Make sure that "Desaware Property component"
// is selected in the Visual Basic references
// dialog. Create an instance of the Property
// component.
dwProperty Prop = new dwProperty();

// This determines if the file is a structured
// storage file or not.
IsStorage = Prop.IsStorageFile ("C:\file.txt");

// Open a file. This should be a structured storage
// file, or a file on a Windows 2000 NTFS drive. If
// it is not one of these, you will get a runtime
// error.
Prop.OpenFile ("C:\file.txt",

dwPropConsts.STG_FLAGS_NORMAL);

// Read the summary information from the file.
if (Convert.ToBoolean (Prop.ReadSummaryInfo()) ==

true)
{
 // get the title of the document
 titleString = dwProp.GetTitle();
 // add something to the string
 titleString = titleString + " version 2";
 // set the new title
 Prop.SetTitle (titleString);
 // save the changes to the
 // SummaryInformation stream
 Prop.SaveSummaryInfo();
 // when done making changes, release the file.
 Prop.ReleaseFile();
}

Page 166

File Property Component Properties

ComponentObject.Filename
This property holds the name of the file that is currently open. If no
file is currently open, it is blank.

Page 167

File Property Component Methods

Note for .Net Users:
All function descriptions below use the Visual Basic standard of
"Long" for a 32 bit integer. In .NET languages, the correct type would
be "Integer" in VB.NET or "int" in C#. They also use the Visual Basic
data type "Date". The .NET equivalent of that type is "DateTime".

Note that .NET does not correctly recognize the Boolean type of the
return value in OLE components. You will need to convert the type
back to a Boolean type using the Convert.ToBoolean () function.
Convert is an object in the "System" name space – see the .NET
documentation for more information.

ComponentObject.OpenFile
(Filename as String, Flags as Long)

You must first open a file before you can read or write properties to it.
The Filename parameter is the path and name of the file to be opened.
The Flags parameter describes the way the file is opened. Usually the
constant STG_NORMAL is used here – see the section on constants
for more information. When OpenFile is called on a normal file on an
Windows 2000 NTFS drive, it does not keep the file open. If the file
is opened or written to by another application after OpenFile is called
and before other Property control methods are called no problem will
occur. If the file is moved or deleted after OpenFile is called, you will
get an error on calling ReadSummaryInformation or
SaveSummaryInformation.

ComponentObject.ReleaseFile ()
When you are done accessing a file, call the ReleaseFile method. This
will clear certain internal buffers, and make sure the file is written to
disk.

ComponentObject.ReadSummaryInfo () as Long
Retrieves information from the SummaryInformation property set
stream in the root storage of this Compound File. If there is no
SummaryInformation property set, ReadSummaryInfo() generates an
error. Before the ReadSummaryInfo() is called, using any function
beginning with “Get” will return the default value, which will be either

Page 168

zero or a blank string depending on the type. The return value is a
bitmap of the streams which the file contains.

Comparing the return value to the constants SUM_INFO, DOC_INFO
and USR_INFO will tell you if the file contains a
SummaryInformation stream, a DocumentSummaryInformation
stream, and User-defined Summary Information respectively. Here is
a sample of how to use this feature:

' VB and VB.NET
' Using the And operator will return a non-zero
' value if there are bits in the return value and
' bits in DOC_INFO that match. See the Visual
' Basic documentation for "And" for more information
retval = dwProp.ReadSummaryInfo()
If (retval And DOC_INFO) then
 ' yes, this file has Document summary info
End If

// C#
retval = dwProp.ReadSummaryInfo();
if (retval & dwPropConsts.DOC_INFO)
{
 // yes, this file has Document summary info
}

ComponentObject.SaveSummaryInfo ()
Saves any changes to the SummaryInformation. If you have opened a
structured storage file, these changes may not be written to disk until
the ReleaseFile method is called.

ComponentObject.IsStorageFile
(Filename as String) as Boolean

When passed a path and name of a file in the Filename parameter, this
will return True if the file is a structured storage file, and False if it is
not. Only compare the return value against False, as different
programming languages have different values for True.

Page 169

ComponentObject.EnableComponent
(LicenseKey as String)

This method allows you to use the File Property Component in your
own Visual Basic components, such as ActiveX controls or ActiveX
documents. Otherwise, the File Property Component will also think it
is being used in Visual Basic design time, and will report a license
error.

You first create a key by using the dwLicGen.exe program. This
program will ask you to enter the compiled name of your component
(not including a path, but including an extension). Each key is
uniquely created from the component name. If you change your
component name, you will have to create a new license key. After the
program generates the key, you will have the option to copy it to the
clipboard to post into your application.

You then call the EnableComponent method before you access any
of the components methods, like in the Initialize or Sub Main
functions. If you ever unload or remove the last reference to the File
Property Component, you will have to go through this process again
upon creating a new reference.

 ' VB
 Private Sub UserControl_Initialize()
 ' Your key will be different.
 DwStg.EnableComponent "2E3499248E322D3636853B53"
 End Sub

 ' VB.NET //C#
 ' Your key will be different.
 DwStg.EnableComponent ("2E3499248E322D3636853B53")

ComponentObject.IsValid () as Boolean
Returns True if a file has been opened, False if not. Only compare the
return value against False, as different programming languages have
different values for True. Note that .NET does not correctly recognize
Boolean return types. You will need to convert the type back to a
Boolean type using the Convert.ToBoolean () function.

Page 170

ComponentObject.ConvertToLocalTime
(InputTime as Date) as Date

This will convert a date from Greenwich Mean Time (GMT) to local
time. Times in SummaryInformation properties are stored in GMT
(this is done automatically by the properties of the component that use
dates).

Page 171

Summary Information Methods
The following methods all deal with the properties in the
SummaryInformation stream. If the file does not have such a stream
when it is opened, one will be created on calling
SaveSummaryInformation.

ComponentObject.SetTitle
(Title as String)

Sets the title of the document.

ComponentObject.GetTitle () as String
Returns the title of the document.

ComponentObject.SetSubject
(Subject as String)

Sets the subject of the document.

ComponentObject.GetSubject () as String
Returns the subject of the document.

ComponentObject.SetAuthor
(Author as String)

Sets the author of the document.

ComponentObject.GetAuthor () as String
Returns the author of the document.

ComponentObject.SetKeywords
(Keyword as String)

Sets key words related to the subject of the document. These key
words are typically used in search routines.

ComponentObject.GetKeywords () as String
Returns key words relating to the subject of the document.

Page 172

ComponentObject.SetComments
(Comment as String)

Sets the comment field. This area might be used for making notes to
oneself or others.

ComponentObject.GetComments () as String
Returns the comment field.

ComponentObject.SetLastAuthor
(LastAuthor as String)

Sets the latest person to have modified the document.

ComponentObject.GetLastAuthor () as String
Returns the last person who has modified the document.

ComponentObject.IncrementRevNum ()
Increments the number of times a document has been revised by one.

ComponentObject.SetRevNum
(TimesRevised as Long)

Sets the number of times the document has been revised.

ComponentObject.GetRevNum () as Long
Returns the number of times the document has been revised.

ComponentObject.StartEditTimer ()
This starts a timer within the dwProp component. It is useful for
keeping track how long a document has been opened, so you can
update the TotalEditTime property. You can call this method when
the file is first opened, and the AddEditTimerToTotal method when
the file is saved.

ComponentObject.AddEditTimerToTotal ()
Adds the amount of time since StartEditTimer was called to the
property recording the total amount of time the document has been
opened.

Page 173

ComponentObject.GetTotalEditTime () as Long
Returns the total amount of time a document has been open, in
minutes.

ComponentObject.SetTotalEditTime
(Minutes as Long)

Sets the total amount of time a document has been open, in minutes.

ComponentObject.RecordPrintDate ()
Sets the field containing the last time this document was printed to the
current date and time.

ComponentObject.GetLastPrintDate () as Date
Returns the last time the document was printed.

ComponentObject.RecordCreateDate ()
Sets the field containing the time the document was created to the
current date and time.

ComponentObject.GetCreateDate () as Date
Returns the time the document was created.

ComponentObject.RecordSaveDate ()
Sets the field containing the last time this document was saved to the
current date and time.

ComponentObject.GetLastSaveDate () as Date
Returns the last time the document was saved.

ComponentObject.SetNumberOfPages
(NumPages as Long)

Sets the number of pages.

ComponentObject.GetNumberOfPages () as Long
Returns the number of pages.

Page 174

ComponentObject.SetNumberOfWords
(NumWords as Long)

Sets the number of words.

ComponentObject.GetNumberOfWords () as Long
Returns the number of words.

ComponentObject.SetNumberOfCharacters
(NumChars as Long)

Sets the number of characters.

ComponentObject.GetNumberOfCharacters () as Long
Returns the number of characters.

ComponentObject.SetApplication
(AppName as String)

Sets the name of the program that created the document.

 ComponentObject.GetApplication () as Long
Returns the title of the program that created the document.

ComponentObject.SetTemplate
(Template as String)

Sets the filename of the template used in the document.

ComponentObject.GetTemplate () as String
Returns the filename of the template used in the document.

ComponentObject.SetSecurity
(SecurityLevel as Long)

Sets the recommended security level of the document. Note that this
does not actually supply any security, but only serves as a reminder to
the application that reads the file.

Page 175

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document. Other programs cannot view or edit this
document.

2 Read-Only recommend. The user will be warned if there is
any attempt to edit the document.

3 Read-Only enforced. Does not allow any changes to the
document.

4 Locked for Annotations. Does not allow any changes to the
document.

ComponentObject.GetSecurity () as Long
Returns the security level of the document. Your program should
behave as follows:

Value Security Procedure
0 None.
1 Password protected. Do not allow viewing or editing of

this document unless you know what type of password
protection is involved, and the password given is correct.

2 Read-Only recommend. Warn the user if there is any
attempt to edit the document.

3 Read-Only enforced. Do not allow any changes to the
document.

4 Locked for Annotations. Do not allow any changes to the
document.

Page 176

Document Summary Information Methods
These methods access the DocumentSummaryInformation stream.
Not every structured storage file that contains a SummaryInformation
stream contains a DocumentSummaryInformation stream. If you open
a structured storage file that only has a Summary Information stream
and you use any of the Document Summary Information methods that
begin with "Set", a DocumentSummaryInformation stream will be
added to the file. Normal files on a Windows 2000 NTFS drive do not
have these properties – only the those which have Summary
Information. If you open a normal file on a Windows 2000 NTFS
drive and use a Document Summary Information method that begins
with "Set", it will have no effect.

ComponentObject.SetScaleCrop
(Scale as Boolean)

Set this to True if this document is supposed to be scaled to the
dimensions of the window, False if it is to be cropped to the
dimensions of the window.

ComponentObject.GetScaleCrop () as Boolean
Returns True if this document is supposed to be scaled to the current
dimensions of the window, False if it is to be cropped to the
dimensions of the window. Only compare this to "False" in Visual
Basic, as True can refer to any non-zero number. IBYou will need to
convert the type back to a Boolean type using the Convert.ToBoolean
() function.

ComponentObject.SetLinksUpToDate
(Links as Boolean)

Set this to True if all the links are up to date. Links may refer to
internal links in the document or links to web sites depending upon the
application.

Page 177

ComponentObject.GetLinksUpToDate () as Boolean
Returns True if all the links are up to date. Only compare this to
"False" in Visual Basic, as True can refer to any non-zero number.
Note that .NET does not correctly recognize Boolean return types.
You will need to convert the type back to a Boolean type using the
Convert.ToBoolean () function.

ComponentObject.SetCategory
(Category as String)

Sets the category of the document.

ComponentObject.GetCategory () as String
Returns the category of the document.

ComponentObject.SetPresentationTarget
(Target as String)

Sets the presentation target of the document. Used in Microsoft
PowerPoint.

ComponentObject.GetPresentationTarget () as String
Returns the presentation target of the document.

ComponentObject.SetManager
(Manager as String)

Sets the manager of the document writer.

ComponentObject.GetManager () as String
Returns the manager of the document writer.

ComponentObject.SetCompany
(Company as String)

Sets the company with which the document is associated.

ComponentObject.GetCompany () as String
Returns the company with which the document is associated.

Page 178

ComponentObject.SetNumBytes
(NumBytes as Long)

Sets the size of the document in number of bytes. Usually refers to the
section of the document edited by the user, not the entire size of the
file.

ComponentObject.GetNumBytes () as Long
Returns the size of the document in number of bytes.

ComponentObject.SetNumLines
(NumLines as Long)

Sets the number of lines in the document.

ComponentObject.GetNumLines () as Long
Returns the number of lines in the document.

ComponentObject.SetNumParagraphs
(NumParas as Long)

Sets the number of paragraphs in the document.

ComponentObject.GetNumParagraphs () as Long
Returns the number of paragraphs in the document.

ComponentObject.SetNumSlides
(NumSlides as Long)

Sets the number of slides in the document.

ComponentObject.GetNumSlides () as Long
Returns the number of slides in the document.

ComponentObject.SetNumNotes
(NumNotes as Long)

Sets the number of notes in the document.

Page 179

ComponentObject.GetNumNotes () as Long
Returns the number of notes in the document.

ComponentObject.SetNumHiddenSlides
(NumHiddenSlides as Long)

Sets the number of hidden slides in the document.

ComponentObject.GetNumHiddenSlides () as Long
Returns the number of hidden slides in the document.

ComponentObject.SetNumMMClips
(NumClips as Long)

Sets the number of multimedia clips in the document.

ComponentObject.GetNumMMClips () as Long
Returns the number of multimedia clips in the document.

Page 180

User-Defined Property Methods
These methods access the user-defined portion of the
DocumentSummaryInformation stream. Not every structured storage
file that contains a SummaryInformation stream contains a
DocumentSummaryInformation stream. Normal files on a Windows
2000 NTFS drive do not have these properties.

Here is an example of how you would use these methods to read and
print a list of existing properties:

' VB 5 and 6
Dim count as Long
Dim v as Variant
Dim i as Long

' if the user-defined part of the
' DocumentSummaryInformation stream
' exists, load its information
count = 0
If (dwProp.OpenSummaryInfo And USR_INFO) Then
 ' get the number of properties
 count = dwProp.UserCount
 ' print all the property names and data
 For i = 0 To count - 1
 Debug.Print "name:", dwProp.UserDirectory(i)
 Debug.Print "data:", dwProp.UserGet(i)
 Next i

The following is an example of how you would add a number and a
string into the Document Summary Information property set:

 ' Add a property that contains a number
 v = 1234
 count = dwProp.UserAdd("NewEntry1", v)
 ' Add a property that contains a string
 v = "String Value"
 count = dwProp.UserAdd("NewEntry2", v)

 ' This saves all summary information.
 dwProp.SaveSummaryInfo
 ' make sure the summary information is
 ' actually written to disk
 dwProp.ReleaseFile
End If

Page 181

' VB.NET
Dim count as Integer
Dim v as Object
Dim i as Integer

' if the DocumentSummaryInformation stream
' exists, load its information
count = 0
If (Prop.OpenSummaryInfo() And

dwPropConsts.USR_INFO) Then
 ' get the number of properties
 count = Prop.UserCount()
 ' print all the property names and data
 For i = 0 To count - 1
 MessageBox.Show ("name:" &

Prop.UserDirectory(i) & " data:" &
Prop.UserGet(i))

 Next i

 ' Add a property that contains a number
 v = 1234
 count = Prop.UserAdd("NewEntry1", v)
 ' Add a property that contains a string
 v = "String Value"
 count = Prop.UserAdd("NewEntry2", v)

 Prop.SaveSummaryInfo()
 ' just like any stream, you must commit the
 ' root storage to actually write to disk
 Prop.ReleaseFile()
End If

// C#
int countv;
object v;
int i;

// if the DocumentSummaryInformation stream
// exists, load its information
count = 0;
if (Prop.OpenSummaryInfo() & dwPropConsts.USR_INFO)
{
 // get the number of properties
 count = Prop.UserCount();
 // print all the property names and data
 for (i = 0; i > count; i++)
 {

Page 182

 MessageBox.Show ("name:" &
Prop.UserDirectory(i) & " data:" &
Prop.UserGet(i));

 }

 // Add a property that contains a number
 v = 1234;
 count = Prop.UserAdd("NewEntry1", v);
 // Add a property that contains a string
 v = "String Value";
 count = Prop.UserAdd("NewEntry2", v);

 Prop.SaveSummaryInfo();
 // just like any stream, you must commit the
 // root storage to actually write to disk
 Stg.ReleaseFile();
}

ComponentObject.UserSet
(PropertyID as Long, Name as String, Data as Variant)

Modifies the existing property specified by PropertyID . Data can be
either an integer, a date, a string, or a boolean value. Regular integers
are converted to long integers to match the existing standard. If
PropertyID does not correspond to an existing property, an error is
generated. Due to certain limitations in Windows, dates must be
between the years 1980 and 2107. If you need to store a date outside
this range, you can use a string variant.

ComponentObject.UserGet
(PropertyID as Long) as Variant

Returns the data associated with the property specified by
PropertyID.

ComponentObject.UserAdd
(Name as String, Data as Variant) as Long

Add a new property to the end of the list of user-defined properties in
this Document Summary Information stream. The new count of user-
defined properties is returned. Due to certain limitations in Windows,
dates must be between the years 1980 and 2107 – if you have to store
a date that is outside this range, you can use a string.

Page 183

 ' VB
 ' Add a string
 Dim v as Variant
 v = "New String Data"
 count = dwProp.UserAdd ("value name", v)

 ' VB.NET
 Dim v as Object
 count = dwProp.UserAdd ("value name", v)

 // C#
 object v;
 count = dwProp.UserAdd ("value name", v);

 ComponentObject.UserCount () as Long
Returns the number of user-defined properties in this Document
Summary Information stream.

ComponentObject.UserDelete
(PropertyID as Long) as Long

This deletes the specified property. After the deletion, all properties
are renumbered to remove the empty space. The new count of user-
defined properties is returned.

 ' Delete the last property
 count = dwProp.UserCount ()
 count = dwProp.UserDelete (count - 1)

ComponentObject.UserDirectory
(PropertyID as Long) as String

Returns the name of the specified property.

Page 184

File Property Component Constants

OpenFile flags parameter
any one of:

STG_READ = 0

Read from, but not write to the file. Methods
beginning with "Set" will still work, but an attempt
to call SaveSummaryInformation will result in an
error. With STG_DIRECT set, this is faster and
takes less memory and disk space using other flag
combinations.

 STG_WRITE = 1

Write to, but not read from the element.

 STG_READWRITE =2

Allows both reading from and writing to the
element.

any one of:
 STG_SHARE_DENY_READ = 30 (hex)

Does not allow any other to read from this element.

 STG_SHARE_DENY_WRITE = 20 (hex)

Does not allow any other to write to this element.

 STG_SHARE_EXCLUSIVE = 10 (hex)

Does not allow any other attempt to access this file
in any way from the time it is opened to when the
ReleaseFile method is called. If the file is a normal
file on a Windows 2000 NTFS drive, it must have
this flag selected; however, such files are only
accessed at the time of reading or writing.

 STG_SHARE_DENY_NONE = 40 (hex)

Allows any other to read from or write to this file as
long as it is open.

Page 185

either one of:

 STG_DIRECT = 0

All changes are made in a more direct fashion
(although changes are not always written directly to
the file, depending on the version of OLE installed).
This is faster and requires less memory. If the file is
a normal file on a Windows 2000 NTFS drive, it
must have this flag selected

 STG_TRANSACTED = 10000 (hex)

All changes are made to an internally kept copy of
the storage. This is more memory intensive, but
allows a greater array of flag choices. It also
provides other advantages that do not relate to
summary information sets.

Or you can just use:
 STG_NORMAL

STG_NORMAL is a combination of STG_SHARE_
EXCLUSIVE, STG_DIRECT, and STG_READ-
WRITE. This is the most common flag
combination, and will let you access any file that is
not already open.

List of all possible flag combinations:

STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_DIRECT or STG_SHARE_EXCLUSIVE or STG_READ
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READWRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_WRITE
STG_TRANSACTED or STG_SHARE_EXCLUSIVE or STG_READ
STG_TRANSACTED or STG_DENY_WRITE or STG_READWRITE
STG_TRANSACTED or STG_DENY_WRITE or STG_WRITE
STG_TRANSACTED or STG_DENY_WRITE or STG_READ
STG_TRANSACTED or STG_DENY_READ or STG_READWRITE
STG_TRANSACTED or STG_DENY_READ or STG_WRITE
STG_TRANSACTED or STG_DENY_READ or STG_READ
STG_TRANSACTED or STG_DENY_NONE or STG_READWRITE
STG_TRANSACTED or STG_DENY_NONE or STG_WRITE
STG_TRANSACTED or STG_DENY_NONE or STG_READ

Page 186

The Registry
One of the key features of Microsoft Windows is its ability to be
customized to suit the user. Not only can a user specify color schemes
or pictures on the desktop, but also programs can remember where
they were last placed and which documents were most recently used.
Microsoft originally specified that Windows applications keep
configuration information inside a text file called WIN.INI. This
created a standard for programmers, while allowing applications and
users to change program and system settings directly. As the number
of Windows applications exploded, limitations in this standard became
apparent. Initialization files became large and—because of their flat
arrangement—hard to understand and edit. With the release of
Windows 3.0, Microsoft tried to alleviate the first problem by creating
API functions for handling private .INI files. This, of course, created
problems of its own, —filling the users \WINDOWS directory with
countless .INI files and making it difficult for applications to
communicate with one another.

The beginning of the solution was introduced in Windows 3.1. With
the introduction of inter-process forms of communication such as
Dynamic Data Exchange (DDE) and Object Linking & Embedding
(OLE), it became vital to create a centralized database of program
descriptions. The Registration Database is the result. It has a
hierarchical structure, allowing complex data structures to be stored
cleanly. It is in binary format for quicker access. Besides holding
descriptions of DDE and OLE entry points, it also contains
associations between extensions and applications, user readable names
for programs and files, and other useful information.

The main elements of the hierarchical structure are keys . Keys can
contain other keys. The key at the root of this structure is named
HKEY_CLASSES_ROOT. Any key can have one value associated
with it. This value is in the form of a string of characters.

Figure 3 illustrates how a portion of the Registration Database might
be structured.

Page 187

Figure 3
Registration Database Structure

Because the registry is in binary format, it cannot simply be loaded
into a text editor as is customary with initialization files. Microsoft
provides a program called REGEDIT, which allows the user to view
and modify the Registration Database. Running REGEDIT with the
command line flag “-v” turns on the advanced editing mode that
reveals more information from the registration database.

However, the Registration Database was (and still is) hampered by the
64K size limit. Additionally, the Registration Database is limited to
one file (REG.DAT), so it cannot be split when the size limit is
reached. It also has a limited purpose, and could not replace the .INI
file as an application configuration storage.

HKEY_CLASSES_ROOT

Key

Key

Key

Key

Key

Key

Value

Value

Value

Value

Page 188

One of Microsoft 's priorities in designing Windows NT was to
overcome limitations discovered in 16 bit Windows. To solve the
problems with initialization, Microsoft programmers created the
Registry. At its heart, it is similar to the Registration Database -- but
much more useful. Instead of the lone HKEY_CLASSES_ROOT root
key, the Registry has four root keys -- of which
HKEY_CLASSES_ROOT is one. These new keys provide the
structure and the space for any configuration information a program
might need to store. There is also space to locate version information
and other data a program might want to make public. The whole
database can be of almost unlimited size. It is specially formatted and
buffered to allow extremely fast access. Keys can now hold any
number of named values, and these values can be any of a number of
different data types. The .INI files became obsolete -- in fact, when 16
bit applications make API calls to read or write information to system
.INI files, Windows NT actually re-routs them to a special location
inside the Registry. The 32 bit version of the Registry editor is named
REGEDT32.EXE. (You might not find it on your machine. System
administrators do not always make this program available to end users
because of the possibility of accidental destruction of important
Windows data.)

Page 189

Figure 4 depicts a representation of a portion of the Registry.

Root

Key

Key

Key

Key

Key

Key

Value

Value

Value

Value

Named Value

Named Value

Named Value

Figure 4
The Registry

Windows 95/Windows 98 also depends heavily upon the Registry,
although not quite as much as Windows NT. Windows 95/Windows
98 does not need WIN.INI and SYSTEM.INI, but will use them if
they exist. Any attempt to change these initialization files will not
result in a change in the Registry. Windows 95 added two new root
keys to the NT Registry while removing areas devoted to security and
other Windows NT-only features. The Windows 95/Windows 98
Registry editor is named REGEDIT.EXE.

Page 190

Keys and Values
The objects that make up the hierarchical structure of the Registry are
called keys . Key names cannot include spaces, backslashes (“\”),
asterisks (“*”) or question marks. Except for those keys representing
file extensions, key names cannot begin with periods. The name of a
key must be unique with respect to its parent key. Keys can contain
information in the form of values . Every key has one unnamed value,
called the default value. This value is generally in the form of a string.
In the Windows 95, Windows 98 and Windows NT operating systems,
any number of named values can also exist in a key. The information
in a named value can in one of many forms. A value can hold up to
one megabyte of data. See the Value Data Types section later in this
manual.

Root Keys
HKEY_CLASSES_ROOT

Available in Windows 3.1, Windows NT and
Windows 95 and Windows 98. It is mapped to
HKEY_LOCAL_MACHINE\Software\Classes in all
but Windows 3.1, where it is the only root available.
It is where file extensions are mapped to
applications, DDE links are described and OLE
objects are defined. Keys in this root generally do
not have any named values, and all values are plain
strings in order to be compatible with the Windows
3.1 Registration Database.

HKEY_CURRENT_USER

Available in Windows NT, Windows 95 and
Windows 98. It contains the currently-logged-in
user's settings. It can be used to save settings that
are particular to individuals. It is mapped to the key
in HKEY_USERS that belongs to the current user.

HKEY_LOCAL_MACHINE

Available in Windows NT, Windows 95 and
Windows 98. It has information about the system
and non-user specific information about software.
On Windows NT, it also contains information about
security and hardware.

Page 191

HKEY_USERS

Available in Windows NT, Windows 95 and
Windows 98. This root contains each user's
particular settings and application configuration that
pertains to individual, users, such as the last
documents viewed in an application, window
placement or color.

HKEY_CURRENT_CONFIG

Available in Windows 95 and Windows 98 only. It
is mapped to a key in HKEY_LOCAL_ MACHINE.
This root holds non-user specific configuration
information that pertains to hardware, such as printer
settings and “Plug and Play” information.

HKEY_DYN_DATA

Available in Windows 95 and Windows 98 only. It
contains dynamic information, such as hardware
status. The values in this root are of a non-standard
format and cannot be seen or edited. (The
REGEDIT program that accompanies Windows 95
and Windows 98 will show the value, but does not
allow editing.)

Page 192

Useful Locations in the Registry
HKEY_CURRENT_USER\Software\(CompanyName)\
(Program Name)

Utilize this area for configuration information that is
specific to an individual user. Simple information
(such as color and placement of main windows) can
be stored as values; more complex information (such
as the last four files viewed) can be stored as new
keys, but you can create whatever structure you
require. Look at how the Microsoft programs store
information here for some ideas (note that even
Microsoft does not follow any one standard).

HKEY_LOCAL_MACHINE\SOFTWARE\(Company
Name)\(Program Name)

Utilize this area for configuration information that is
specific to an individual computer.

HKEY_LOCAL_MACHINE\SOFTWARE\(Company
Name)\(Program Name)\Current Version

Version information is located in this key. Some of the standardized
value names that should be used are shown below:

Value Name Description
Description A text description of the software.
InstallDate A long integer holding the date.
RegisteredOwner The registered owner of the software.
MajorVersion A string containing the most significant

version number.
MinorVersion A string containing the least significant

version number.
ServiceName A short human-readable name.
SoftwareType The type of program (i.e. “driver”, “service”,

“application”,...).
Title The title of the program.
Any other version information should also be placed here.

Page 193

HKEY_CLASSES_ROOT\(.ext) = (Program ID) 1

HKEY_CLASSES_ROOT\(Program ID) = User readable
program description

Here is where you associate a file type with an
executable. First, you associate the file type's
extension to a program identifier, which is then
given an user-readable description. This description
should contain information like the company name,
program name and purpose of the file type. Next,
tell the Windows shell how to launch a file with this
extension:

HKEY_CLASSES_ROOT\(Program ID)\shell\open = "Open"

HKEY_CLASSES_ROOT\(Program ID)\shell\open\command
= executable with full path [flags] %12

Other verbs can be entered here as well -- just
replace the “open” in the previous key with another
word, such as “print”. The list of verbs you enter
here is seen when a user right-clicks on a file in the
Windows 95 or Windows 98 shell. (There is one
special verb labeled "PrintTo”. This verb is called
when the user drags the file to the printer icon.) You
can also specify a Dynamic Data Exchange (DDE)
command in place of the command line.

HKEY_CLASSES_ROOT\(Program ID)\shell\open\ddeexec =
DDE command string

HKEY_CLASSES_ROOT\(Program ID)\shell\open\ddeexec\
Application = DDE Application name

HKEY_CLASSES_ROOT\(Program ID)\shell\open\ddeexec\
Topic = DDE topic name

You can define what order the verbs are in by
entering the verbs into the \shell key in order:

1That is, the default value is set to (Program ID).

2The “%1” is a placeholder for the file for which the program is to be launched.

Page 194

HKEY_CLASSES_ROOT\(Program ID)\shell [= default
Verb1 [,Verb2 [,..]]

HKEY_CLASSES_ROOT\(.ext)\ShellNew

One of the features of the Windows 95 or Windows
98 shell is the ability to create new files of a certain
type without launching the application. You can add
your file type to the list of new file possibilities by
including this subkey and setting the proper value in
it. The following table shows which value name and
value data you should enter to correctly make the
new file:

Value Name Value Result
Nullfile ““ Creates a file of this type as an

empty file.
Data Binary Data Creates a new file containing

the binary data.
Filename filename

with path
Creates a new file by copying
the specified file.

Command command Executes the command. Use
this to run your own
application to create a new
file.

HKEY_CLASSES_ROOT\(Program ID)\DefaultIcon

For use with the Windows 95 or Windows 98 shell
only. Set this key 's default value to the .BMP or
.ICO file that contains the icon you want associated
with files of this type. You can also extract the icon
from an executable 's resource -- just include the file
name of the program, a comma, and the number
denoting the position of the icon within the resource
(this is usually 1).

HKEY_CLASSES_ROOT\(Program ID)\CurVer =
(ProductName).(number).

A version number can be put here if you are in the
Windows 3.1 environment.

Page 195

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\Uninstall\(Application name)

For use with the Windows 95 or Windows 98 shell
only. Set a value named “DisplayName ” to the
product name, and set a value named
“UninstallString” to the filename of the program the
shell should use to uninstall your application
(including full path and any command line options).

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\
CurrentVersion\SharedDLLs

For use with the Windows 95 or Windows 98 shell
only. In this key are the names and full paths of all
.DLLs used by installed applications with reference
counts of how many applications use each one. This
is the method employed by Windows 95 and
Windows 98 to decide if it can delete components of
uninstalled programs. Make sure your install and
uninstall programs correctly update this area.

HKEY_LOCAL_MACHINES\SOFTWARE\Microsoft\Windows\
CurrentVersion\AppPaths

For use with the Windows 95 or Windows 98 shell
only. This area is used to specify directories for
applications and support files. Add a key named
after your application here. Set the default value to
the path where your .EXE files is located. If you
need to, create a value named Path and set it to the
path where your .DLL's are located (if not in the
same location as your .EXE or \Windows\System).
The Windows shell automatically updates this area
if you move the executable.

When creating a future update, you might not wish to overwrite the
previous Registry entry. Doing so might render the previous version
of your software unusable. You can overcome this problem by
employing keys to set up different areas with keys for different
versions of your software. For example, you could have a:

HKEY_LOCAL_MACHINE\Software\(Company
Name)\(Program Name)\1.0

and

Page 196

HKEY_LOCAL_MACHINE\Software\(Company
Name)\(Program Name)\2.0

key to store configuration information for both programs safely.

Use the Registry tools that accompany Windows or the REGBRSR
program that accompanies this product to do your own exploring.

Value Data Types
Available in all versions of Windows:

Name No. Description
Reg_SZ 1 Null terminated string.

Available in Windows NT, Windows 95 and Windows 98 only:

Name No. Description
Reg_Binary 3 Binary data.
Reg_Dword 4 A 32 bit number.
Reg_Dword_Big_Endian 5 A 32 bit number where the most

significant byte of a word is in the
low-order byte.

Reg_Expand_SZ 2 String that contains references to
environment variables (for
example, “%PATH% ” expands to
the current path on the current
drive).

Reg_Link 6 Unicode symbolic link
Reg_Multi_SZ 7 Array of strings, terminated by

two nulls.
Reg_None 0 No defined value type.
Reg_Resource_List 8 List of hardware resources for

device-drivers. Each element is a
Reg_Full_Resource_Descriptor.

Reg_Full_Resource_Descriptor 9 Description of hardware resources
a device is using.

Reg_Resource_Requirements_List 10 List of possible hardware
resources a device can use.

Page 197

The Registry Component and ActiveX Controls
Unfortunately for Visual Basic users, the Registry API functions are
primarily designed for C/C++ programmers. Value data types don't
match Visual Basic data types, and many of the functions require
pointers. The Desaware Registry Component (dwReg.dll) and the
Registry Controls (dwReg16.ocx and dwReg32.ocx) provide an easy
way to browse and modify the Registry and Registration Database. It
provides all the functionality of the Registry API functions and more -
- designed for the Visual Basic programmer.

This control takes the approach of treating the registry as if it were a
simple file system, and provides a mechanism for working with the
registry that is familiar to Visual Basic programmers as it is similar on
the standard Visual Basic file commands.

Registry Component Example
Here is a brief example of how you could use the Registry component
to store the version information of an imaginary program. First, add
the component to your project. This is done by checking the
"Desaware Registry 2.0 Component" line in the Visual Basic
References dialog box. The following line creates an instance of the
control in your code.

Dim Registry1 as New dwRegistry

Confirm that the control is set to the correct tree. Version information
belongs in HKEY_CLASSES_ROOT.

Registry1.CurrentRoot = Hkey_Current_User

Next, verify that a key containing version information already exists
by trying to set the CurrentKey to it.

On Error GoTo notRegistered
Registry1.CurrentKey = “\SOFTWARE\Xcorp\Xapp”
On Error GoTo 0

If the key does not exist, create it. Remember that by creating a key,
you also automatically create all of the parent keys.

notRegistered:
Registry1.CreateKey

“\SOFTWARE\Xcorp\Xapp\CurrentVersion”

Page 198

Now we set the CurrentKey to that key, and add the values that hold
the version information.

Dim TmpVar as Variant

Registry1.CurrentKey =
“\SOFTWARE\Xcorp\Xapp\CurrentVersion”

TmpVar = “XYZapp”
Registry1.SetValue “Title”, TmpVar, Reg_SZ, 6
TmpVar = “1”
Registry1.SetValue “MajorVersion”, TmpVar,

Reg_SZ, 1
TmpVar = “0”
Registry1.SetValue “MinorVersion”, TmpVar,

Reg_SZ, 1

Registry ActiveX Controls
The dwReg16.ocx and dwReg32.ocx ActiveX controls have all the
same methods and properties as the component version. These are
used when you are making a 16-bit program or where maximum
compatibility between 16 and 32 bit programs is needed. The
component version is preferred for 32-bit programs because it does not
require the MFC40.DLL and MSVCRT40.DLL files for distribution.
The main difference in code between the control and component
version is that you do not need to create an instance of the control
version – as soon as you place the Registry control on your form, the
Registry1 object exists and can be used. The controls can be also
be manipulated in design time, making debugging and experimenting
easier.

Page 199

Property Page for ActiveX Controls
You can access the Registry control‘s Property Page by clicking on the
“...” button in the (Custom) property in the Properties Window or by
right-clicking on the control. This will bring up a tabbed dialog that
depicts the editable properties of the Registry OLE control. The only
tab is called Current Key. You can modify the current state of the
control by changing the information in this dialog and pressing Apply
or OK. You can change the currently accessed key by typing the new
key (with full path) into the Current Key textbox. Changing the text
in the Current Value textbox will change the value for the current
key. The list of possible root keys is available in the Current Root
combobox. If you are using Windows NT or Windows 95, you will
see HKEY_CURRENT_CONFIG and HKEY_DYN_DATA, which
exist in Windows 95 only. Attempting to select these will result in a
message box reporting an error, and the root will revert to the previous
selection. The number of subkeys of the current key can be found in
the read-only textbox labeled Number of Subkeys.

The number of the values contained in the current key are found in the
read-only Number of Values textbox. The current state of the
KeyLock property can be seen in the Keep Registry Open checkbox.

Page 200

Registry Properties

Registry - CurrentKey
This property contains the current key upon which other properties and
the majority of the methods are based. It starts at the root of the
CurrentRoot. To change this to a different key, set CurrentKey with
a full path (list the parent keys all the way to the root as necessary). If
you want to change the key relative to the current key, use the
ChangeKey method. If CurrentKey is set to a non-existent or non-
accessible key, it is reset to the root of the CurrentRoot and an error
is generated. Err.Description is “Current Key Error” and Err.Number
depends upon which error caused the problem.

Registry - CurrentRoot
This specifies in which root of the Registry the CurrentKey currently
resides. The possible values depend upon which operating system is
being used. Windows 3.1 only has HKey_Classes_Root. Windows
NT has three more. Windows 95/98 has the same ones as Windows
NT in addition to two more. However, the controls will display all
root keys contained in Windows 95/98. If you select a key that does
not exist in the operating system that you are using, an error will
result. If the root is changed, CurrentKey is changed to become the
root of the new root. All operations take place in the current root only.
Any problem will generate a “Invalid Root Value” error.

Registry - DefaultValue
This holds the “default” value, the value directly associated with the
CurrentKey. It is the only type of value available in Windows 3.1.
This is the value known as “<no name>“ in Windows NT and
“(default)” in Windows 95/98 registry editors. If the CurrentKey
does not have a value, or if the default value is not a string,
DefaultValue is empty. When DefaultValue is changed, the Registry
is updated to reflect the change. If the default value exists, it is also
represented as a value in the ValueNameArray (with an empty string
as its name). DefaultValue is not very useful in roots other than
HKey_Classes_Root, as this property only holds Reg_SZ or
Reg_Expand_SZ values.

Page 201

Registry - FindResultKey
This property holds the latest key found with FindFirstKey,
FindNextKey, FindFirstValue, FindNextValue , FindFirstValueName or
FindNextValueName . This is a read-only property. It is empty by
default.

Registry - FindResultValueName
This is a name of a value. It holds the latest result in a search for a
certain value name, or it specifies the latest value found with
FindFirstValue or FindNextValue. If a search was made by
FindFirstKey or FindNextKey, FindResultValueName will be blank.
This is a read only property. To find out more about the value named
here, use the various GetValue methods.

Registry - KeyLock
When KeyLock is set to True, the CurrentKey is kept open. This
speeds up access to the Registry, but it is somewhat less safe. The
increases in speed take effect during those functions that occur at the
CurrentKey (such as CreateKey or DeleteKey) but not during those
functions that do not occur at the CurrentKey (such as the Find
functions). You should probably set KeyLock to True just before a
series of calls to read or change the Registry, then set KeyLock back
to False. Never leave this True longer than needed. KeyLock is False
by default.

Registry - NumOfSubkeys
This holds the number of subkeys currently in the CurrentKey. Use
SubkeyArray() to access them.

Registry - NumOfValues
This holds the number of values currently in the CurrentKey. Use
the ValueNameArray() property to access the names of each of the
values, then the various GetValue methods to obtain the actual data in
the value. In Windows 3.1, this is always either 0 or 1.

Page 202

Registry - SubkeyArray
(Index as Integer)

An array of all subkeys of the CurrentKey is kept in the
SubkeyArray(). The array starts at 0. The number of subkeys is in
the NumOfSubkeys property. If the index is beyond either of these
bounds, SubkeyArray() returns a null string and a standard Out Of
Bounds error.

Registry - ValueNameArray
(Index as Integer)

An array of the names of all the values held in the CurrentKey are
kept in the ValueNameArray(). The array starts at 0. The number of
values is in the NumOfValues property. If the index is beyond either
of these bounds, ValueNameArray() returns a null and an Out Of
Bounds error. This is not available on the Properties palette. A blank
ValueNameArray element actually holds the “name ” of the default
value (blank because a default value does not have a name).

Page 203

Registry Methods

Registry - ChangeKey
(ChangeStr as String)

ChangeKey allows you to change the CurrentKey using syntax
similar to changing a file directory. If ChangeStr begins with a
backslash (“\”), the change is relative to the root key -- otherwise, it is
relative to the CurrentKey. A dot-dot (“..”) is used to move from a
subkey to its parent. If ChangeKey cannot get to the specified key, it
causes a “Trying to change to invalid key” error. You cannot go to the
parent of the root key, even if such a key exists.

For example, you cannot use ChangeKey(“..”) to move from the root
key of HKey_Current_User to HKey_Users even though
HKey_Current_User is technically a subkey of HKey_Users .

Registry - CreateKey
(NewKey as String)

This function is used to make a new key. The NewKey string can
specify an absolute path, or one relative to CurrentKey. Any subkeys
of the new key that do not exist are also created. If the key specified
already exists, nothing happens. If a new key cannot be made,
CreateKey causes a “Failure trying to create a subkey” error.

Registry - DeleteKey
(Key as String, EraseSubkeys as Boolean)

This function is used to delete an existing key. The key may be
specified relative to the CurrentKey (without a leading “\”) or as an
absolute path (with leading “\”). If EraseSubkeys is True, any subkeys
are also deleted, otherwise if the key has any subkeys it is left alone.
If the key cannot be deleted for some reason, DeleteKey generates the
“Failure trying to delete key” error.

Registry - DeleteValue
(Name as String)

This function is used to delete an existing value. The value to be
deleted must reside in the CurrentKey. If Name is blank, then the
default value is erased. If the value cannot be deleted successfully,
DeleteValue sends a “Failure trying to delete value” error.

Page 204

Registry - EnableComponent
(LicenseKey as String)

This method allows you to use the Registry component in your own
Visual Basic components, such as ActiveX controls or ActiveX
documents.

You first create a key by using the dwLicGen.exe program. This
program will ask you to enter the compiled name of your component
(not including a path, but including an extension). Each key is unique
to a component name. If you change your component name, you'll
have to create a new license key. After the program generates the key,
you will have the option to copy it to the clipboard to post into your
application.

You then call the EnableComponent method before you access any
of the components methods or properties. It is best placed in your
control's Initialize or Sub Main functions. If you ever unload or
remove the last reference to the Registry component, you will have to
go through this process again upon creating a new reference. This
method is only available in the dwReg.dll component – you cannot use
the dwReg32.ocx control in your own ActiveX controls.

 Dim DwReg As New dwRegistry

 Private Sub UserControl_Initialize()
 On Error GoTo initfailed
 ' Your key will be different.
 DwReg.EnableComponent "2E3499248E322D3636853B53"
 Exit Sub
 initfailed:
 ' Do appropriate error handling here.
 End Sub

Page 205

Registry - FindFirstKey
(Name as String, Case as Boolean, FullString as
Boolean, StartAtRoot as Boolean)

Call this function first in order to search for any keys that have a name
matching Name. If Case is True, than the comparison between Name
and the keys are case sensitive. If FullString is True, then the two
strings are compared over their whole length. If FullString is False,
then Name can be a substring of a key. If StartAtRoot is True, then
the search begins at the root key and progresses through all subkeys --
otherwise, the search starts at the CurrentKey and progresses through
its subkeys. If at least one match was found, FindFirstKey will return
True and FindResultKey will hold the first key found. If no matches
were found, FindFirstKey will return False. This function might take
several seconds to complete, depending upon the size of the root being
searched.

Registry - FindFirstValue
(Value as Variant, TypeOfValue as Long, SizeOfValue
as Long, FullData as Boolean, StartAtRoot as Boolean)

Call this function first in order to search for any keys that have a value
matching Value. The Registry type of the variant Value should be
specified in TypeOfValue . The size of the Value (in bytes) should be
in SizeOfValue.

If FullData is True, then the two values are compared over their whole
length. If FullData is False, then Value can be located anywhere
within the value being viewed. (FullData is ignored if TypeOfValue is
Reg_Dword). If StartAtRoot is True, then the search begins at the
root key and progresses through all subkeys -- otherwise, the search
starts at the CurrentKey and progresses through its subkeys.

If Value is a string (REG_SZ, REG_EXPAND_SZ or
REG_MULTI_SZ), any comparisons are made without regard to
case.

If at least one match was found, FindFirstValue will return True and
FindResultKey and FindResultValueName will hold the first key
found. If no matches were found, FindFirstValue will return False.
This function may take several seconds to complete, depending upon
the size of the root being searched.

Page 206

Registry - FindFirstValueName
(Name as String, Case as Boolean, FullString as
Boolean, StartAtRoot as Boolean)

Call this function first in order to search for any keys that have a value
named Name.

If Case is True, than the comparisons between Name and the value
name are case sensitive. If FullString is True, then the two strings are
compared over their whole length. If FullString is False, then Name
can be a substring of a value name. If StartAtRoot is True, then the
search begins at the root key and progresses through all subkeys --
otherwise, the search starts at the CurrentKey and progresses through
its subkeys.

If at least one match was found, FindFirstValueName will return
True and FindResultKey and FindResultValueName will hold the
first key and value name found. If no matches were found,
FindFirstValueName will return False. This function does not exist
in Windows 3.1. This function may take up to ten seconds to finish,
depending on the size of the root being searched.

Registry - FindNextKey ()
After the first key is found using FindFirstKey, use this function to
obtain the remainder of the keys matching those search parameters. If
there are more keys that match, each call to FindNextKey will put
another key into the FindResultKey property. If there are no more
matching keys, FindNextKey returns False and the FindResultKey
property is cleared.

Registry - FindNextValue ()
After the first key is found using FindFirstValue, use this function to
obtain the remainder of the keys with values matching those search
parameters. If there are more keys that match, each call to
FindNextValue will put another key into the FindResultKey and
FindResultValueName properties. If there are no more matching
values, FindNextValue returns False and FindResult properties are
cleared.

Page 207

Registry - FindNextValueName ()
After the first key is found using FindFirstValueName , use this
function to obtain the remainder of the keys with value names
matching those search parameters. If there are more keys that match,
each call to FindNextValue will put another key into the
FindResultKey and FindResultValueName properties. If there are
no more matching keys, FindNextValueName returns False and
FindResult properties are cleared. This function does not exist in
Windows 3.1.

Registry - FlushRegistry ()
In 32 bit versions of Windows, much of the Registry is kept in
memory to improve performance. Changes to the Registry are made
to the copy in memory. The actual Registry on disk is usually updated
a few seconds later. Call this function when you want to be 110% sure
the Registry is completely saved to disk. This call is time intensive, so
use it sparingly, if at all. KeyLock should be False before calling this
function. FlushRegistry has no effect in Windows 3.1, because its
Registry is always immediately updated to disk. If the Registry cannot
be flushed, FlushRegistry returns False.

Registry - GetValueData
(Name as String, AsString as Boolean)

This function returns the data in the value named Name residing in
CurrentKey. Use the GetValueSize and GetValueType functions to
correctly set aside the right amount of memory for the variant. See the
Data Type section of this manual for more information on how the
data is actually stored. If the AsString parameter is set to True, then
any binary data will be returned in the form of a string. If it is set to
False, then any binary data will be put into an array of bytes. If the
specified value does not exist, GetValueData returns a Null.

Registry - GetValueSize
(Name as String)

This function returns the size, in bytes, of the data in the value named
Name residing in CurrentKey. If the value specified does not exist,
GetValueSize returns 0.

Page 208

Registry - GetValueType
(Name as String)

This function returns a number representing the type of the data held
in the value named Name in CurrentKey. If the value specified does
not exist, GetValueType returns 0.

Registry - SetValue
(Name as String, Data as Variant, TypeOfValue as
Long, SizeOfValue as Long)

This function is used to modify the contents of a value in the
CurrentKey. If the value named Name does not exist, it is created. If
an error occurred while attempting to set the value, SetValue
generates the error code “Cannot Create\Change Value”. Note that the
"Cvar" Visual Basic function is not a reliable way of converting a
variable to the Variant type.

Page 209

Conversion of Value Data Types for Visual Basic
Values of type Reg_SZ, Reg_Expand_SZ, or Reg_Multi_SZ are
treated as Visual Basic strings.

Values of type Reg_Dword or Reg_Dword_Big_Endian are treated as
Visual Basic long integers.

Other values are treated as binary information. These can be held in
either Visual Basic strings or byte arrays.

Reg_Resource_List, Reg_Full_Resource_Descriptor, and
Reg_Resource_Requirements_List are utilized by device drivers and
other very low level Windows elements. Do not modify these unless
you really know what you are doing.

Possible Error Codes
Name Description
Reg_E_Access_Denied You do not have the authority to access the

key or value.
Reg_E_BadDB The Registry is corrupt. You have to either

manually repair it, restore a backup, or
reinstall Windows.

Reg_E_BadKey The particular key is corrupted or does not
exist.

Reg_E_BadRoot The value does not correspond to any
existing root. Remember that some roots
only exist in certain operating systems.

Reg_E_CantOpen The key cannot be accessed.
Reg_E_CantRead The key cannot be read. In Windows NT,

this might indicate that you do not have
permission to read that particular key or
value.

Reg_E_CantWrite The key cannot be changed. In Windows
NT, this might indicate that you do not have
permission to change the particular key or
value.

Reg_E_Child_Must_Be_Volitile You cannot make a subkey for this key
because the key might change at anytime.

Page 210

Reg_E_Key_Deleted The key is in the process of being deleted.
You cannot change it or any of its subkeys or
values.

Reg_E_Key_Not_Found The registry changed after CurrentKey had
been set.

Reg_E_Local_Machine_Root The root structure of the
Reg_Local_Machine root cannot be
changed.

Reg_E_No_Log_Space There is not enough disk space to save the
Registry.

Reg_E_Path_Not_Found The path of the key you specified does not
exist.

Reg_E_Registry_Corrupt The Registry is corrupt. You have to either
manually repair it, restore a backup, or
reinstall Windows.

Reg_E_Registry_IO_Failed The Registry cannot be accessed. The disk
might be full.

Registry Browser
To aid managing the Registry, StorageTools includes a program called
the Registry Browser (RegBrs32.exe or RegBrs16.exe). It allows
complete access to the Registry, letting you view, edit, create or delete
values and keys. It also includes powerful searching abilities that the
standard Registry editors do not have. The complete Visual Basic
source code is included, and it may be incorporated into your own
projects.

Figure 5 depicts the Main Form for the Registry Browser.

Page 211

Figure 5
Main Form Registry Browser

The currently open root is shown in the title bar. The window on the
left presents a hierarchical list of the keys, much like the list of
directories in a File Manager window. Keys that contain more keys
are preceded by a diamond icon. You can show or hide subkeys by
double-clicking on the parent key. The window on the right shows the
values in the currently highlighted key. Each value is preceded by an
icon to help assist in the recognition of its type. The name, type and
value data are separated by colons. Only the first 16 bytes of binary
data are shown.

Page 212

Registry Menu
The only item besides Quit is Force Changes to Disk. Occasionally,
changes made to the Registry are buffered, and might take a while
before being saved to disk. This item will guarantee that all
modifications have been permanently stored.

Root Menu
These menu items list all of the available root keys. Because there is
only one root key under Windows 3.1, the root menu will not exist
when this program is run there.

Key Menu
All of these apply to the currently selected key in the left window.
Add New Key brings up a dialog box that allows you to type the name
of a new key to be placed within the currently selected key. Delete
Key erases the current key and all keys and values contained within it.
Refresh Key rereads all of the values and subkeys of the currently
selected key in order to adjust for any changes other programs might
have made in the Registry.

Value Menu
Add New Value brings up a dialog box that allows you to select the
name and type of the value. After that is accomplished, another dialog
box appears allows you to edit the contents of the value (see the “Data
Editing Dialogs” section later in this chapter). Delete Value erases
the currently selected value. Edit Value brings up a dialog box that
lets you edit the value data. Double-clicking on a value also brings up
an edit dialog box.

Find Menu
You can search for particular keys, value names and value data.
Figure 6 illustrates the dialog box associated with the Find Key.

Page 213

Figure 6
Find Key Dialog Box

Input the key name (or portion thereof) into the text box at the top. If
you want to find key names that contain a fragment of a name, make
sure Match Whole Key Only is not checked. A more specific search
(Match Case is checked, Match Whole Key Only is checked, or
Start Search at Current Key is checked) takes less time.

The Find Value Name dialog (which works exactly like the Find Key
dialog).

Figure 7
Find Value Name Dialog Box

Page 214

The Find Value Data dialog is pictured below (Figure 8):

Figure 8
Find Value Data Dialog Box

First, select the type of data for which you are searching. Then click
the Change Data button to input the data that is being sought. This
button will bring up a dialog that lets you properly enter the data.
When you are done, a brief portion of the data you are looking for will
be visible to the left of the button. The check boxes and radio buttons
are the same as those in the other find routines except that Match
Case is missing (any string comparisons are done in a case insensitive
manner).

Help Menu
This menu lets you access the about box.

Data Editing Dialogs
Because values can contain up to ten different types of data, there are
four different dialog boxes for editing data.

Page 215

The Change String Data dialog is brought up when Reg_SZ or
Reg_Expand_SZ values are to be edited. Simply type the new
information into the textbox.

The Change Long Integer Data dialog is similar. It is used to edit
values of the types Reg_Dword_Big_Endian and Reg_Dword. Only
numbers can be typed into the textbox. If the number typed is too
large, an error will result and you will be given another opportunity to
input the number.

The Change Multi-Line String Data dialog box is for values of type
Reg_Multi_SZ. It has a large, multi-line textbox, but is otherwise like
the Change String Data dialog.

Finally, the Change Binary Data dialog box lets you manipulate
values of any other type. The binary data is shown as hexadecimal
digits, and no characters besides 0 through 9 and A, B, C, D, E and F
will be accepted. A ruler across the top of the edit box shows you how
many bytes of data exist.

Figure 9
Change Binary Data Dialog Box

Page 216

WARNING!
Remember that the Registry holds a great deal of information that both
Windows itself and many Windows applications depend upon. Be
careful when making changes to any part of the Registry that you did
not create. A corrupted Registry might render a program or Windows
itself unusable.

Page 217

The Desaware Resource Compiler
One common problem that programmers face is the need to include
constant data in a program. This is most typically text data or image
data. Ancient versions of Basic supported the 'Data' statement that
allowed you to place the data directly in your program code. This
command has never been part of Visual Basic.

So what options are available for embedding data into your executable
files? You can, of course, take the simple code approach. Perhaps
something like this:

dim EmbeddedStrings(3)
EmbeddedStrings(0) = "first string"
EmbeddedStrings(1) = "second string"
EmbeddedStrings(2) = "third string"
EmbeddedStrings(3) = "fourth string"

This approach works nicely, but does have disadvantages. It has an
impact on performance, since the code that initializes the variables
takes time to execute. Also, if you wish your program to support
multiple languages, you will need to include strings for each language
in your code.

Windows addresses these problems by making it possible to define a
part of your executable file as containing fixed data called resources.
A number of predefined resource types are defined, of which the most
interesting ones to Visual Basic programmers are strings, bitmaps,
icons and user defined binary data. Visual Basic allows you to access
resources in your file using the LoadResData, LoadResPicture and
LoadResString functions. You can also use API resource functions to
access resources in other programs or dynamic link libraries.

Visual Basic allows you to embed a resource file into your application
by adding a resource file (.res extension) to your project. The
enterprise edition of Visual Basic includes a resource compiler, as
does Visual C++. This resource compiler compiles a resource
command file (.rc extension) into a .RES file. The .RC file is a text file
that lists resources and is moderately cryptic to work with. A more
complete introduction to resources, why they exist and how they can
be used can be found in both the "Visual Basic Programmer's Guide to
the Win32 API" and the original "Visual Basic Programmer's Guide to
the Windows API".

Page 218

Suffice to say that in order to use resource files with Visual Basic you
must first obtain a resource compiler, write an RC file, and compile
that RC file any time any of the resources change. This approach
works, but is rather awkward. The Desaware resource compiler was
designed to fill this need in an efficient and easy to use fashion.

Not only that, but following our tradition of offering extensive sample
code, the complete source code for the resource compiler is included.
Not only will you see how resource files are organized and how they
are created, you'll also see an example of a Visual Basic add-in, and an
example of one way to use the Desaware Storage Control and OLE
structured storage.

Page 219

Final Comments - Customer Support
For information on customer support and last minute changes, refer to
the file readme.wri on the StorageTools CD. This file is compatible
with write.exe (included with each copy of Windows).

There is a saying in the software world that no non-trivial program is
completely bug free. The corollary to that saying is that no program
with more than ten lines in it is non-trivial. StorageTools is
emphatically non-trivial....

StorageTools has undergone extensive testing to make it as bug free as
possible. Nevertheless, it is possible that some have crept through.
Please write or send us a fax if you find one, and include all of the
steps that you needed to go through to reproduce the problem. Also, if
there are any files needed to reproduce the error, send them to us on a
diskette.

Our web page has a technical support area where frequently asked
questions are posted. Please feel welcome to visit this site to see if
your question has already been answered.

We would also appreciate your suggestions regarding this manual.
Specific comments and questions are especially welcome. We have
attempted to address as many questions as possible, but if you run into
something confusing, please let us know so that we can incorporate
revisions into the next edition.

Finally, and perhaps most important, we would love to hear your
suggestions for improvements to StorageTools, or any suggestions you
may have for new products or custom controls.

Please address all correspondence to:

Desaware, Inc.
3510 Charter Park Drive, Suite 48
San Jose, CA 95136
Phone: 408/404-4760, Fax: 408/404-4780
Web Site: http://www.desaware.com
Email: support@desaware.com

Page 220

Other Sources of Information
Here are several other resources that we recommend for advance
Windows development.

Regular Expressions with .NET
This ebook is intended to be a complete introduction to Regular
Expressions that can even be read and understood by programmers
who have never heard of them. It is also intended to help experienced
Regular Expression programmers come up to speed quickly on the
.NET implementation of Regular Expressions.

This ebook is available from Amazon.com.

Visual Basic.NET or C# ... Which to Choose?
In this ebook you will find an in-depth comparison of the two
languages. In a feature-by-feature, head-to-head contest, Dan pulls no
punches in calling the winner in each case.

But a technical comparison is only the beginning. With a keen eye for
the business issues involved in language choice, the author focuses on
the economic issues involved in this decision, considering the cost of
retraining and long-term support, as well as that of initial
development.

This ebook is available from Amazon.com.

Introduction to NT/2000 Security Programming
with Visual Basic
NT Security is a subject that is intimidating, to say the least. But if you
dig past the confusing acronyms, you'll find that it's actually very easy
to understand. This article, based on Dan Appleman’s well received
talks at VBits, will help you get started on the right foot with NT
security, and give you the foundation of knowledge you'll need to
understand even the most obscure security concepts. It will also
introduce you to techniques for adding security based features to your
applications (with an emphasis on Visual Basic applications).

This ebook is available from Amazon.com.

Page 221

Moving to VB.Net:Strategies, Concepts and Code
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN 1893115976).

VB.Net is not Visual Basic. Porting is stupid. COM is "dead". These
are just a few of the things you'll learn as Dan takes you on a journey
unlike any other into the world of VB.Net. Covers adoption strategies,
unlearning VB6 concepts that are fatal in VB.Net, and analysis of
language changes that goes beyond the documentation.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine 's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic 's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special

Page 222

interest to VersionStamper customers will be the chapters on OLE and
COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

Dan Appleman's Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-01-1). Appleman's Win32 API Guide
covers 700 API functions. This book covers the other 7800. How? By
teaching you everything you need to know to read and understand the
Microsoft C documentation and create correct API declarations for use
in Visual Basic. Presented in an entertaining puzzle/solution format
that challenges you to solve real world API problems. In depth
tutorials take you behind the scenes to understand what really happens
when you call an API function from VB.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

How Computer Programming Works
A useful book for future programmers or anyone interested in
explaining important computer programming concepts. Full color
illustrations help to visually explain important topics! New expanded
section on computer programming for the Internet.

Just as a child must learn the alphabet before they can read, future
programmers must understand certain concepts before they can write
their first program. This unique book uses full color illustrations to
help the reader to truly understand the underlying computer science on
which all programming is based. ISBN 1-893115-23-2.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

The Desaware Visual Basic Bulletin
and other related technical articles. At the Desaware website:
http://www.desaware.com.

Page 223

PC Magazine's Visual Basic Programmer's Guide
To The Windows API
Written by Daniel Appleman (president of Desaware) this book is
intended to help Visual Basic programmers navigate the complexities
of Windows. It is the only text on Windows that is designed
specifically for Visual Basic programmers, and the only one that
covers the interactions between Visual Basic and Windows.

Available on CD Rom only from Desaware. Call (408) 404-4760 or
email support@desaware.com.

Msdn.microsoft.com
This web site is a comprehensive reference.

Page 224

Desaware Product Descriptions
Thank you for your purchase of this Desaware product. We have
additional quality software to enhance your programming efforts.
Please visit our web site at www.desaware.com for detailed
descriptions and product demos.

SPYWORKS Standard 6/Professional 7.0

SpyWorks in a nutshell? Impossible!

You're going to want to download the SpyWorks demo to even begin
to understand its capabilities. This product has been evolving for
several years, and it includes so many features it's hard to know where
to begin. SpyWorks is a VB power tool. When you need to override
VB's default behavior or to extend VB's functionality, you will want to
use SpyWorks.

Do That in Visual Basic??

Want to put VB to the test? Want to learn advanced programming
techniques? Want to keep the productivity of VB and have the
functionality of C++? SpyWorks contains the low level tools that you
need to take full advantage of Windows. Here are just a few of the
features of this multi-faceted software package. For instance, have you
ever wanted to detect keystrokes on a system-wide basis or detect
when an event occurs in another application or thread using
subclassing or hooks? SpyWorks can help you solve these problems
by letting you tap into the full power of the Windows API without
having to be an expert. SpyWorks lets you export functions from VB
DLL's so that you can create function libraries, control panel applets,
and NT Services. With its ActiveX extension technology, you can call
and implement interfaces that VB5 or 6 do not support. SpyWorks
includes the Desaware API Class Library, which assists programmers
in taking advantage of the hundreds of functions that are built into the
Windows API. SpyWorks is available in either the Professional (Pro)
or Standard edition.

The Professional Edition includes .NET support for keyboard hooks,
window hooks and subclassing (including cross-task subclassing) with
examples in both Visual Basic.NET and C#. Additionally, a WinSock
component with comprehensive VB source code that gives you
complete control for Internet/intranet programming.

Page 225

Other features are the NT Service Toolkit Light Edition . This
application is a subset of the Desaware NT Service Toolkit product. It
allows a developer to create true NT services using Visual Basic. A
background thread component that allows you to easily create objects
that run in a separate background thread.

It also contains extensive sample code and three product updates.

The Professional Edition includes the Winsock Library, NT Service
support and many other additional features & samples, plus three free
updates. SpyWorks 2.1 (VBX Edition) is included in the Pro Edition.

SpyWorks Standard is a subset of Professional. A feature comparison
is available on our web site.

Supports VB 4, 5 & 6, Windows 95, 98, 2000, NT and ME depending
upon which version (or edition) of SpyWorks.

VERSIONSTAMPER 6.5

Distributing Component-Based Applications? Beware DLL
HELL!

You've distributed your application and it's working fine. But your
end user is still in charge of their system. What happens when they
install a program that overwrites a component that your software needs
to run? Can you verify that your users have the correct files required
by your application? Can you really afford to spend two hours on the
phone trying to figure out exactly what went wrong? Now you can
easily avoid component incompatibilities by adding VersionStamper
to your toolkit. It lets you check the versions of your program's
components on your end user’s system, and correct the problem.

Page 226

You are in control!

DLL Hell is a big problem, and with VersionStamper you can be in
control of how this problem is detected and corrected. You determine
dependency scanning (file size, date, version or other parameter), how
and when the dependency scanning is done (upon start up, at midnight,
at user's discretion), and how you want the problem resolved
(automatically, an email message to your help desk, from a
dependency list on your web site and more). This means you can
handle versioning problems as simply as using a message box to call
tech support, or even automatically updating the invalid components
over the internet or corporate network. Imagine your application
updating itself without user (or programmer) intervention! Imagine the
hours and money saved in tech support calls! You can even use
VersionStamper for incremental updates and bug fixes.

Is This For Real?

No, you don't have to pay a fortune in distribution fees - there are no
run-time licensing fees. VersionStamper comes with a great deal of
sample code. Don't distribute a component-based application without
it!

Checks the versions of your dependent files and notifies you or the
user of potential problems.

Internet extensions allow you to update versions across the
Internet/intranets.

Cool and USEFUL sample programs show you how it works.

Includes VB source code for the VersionStamper components that you
can use in your applications.

Page 227

NT SERVICE TOOLKIT 2.0

Create a fully featured service in minutes using Visual Basic – even
debug your service using the Visual Basic environment! Supports all
NT service options and controls. Adheres to all Visual Basic threading
rules. Background thread support allows easy waiting on system and
synchronization objects. Client requests supported on independent
threads for excellent scalability, with client impersonation available
allowing services to act on behalf of clients in their own security
context. Client requests and service control possible via
COM/COM+/DCOM.

Simulation mode for testing as an independent executable. Create
control panel applets for service control and other purposes.

DESAWARE EVENT LOG TOOLKIT 1.0

Visual Basic allows you to log events to the NT/2000 event log, but
does not allow you to create custom event sources - so every event
belongs to the application VB runtime, descriptions are limited, and
event categories unavailable. Even if you use the API to log events,
creating custom event sources for your application is not supported by
VB, and is difficult with C++.

Desaware's new Event Log Toolkit makes creation of event sources
easy, and provides all the tools needed to create and log custom
events. Now your applications and services can support event logs in a
professional manner, as recommended by Microsoft

Page 228

STORAGETOOLS ver 3.0

StorageTools is your key to the OLE 2.0 Structured Storage
Technology. Structured Storage allows you to create files that organize
complex data easily in a hierarchical system. It is like having an entire
file system in each file. OLE 2.0 takes care of allocating and freeing
space within a file, so just as you need not concern yourself with the
physical placement of files on disk, you can also disregard the actual
location of data in the file. Additionally, with its support for
transactioning you can easily implement undo operations and
incremental saves in your application. StorageTools allows you to
take advantage of the same file storage system used by Microsoft's
own applications. In fact, we include programs (with Visual Basic
source code) that let you examine the structure of any OLE 2.0 based
file so that you can see exactly how they do it!

StorageTools includes documentation and controls to make it easy to
work with the registration database under Windows 3.1, Windows NT
& Windows 95/98 and 2000. For Visual Basic 4-6. We also include a
simple resource compiler (with Visual Basic source code) so that you
can create your own .RES files for use with Visual Basic.

StorageTools version 3.0 also includes the Desaware File Property
component and .NET support.

StorageTools includes 16 & 32 bit ActiveX/ATL controls, extensive
documentation and sample code.

Page 229

DESAWARE ACTIVEX GALLIMAUFRY Ver. 2

What is it?

gal·li·mau·fry (gàl´e-mô¹frê) noun
plural gal·li·mau·fries
A jumble; a hodgepodge.

[French galimafrée, from Old French galimafree, sauce, ragout :
probably galer, to make merry. See GALLANT + mafrer, to gorge
oneself (from Middle Dutch moffelen, to open one's mouth wide, of
imitative origin).]
(From The American Heritage® Dictionary of the English Language,
Third Edition copyright © 1992 by Houghton Mifflin Company)

What does a Twain control, spiral art program, set of linked list
classes, a quick sort routine, a hex editor and a myriad of other custom
controls have in
common?

They are all part of Desaware's ActiveX Gallimaufry.

You'll find most of these controls useful, the rest entertaining – but we
guarantee that you'll find them all educational, because they come with
complete Visual Basic 6.0 source code.

Curious?

Want to learn some advanced API programming techniques? Visit our
web site for a full description and demo.

THE CUSTOM CONTROL FACTORY V 4.0
The Custom Control Factory is a powerful tool for creating your own
animated buttons, multiple state buttons, toolbars and enhanced button
style controls in Visual Basic and other OLE control clients, without
programming. With 256 & 24 bit color support, automatic 3D
backgrounds, image compression, over 50 sample controls and more.
Plus MList2 - an enhanced listbox control. 16 & 32 bit ActiveX
controls and 16 bit VBXs included.

Page 230

INDEX
.NET Types, 50, 55, 56, 80-85, 90, 92,
108, 163, 165, 173
Access Flags, 46-48, 60, 114, 143, 145
Combinations, 145
AllocateMemoryHandle, 50, 53, 54,
109, 110
ChangeKey, 196, 199
Commit, 40, 46-49, 60, 72, 80, 86, 90,
114, 119, 126, 143, 144, 147, 149, 152,
180
Compound Documents, 39, 43
Compound File
Converting from a Normal File, 144
CompressStorageFile, 50, 109, 147, 157
Conversion
Converting to Component Version, 43
Value Data Types, 205
ConvertToLocalTime, 51, 166
CopyTo, 58, 60, 112, 114
CreateKey, 199
CreateStorage, 60, 61, 80, 81, 86, 114,
115, 126, 143, 145
CreateStorageFile, 45, 47, 48, 51, 55,
109, 111, 143, 145
CreateStorageMemory, 53, 143, 145
CreateStream, 45, 47, 48, 61, 62, 72, 73,
97, 115, 120, 143, 145
CurrentKey, 196
CurrentRoot, 196
Customer Support, 18, 215
Date Limitations, 66, 67, 74, 89, 178
DeallocateMemoryHandle, 54
DefaultValue, 196
DeleteKey, 199
DeleteValue, 199
DestroyElement, 62, 115
Direct Mode, 46, 47, 48, 60, 72, 93,
114, 119, 130
Directory, 63, 116, 148
Directory File Type, 148

Distribution and Licensing, 20, 22
Document Summary Information, 42
dsiGetCategory, 83, 127
dsiGetCompany, 84, 127
dsiGetLinksUpToDate, 83, 126
dsiGetManager, 83, 127
dsiGetNumBytes, 84, 127
dsiGetNumHiddenSlides, 85, 127
dsiGetNumLines, 84, 127
dsiGetNumMMClips, 85, 127
dsiGetNumNotes, 85, 127
dsiGetNumParagraphs, 84, 127
dsiGetNumSlides, 84, 127
dsiGetPresentationTarget, 83, 127
dsiGetScaleCrop, 82, 126
dsiOpenDocSummaryInfo, 85, 128
dsiOpenUserSummaryInfo, 90
dsiSaveDocSummaryInfo, 86
dsiSaveUserSummaryInfo, 90
dsiSetCategory, 83
dsiSetCompany, 84
dsiSetLinksUpToDate, 83
dsiSetManager, 83
dsiSetNumBytes, 84
dsiSetNumHiddenSlides, 85
dsiSetNumLines, 84
dsiSetNumMMClips, 85
dsiSetNumNotes, 85
dsiSetNumParagraphs, 84
dsiSetNumSlides, 84
dsiSetPresentationTarget, 83
dsiSetScaleCrop, 82
dsiUserAdd, 89
dsiUserCount, 89
dsiUserDelete, 90
dsiUserDirectory, 90
dsiUserGet, 89
dsiUserSet, 89
GetCategory, 173
Functions, 81, 126

Page 231

GetCompany, 173
GetLinksUpToDate, 173
GetManager, 173
GetNumBytes, 174
GetNumHiddenSlides, 175
GetNumLines, 174
GetNumMMClips, 175
GetNumNotes, 175
GetNumParagraphs, 174
GetNumSlides, 174
GetPresentationTarget, 173
GetScaleCrop, 172
SetCategory, 173
SetCompany, 173
SetLinksUpToDate, 172
SetManager, 173
SetNumBytes, 174
SetNumHiddenSlides, 175
SetNumLines, 174
SetNumMMClips, 175
SetNumNotes, 174
SetNumParagraphs, 174
SetNumSlides, 174
SetPresentationTarget, 173
SetScaleCrop, 172
dStorage, 60
dStream, 93
DWADDR16.DLL, 132, 134, 139
DWADDR32.DLL, 97, 102, 141
dwGetAddressForRecord, 132, 139,
140, 142
dwGetBytesFromRecord, 139, 141
dwGetRecordFromBytes, 139, 141
dwLicGen.exe, 55, 165, 200
EnableComponent, 44, 55, 165, 200
EnumDirectory, 64, 65, 116, 117
EOF, 108, 138
Error Codes, 205
Errors, 51, 109, 149, 153
Examples
ActiveX Storage Control, 48

Edit a string in the Document Summary
Information Property set, 81

Edit a string in the Summary
Information Property set, 74

Storage Component (.NET), 44
Storage Component in VB, 47
File Handles, 149, 150
File Property Component Constants,
180
Filename, 162
Finalize, 65, 93
FindFirstKey, 201
FindFirstValue, 201
FindFirstValueName, 202
FindNextKey, 202
FindNextValue, 202
FindNextValueName, 203
FindResultKey, 197
FindResultValueName, 197
Flush, 40, 46-49, 93, 130, 143, 147,
149, 180
FlushRegistry, 203
Get, 93, 94, 100, 103, 107, 130, 133,
135, 137, 139, 141, 146
GetBlock, 94, 95, 107, 131, 137, 146
GetBlockCopy, 95
GetClass, 65
GetCreationDate, 66, 117
GetIStorage, 66
GetIStream, 95
GetLastAccessDate, 67, 117
GetLastModifyDate, 66, 117
GetMIStream, 67, 95
GetMode, 67, 96
GetObject, 96
GetPicture, 96, 107, 132, 137
GetRecord, 97, 98, 102, 107, 132, 134,
137, 139, 146
GetSize, 95, 98, 131, 132
GetString, 99, 107, 132, 133, 137, 146
GetValueData, 203
GetValueSize, 203

Page 232

GetValueType, 204
Help Menu, 157, 210
HKEY_CLASSES_ROOT, 182, 184,
186, 189, 190, 193, 196
HKEY_CURRENT_CONFIG, 187, 194
HKEY_CURRENT_USER, 186, 188
HKEY_DYN_DATA, 187, 194
HKEY_LOCAL_MACHINE, 186, 188,
191, 192
HKEY_USERS, 186, 187
Information
Other Sources, 216
Installation, 19
IPersistStream, 96, 99, 101
IPersistStreamInit, 96, 99, 101
IsStorageFile, 55, 111, 164
IsStorageMemory, 56, 111
IStreamToDStream, 57
IsValid, 92, 108, 165
KeyLock, 197
Keys, 182
Size Limitations, 186
Limitations
Date, 66, 67, 74, 89, 178
LoadObject, 68, 99
Memory
Storage in Memory

Releasing, 111
Move Flags, 147
MoveElement, 147
MoveElementTo, 53, 58, 68, 69, 110,
112, 117, 118
Name, 53, 92, 108, 110, 115, 129, 138,
199-204
NumOfSubkeys, 197
NumOfValues, 197
OpenFile, 163
OpenStorage, 69, 118, 143, 146
OpenStorageFile, 57, 112, 143, 145
OpenStorageMemory, 58, 112, 143, 145
OpenStream, 70, 119, 143, 146
Options Menu, 157

Overview, 39
Put, 46-49, 93, 100, 103, 107, 130, 133-
143, 146, 180
PutBlock, 95, 101, 107, 131, 133, 137,
146
PutObject, 71, 101
PutPicture, 96, 102, 107, 132, 134, 137
PutRecord, 97, 102, 132, 134, 139
PutString, 102, 103, 107, 134, 135, 137,
146
Read And Write Data, 107, 137
Readme, 19
ReadSummaryInfo, 163
RecordAddress, 97, 102, 134
RecordNumber, 102, 132, 134
RecordSize, 97, 102, 132, 134, 139, 141
Reg_Binary, 192
Reg_Dword, 192, 201, 205, 211
Reg_Dword_Big_Endian, 192, 205, 211
Reg_Expand_SZ, 192, 196, 205, 211
Reg_Full_Resource_Descriptor, 192,
205
Reg_Link, 192
Reg_Multi_SZ, 192, 205, 211
Reg_None, 192
Reg_Resource_List, 192, 205
Reg_Resource_Requirements_List, 192,
205
Reg_SZ, 192, 194, 196, 205, 211
Registration, 18
Registration Database, 182, 183, 184,
186, 193
Registry, 182-188, 191-208, 212
Registry Browser, 206, 207
Registry Control, 193, 194
Errors, 205
Properties, 194, 196, 198
Property Page, 194
Registry Control Example, 193, 194
ReleaseFile, 163
RenameElement, 71, 92, 108, 119, 129,
138

Page 233

Resource Compiler, 213
Revert, 72, 119, 144
Root Keys, 186
SaveSummaryInfo, 164
Security Level, 79, 124, 125, 170, 171
Seek, 93, 97, 100-105, 130-136, 146
SEEK_DONTMOVE, 46-49, 93, 97,
100-105, 130-136, 146
SeekPosition, 93, 94, 100-105, 130-133,
136, 146
SetClass, 73
SetElementTimes, 74, 120
SetRecord, 107, 137, 146
SetSize, 104, 108, 135, 138
setup.exe, 19
SetValue, 204
siGet, 80
STG_CONVERT, 55, 111, 144
STG_CREATE, 47, 48, 53, 54, 59, 110,
112, 144, 151
STG_DANGEROUSLYCOMMITMER
ELYTODISKCACHE, 147
STG_DEFAULT, 46, 48, 49, 147
STG_DELETEONRELEASE, 144
STG_DIRECT, 46-48, 53, 54, 59, 110,
112, 143, 144, 145, 149, 180, 181
STG_FAILIFTHERE, 144
STG_MOVECOPY, 68, 117, 147
STG_MOVEMOVE, 68, 117, 147
STG_ONLYIFCURRENT, 147
STG_OVERWRITE, 147, 152
STG_PRIORITY, 145
STG_READ, 53, 54, 59, 110, 112, 143,
145, 180
STG_READWRITE, 53, 54, 59, 110,
112, 143, 180
STG_SEEK_DONTMOVE, 46, 47, 49,
146
STG_SHARE_DENY_NONE, 143,
180
STG_SHARE_DENY_READ, 143, 180

STG_SHARE_DENY_WRITE, 143,
180
STG_SHARE_EXCLUSIVE, 47, 48,
53, 54, 59, 110, 112, 143, 180
STG_STREAM_SEEK_CUR, 146
STG_STREAM_SEEK_END, 146
STG_STREAM_SEEK_SET, 146
STG_TRANSACTED, 144, 149, 181
STG_TYPE_NONE, 63-65, 116, 148
STG_TYPE_STORAGE, 63-65, 116,
148
STG_TYPE_STREAM, 63, 64, 65, 116,
117, 148
STG_WRITE, 47, 48, 143, 180
stgCopyData, 140, 141
stgCopyDataBynum, 95, 131, 140, 141
stgGetAddressForObject, 95, 131, 140,
141, 142
stgGetAddressForRecord, 97
Storage Browser, 155
Storage Component
Methods, 50
Use of (VB), 44, 47
Storage Control
Errors, 147-152
Storage Control Methods, 109
Storage in Memory
Creating, 53, 110
Releasing, 54
Storage Menu, 156
Structured Storage, 39, 40, 43, 51, 151,
155
SubkeyArray, 198
Summary Information, 41
AddEditTimerToTotal, 168
GetApplication, 170
GetAuthor, 167
GetComments, 168
GetCreateDate, 169
GetKeywords, 167
GetLastAuthor, 168
GetLastPrintDate, 169

Page 234

GetLastSaveDate, 169
GetNumberOfCharacters, 170
GetNumberOfPages, 169
GetNumberOfWords, 170
GetRevNum, 168
GetSecurity, 171
GetSubject, 167
GetTemplate, 170
GetTitle, 167
GetTotalEditTime, 169
IncrementRevNum, 168
RecordCreateDate, 169
RecordPrintDate, 169
RecordSaveDate, 169
SetApplication, 170
SetAuthor, 167
SetComments, 168
SetKeywords, 167
SetLastAuthor, 168
SetNumberOfCharacters, 170
SetNumberOfPages, 169
SetNumberOfWords, 170
SetRevNum, 168
SetSecurity, 170
SetSubject, 167
SetTemplate, 170
SetTitle, 167
SetTotalEditTime, 169
siAddEditTimerToTotal, 77, 122
siGetApplication, 79, 124
siGetAuthor, 76, 121
siGetComments, 76, 122
siGetCreateDate, 78, 123
siGetKeywords, 76, 121
siGetLastAuthor, 77, 122
siGetLastPrintDate, 77, 123
siGetLastSaveDate, 78, 123
siGetNumberOfCharacters, 78, 124
siGetNumberOfPages, 78, 123
siGetNumberOfWords, 78, 124
siGetRevNum, 77, 122
siGetSecurity, 79, 125

siGetSubject, 76, 121
siGetTemplate, 79, 124
siGetTitle, 76, 121
siGetTotalEditTime, 77, 123
siIncrementRevNum, 77, 122
siOpenSummaryInfo, 80, 125
siRecordCreateDate, 78, 123
siRecordPrintDate, 77, 123
siRecordSaveDate, 78, 123
siSaveSummaryInfo, 80, 126
siSetApplication, 79, 124
siSetAuthor, 76, 121
siSetComments, 76, 122
siSetKeywords, 76, 121
siSetLastAuthor, 76, 122
siSetNumberOfCharacters, 78, 124
siSetNumberOfPages, 78, 123
siSetNumberOfWords, 78, 124
siSetRevNum, 77, 122
siSetSecurity, 79, 124
siSetSubject, 76, 121
siSetTemplate, 79, 124
siSetTitle, 75, 121
siSetTotalEditTime, 77, 123
siStartEditTimer, 77, 122
StartEditTimer, 168
Summary Information Functions, 74,
120
Technical Support, 215
Transacted mode, 46, 47, 48, 60, 72,
114, 119
Transactioning, 39
User Document Summary Information
Functions, 176
UserAdd, 178
UserCount, 179
UserDelete, 179
UserDirectory, 179
UserGet, 178
UserSet, 178
User Document Summary Information
Functions, 86

Page 235

Using in .NET, 44
Using in VB Component, 44
Value, 40, 125, 182-186, 193-197, 201,
202, 205
Value Data Types, 186, 192, 205
ValueNameArray, 196-198
VariantGet, 104-107, 136-139, 141, 146

VariantGetEx, 104
VariantPut, 104-107, 136-139, 141, 146
VariantPutEx, 106
Visual Basic Objects, 43
Creating, 44, 47, 48
Deleting, 46, 47, 49
Winsock, 221

