

StateCoderTM

 Version 2.0
 for Visual Studio .NET

 by

 Desaware, Inc.

Rev 2.0.0 (12/05)

Information in this document is subject to change without notice and does not represent a
commitment on the part of Desaware, Inc. The software described in this document is furnished
under a license agreement. The software may be used or copied only in accordance with the terms
of the agreement. It is against the law to copy the software on any medium except as specifically
allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying and recording, for any purpose without the express written
permission of Desaware, Inc.
Copyright © 2002-2005 by Desaware, Inc. All rights reserved. Printed in the U.S.A.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Visual Studio, Windows, Windows 95,
Windows 98, Windows ME, Windows NT, Windows 2000, and Windows XP are trademarks of Microsoft Corporation.
 NT Service Toolkit, StateCoder, VersionStamper, StorageTools, Event Log Toolkit, ActiveX Gallimaufry, Custom
Control Factory, and SpyNotes #2, The Common Dialog Toolkit are trademarks of Desaware, Inc. SpyWorks is a
registered trademark of Desaware Inc.

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the
product and all accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed to you for use only on a single computer. If you wish to install it on
additional computers, you must purchase additional software licenses. You may (and should) make
archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software and all
other materials and retain no copies, and the recipient agrees to the terms of this agreement.

You may not make copies of this software for other people. Companies or schools interested in
multiple copy licenses or site licenses should contact Desaware, Inc. directly at (408) 404-4760.

Should your intent be to purchase this product for use in developing a compiled .NET program of
the following types: Windows application (.exe), Windows service (.exe), ASP.NET web
application (.dll) or Web service (.dll), you may create runtime license certificates and distribute
the StateCoder redistributable files without paying additional royalties. Review the listing of which
files (located below) that can be distributed and or modified. If Desaware files are included in your
executable program, you must include a valid copyright notice on all copies of the program. This
can be either your own copyright notice, or “Copyright © 2005 Desaware, Inc. All rights reserved.”

Should your intent be to purchase this product for use in developing a compiled .NET components
of the following types: Windows control (.dll), Web control (.dll) or Component (.dll) or Class
library (.dll), you must purchase an embedded software license from Desaware before you may
distribute your component.

You have a royalty-free right to incorporate any of the sample code provided into your own
applications with the stipulation that you agree that Desaware, Inc. has no warranty, obligation or
liability, real or implied, for its performance.

Desaware.StateCoder11.dll and DesawareStateCoder20.dll: You may include with your
program a copy of these files under the terms in the preceding paragraphs.

StateCoder Source Files: Source code for portions of StateCoder are included for educational
purposes only. You may use this source code in your own applications only if they provide primary
and significant functionality beyond that included in the StateCoder package. You may not use this
source code to develop or distribute components and tools that provide functionality similar to all
or part of the functionality provided by any of the components or tools included in the StateCoder
package.

Please consult the on-line Help file under the topic File Descriptions for additional information.

Limited Warranty
Desaware, Inc. warrants the physical CD and physical documentation enclosed herein to
be free of defects in materials and workmanship for a period of sixty days from the date
of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be
limited to replacement of defective CD(s) or documentation and shall not include or
extend to any claim for or right to recover any other damages, including but not limited
to, loss of profit, data or use of the software, or special, incidental or consequential
damages or other similar claims, even if Desaware, Inc. has been specifically advised of
the possibility of such damages. In no event will Desaware, Inc.'s liability for any
damages to you or any other person ever exceed the suggested list price or actual price
paid for the license to use the software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Specifically, Desaware, Inc. makes no representation or warranty that the
software is fit for any particular purpose and any implied warranty of merchantability is
limited to the sixty-day duration of the Limited Warranty covering the physical CD and
documentation only (not the software) and is otherwise expressly and specifically
disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary
from state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the
laws of the State of California, and any action hereunder shall be brought only in
California. If any provision is found void, invalid or unenforceable it will not affect the
validity of the balance of this License and Limited Warranty, which shall remain valid
and enforceable according to its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is
subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical
Data and Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1)
and (2) of Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as
applicable. Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park Drive, Suite
48, San Jose, California 95125.

Table Of Contents
Introduction... 9

StateCoder Features .. 10

What are State Machines, and Why Should You Care? 14

Why are State Machines Important?... 15

State Machine Design Patterns – or How State Machines can help you
avoid creating bad .NET code... 21

Long Synchronous operations... 22

Asynchronous Operations... 27

Why Desaware’s StateCoder is the best way to implement State Machines
in .NET.. 31

What is a StateCoder State Machine?... 32

The StateMachine object... 32

The State objects. .. 33

The Messages.. 34

The rest.. 35

What will you do with StateCoder? .. 35

Tutorials .. 36

Tutorial 1: Building a state machine for long operations 36

The StateCoderTutorial1 Message Source.. 39

The StateCoderTutorial1 State Machine... 41

The StateCoderTutorial1 form.. 42

More on StateCoderTutorial1 ... 45

Tutorial 2: Building a state machine for asynchronous operations....... 48

The StateTutorial2 State objects ... 50

Asynchronous Operations and Events .. 53

Tutorial 3: Building an unmanaged state machine 54

The UpdateDataMachine state machine ... 55

Managing an Unmanaged State Machine ... 62

Tutorial 4: From unmanaged to managed state machines 68

Tutorial 5: Nested state machines ... 73

Review .. 84

StateCoder Quick Start ... 85

Creating a Simple Managed State Machine.. 85

Step 1 – Create Project.. 85

Step 2 – Assign Names ... 85

Step 3 – Editing your “States” class file ... 85

Step 4 – Create your StateMachine class.. 86

Step 5 – Create your State classes... 86

Step 6 – Add functions to your state machine 87

Step 7 – Add functions to your states ... 88

Step 8 – Start your State Machine... 90

Step 9 – Wait for your State Machine to end.................................... 92

Creating a simple timer based state machine.. 93

Step 1 – Create Project.. 93

Step 2 – Assign Names ... 93

Step 3 – Editing your “States” class file ... 94

Step 4 – Create your StateMachine class.. 94

Step 5 – Create your State class.. 95

Step 6 – Add functions to your state machine 96

Step 7 – Add functions to your states ... 97

Step 8 – Start your State Machine... 98

Step 9 – Wait for your State Machine to end.................................. 100

Sample Applications ... 102

Retrieving Information from the Internet ... 102

Do it yourself transactioning... 104

About Transactioning.. 104

The StateCoderAuctionDatabase component. 106

The StateCoderAutoBid Application.. 107

Building Dynamic State Machines ... 108

About Dynamic State Machines ... 108

The CommandLine Sample Application .. 109

Improving performance in dynamic ASP.NET web sites................... 113

Predictive ASP.NET and Desaware's StateCoder........................... 113

Reference .. 120

State Classes.. 120

The State Class.. 120

The DynamicState Class ... 125

State Machine Classes... 128

The StateMachineBase class... 128

The StateMachine Class.. 134

The UnmanagedStateMachine Class .. 138

The StateMachineFlags Enumeration ... 141

Exception Classes ... 142

The StateException class .. 142

The StateAbortException class ... 144

The StateTimeoutException class... 145

Message Sources... 145

The IMessageSource Interface.. 146

The MessageSourceFlags Enumeration.. 149

The AlwaysSignaledWaitHandle Class .. 150

The GenericMessageSourceBase Class .. 151

The AsyncResultMessageSource Class .. 154

The ManualMessageSource class ... 158

The AlarmMessageSource class ... 159

The ProcessMessageSource class ... 161

The ParsingStreamReader class.. 162

The ParsingClass Class ... 166

FrameWork control... 170

Diagnostic Classes .. 172

The SCTraceSwitch class ... 172

The StateCoderTraceEvent class .. 174

The SCTraceListener class ... 177

State Machine Threading Issues ... 180

State Machines and Exceptions .. 183

Design Issues for Using StateCoder with Components 186

State Machine Tracing and Diagnostics ... 187

Traditional Tracing ... 188

The Switch – Deciding what to report .. 189

The SCTraceListener Object... 192

Licensing and Distribution.. 194

More On Licensing ... 196

Demo mode... 196

Design/Debug Mode ... 196

Runtime Distribution with Applications... 197

Embedded Distribution with Components...................................... 197

Switching between Computers ... 197

Security ..Error! Bookmark not defined.

Technical Support ... 199

Introduction
Introducing Desaware’s StateCoder presents to us a unique problem. You,
the reader, may come from many different backgrounds.

Some of you, upon hearing the words “Finite State Machine” will
immediately recognize the term as describing a design pattern with which
you are not only familiar, but use routinely in virtually every program you
write. For you, the introduction needs to explain why Desaware’s
StateCoder is a much better way for you to create state machines in .NET.
It will save you time, offer improved reliability in areas ranging from
thread safety to long term supportability, improve your application’s
efficiency and performance – in short, reduce your costs of developing
high quality .NET software.

But I realize that many of you, especially those of you who are self-taught,
may not be familiar with state machines at all. It’s a subject that tends to
be covered mostly in academic press and articles rather than in the more
practical form needed by most software developers. Many of you have
heard of state diagrams, and perhaps seen them used in UML documents,
but have not necessarily translated them into real code. For you, the
introduction really needs to teach you about state machines. You see,
you’re already using them, whether you realize it or not. But if you take
the time to learn more about state machines, you’ll find the benefits to
your code will be enormous – because state machines are applicable
everywhere. Once you learn about state machines, I’ll show you why
Desaware’s StateCoder is the best way to create and use state machines in
.NET.

So here’s the deal.

For those of you who need to learn more about State Machines, in the next
section I’ll go into an in-depth, practical and very non-academic tutorial
on state machines and the design patterns that go with them. But first, I’d
like to provide a feature list of Desaware’s StateCoder for those who are

9

familiar with State Machines. Don’t worry if you don’t understand these
features now – by the time you finish the tutorial, you’ll understand them
all:

One last thought before going into the feature list: While we did develop
StateCoder to help .NET programmers create better .NET programs, we
also created it as the base framework on which we’ll be building
additional .NET products and services. So when we talk about the benefits
of StateCoder, know that our own developers are our first (though not
necessarily most important) customers.

StateCoder Features
StateCoder is a .NET namespace that is designed to make it easy to create
and support powerful State Machines in .NET using Visual Basic .NET,
C# and other .NET Languages.

With Desaware’s StateCoder, you will create .NET code that is:

• More reliable

• Easier and cheaper to test

• Easier and cheaper to support, understand and to modify safely

• More immune to threading synchronization problems

• More efficient – uses fewer system resources

• Cheaper and faster to develop.

Typical Applications for Desaware’s StateCoder include:

• Management of asynchronous operations. Especially useful for
managing large numbers or varying numbers of asynchronous
operations.

10

• Dramatically reduce the number of threads needed to perform
background operations (especially useful for objects that support
multiple clients)

• Selective use of between-request processing for ASP.NET and
Web Services can dramatically improve user response, while using
minimal server resources.

• Encapsulating sequences of asynchronous operations (wrapping
them into a single event or wait operation).

• Protocol Implementation. Internet or other protocols are almost
always based on state machines.

• Data format conversions. State machines can be used to parse
incoming data and perform operations based on the results,
including generating output data in a different format.

• Do-it-yourself transactioning. State machines can define
transaction based objects that don’t use COM+/MTS.

The classes of the Desaware.StateCoder namespace form a framework that
offers the following features:

• State machines can be defined statically using attributes or
dynamically.

• Flexible thread control - from using a single thread to support
unlimited state machines to assigning each state machine its own
thread.

• State machines can be assigned to web applications and services,
running in the background between requests.

• Largely self-synchronizing – when used correctly, eliminates the
chance of data corruption, race conditions and deadlocks (and

11

reduces the chance of these things happening even when used
incorrectly).

• Complete flexibility with regards to message sources. Base
message sources include:

o Generic source for custom message sources.

o IAsyncResult based source for asynchronous operations.

o Stream based message source with predefined or custom
parsing into messages.

• Message sources can be built on our base types (one or two
overrides and you’re done), or created from scratch.

• Messages can be of any .NET type.

• Multiple message sources are allowed.

• Message sources can be redefined for each state in the state
machine.

• Message sources can include timeouts.

• Exceptions can act as message sources.

• State machines can act as messages sources to other state
machines.

• State machines can invoke other state machines.

• State machines can be run by the StateCoder framework, or create
your own framework for running a state machine – or run it
synchronously.

• Fully resource driven – easy to localize.

• Per developer licensing makes it inexpensive to incorporate
StateCoder into your own applications and services.

12

New Features for Version 2.0
Version 2.0 of StateCoder incorporates the following new features:

• .NET 2.0 Framework components.

• New Generic based State class.

• New QueuedStream class.

• Updates for compatibility with .NET 2.0 and ASP .NET 2.0.

This edition of StateCoder includes two StateCoder components:

• Desaware.StateCoder11.dll for use with the .NET 1.1 framework

• Desaware.StateCoder20.dll for use with the .NET 2.0 framework

The two components are almost identical – the main difference being that
the .NET 2.0 version includes generic forms of the State and
DynamicState classes.

We no longer recommend installing StateCoder in the GAC (in order to
simplify versioning and distribution), though you may continue to do so.

The version 2.0 components are source compatible with your existing
StateCoder components but are not drop-in replacements. You must
rebuild your application to use them.

13

What are State Machines, and Why Should You
Care?
A State Machine, in the context of software, is a way of organizing the
operations that take place in an application. The idea is that your program
exists in a finite number of possible states, and that something happens to
move your program from one state to the next.

For example: You might have a web application that allows you to log in
and view your account information. This could be divided into the
following states:

• Not yet logged in.

o Action: Display the login page

• Logged in and viewing the account balance

o Display the account balance

o Display logout button, and view transaction button.

• Logged in and viewing recent transactions

o Display recent transactions

o Display logout button, and view account balance button.

• Logged out

o Display “Goodbye page”

At any given time, the application exists in one of these four states. In
each state there exist a limited number of possible events (typically called
“messages” when discussing state machines). For example, during the
“Logged in” state, the page displays text boxes for the user name and
password and a “login” button. If the user enters a correct login, the
application switches to the “Logged in and viewing the account balance”

14

state. If the login fails, the user sees an error message and the application
remains in the “Not logged in state”.

State machines are frequently described using State Diagrams (or State
Transition Diagrams – STD) that look something like this:

The initial state is where the state machine starts (the circle marked Initial
state, and the one marked End State are not states themselves – rather
pointers to the actual initial and end states). Each state is represented by a
circle. Each arrow represents a message that can be received by the state
machine (often triggered by an event) that can cause the machine to
change states. Thus in this example, a successful log-in moves the
application into the account viewing state.

Why are State Machines Important?
To understand why state machines are so important, remember that much
of what we do as software developers consists of managing complexity.
We implement very complex applications and algorithms by breaking
them up into smaller manageable tasks.

One of the key purposes of object oriented programs (OOP) is to help
manage complexity. By using information hiding within objects
(implementing private functions and variables) and defining a limited
number of public methods and properties, you are able to deal with an
object as a single indivisible entity. Once the object is created and

15

implemented, you no longer have to worry about how it works or the
possibility of accidentally modifying one of its internal data variables.
Thus Object Oriented Programming inevitably results in simpler programs
– programs that are easier to understand and support.

State machines serve the same purpose, but on an architectural level. As
part of the development of a state machine you define all of the valid
events that may occur during that state. For each event you define an
action and a state transition (which includes the possibility of remaining in
the same state). You might also define an action for all invalid states.

What does this accomplish?

• First, it makes the program far easier to modify. Adding new
features might consist of adding new states. By clearly defining the
events that can bring you to that state and events for that state you
at the same time define the code that needs to be modified. Code
that is not involved with that state can be safely ignored.

• It becomes dramatically easier to test programs implemented as
state machines. Why? Because it is possible to break down the
testing process into testing of individual states. If you test each
state for all of its possible events (a reasonable task), you can go a
long way to eliminating bugs in your program. True, there may
remain subtle bugs due to the interaction of states (especially if
they share any data), and your state machine may itself have design
flaws (say, forgetting a particular event), but the results of this
approach will always result in a higher quality program than
otherwise.

• Using state machines also demands that you spend some time
designing them before you start coding. And let’s face it, design
time is something that developers often skimp on, especially in the
face of deadline pressures.

Here’s another way of looking at it.

16

Figure 1 shows how object oriented programming reduces complexity by
reducing the number of functions and variables you need to deal with at a
given level of your program. In this illustration you can see on the left side
a large number of variables and functions that might appear in a non OOP
program. When using OOP the variables and functions are hidden inside
of objects. These objects expose a limited number of methods that provide
a high level encapsulation of the enclosed variables and functions. As a
result, once you’ve implemented these objects, instead of having to worry
about a large number of variables and functions (and their interactions),
you need only concern yourself with a small number of objects and their
methods. Fewer items to work with results in reduced complexity,
increased reliability, and overall lower software development costs.

17

Figure 1 – Object oriented programming.

Now consider figure 2. On the left side, instead of lists of functions and
variables you can see a list of events. These are possible inputs to your
program. These can be in the form of user actions, data received from a
network, data read from a disk or other source and even results of an
operation or exceptions that occur while a program is running - basically
anything that can represent input to your program.

Figure 2 – State machine programming.

18

If your code has to consider all possible inputs at all times, the complexity
of the any non-trivial program would be impossible to deal with.
Fortunately, this is rarely the case – programs naturally deal with certain
events at certain times. A function that reads data from disk rarely worries
about user input. Yet at the same time, that function that reads data from
disk may receive unanticipated input – a user abort or disk error, and the
failure to deal with unanticipated input is a key source of bugs and
instability in software.

A state machine serves to divide an application’s life into a series of states,
each of which has a set of acceptable input. Once in a given state, you
need only concern yourself with valid inputs. Invalid inputs are by
definition errors that can be trapped and handled. Just as OOP simplifies a
program by reducing the number of variables and functions you need to
deal with, state machines simplify a program by reducing the number of
inputs you need to deal with. Collapsing a given set of inputs into a state
machine that has a set start point and end point, and can be dealt with as a
single entity, just as an object can deal with a group of variables and
functions as a single entity.

State machines work at multiple levels. Consider the following state
machine:

19

This represents a state machine that processes incoming characters to look
for words in the format of a proper noun (i.e., the first character is upper
case, all other characters are lower case.

The first state handles three possible messages. A white space character
(such as space or tab) indicates the word has not yet started, so the
machine remains in the same state. An upper case character means that the
word has started, so the machine transitions into the second state. Any
other character represents a failure, so the machine moves into the Failed
state. Once in the second state, all subsequent lower case letters indicate
continuation of the word, so the machine remains in the same state. A
white space or legal punctuation indicates the end of the word, which
moves the machine into the “success” state. any other character again
moves the machine into the failed state.

Do people use state machines to process text in this manner? Absolutely.
In fact, the .NET framework includes a namespace called
System.Text.RegularExpressions whose sole purpose is the processing of
text using state machines that are defined using a special Regular
Expression Language! For an in-depth tutorial and reference of this
language (that is considerably easier to follow than Microsoft’s
documentation) refer to the E-book “Regular Expression in .NET” which
can be purchased from
http://www.desaware.com/products/books/net/regexpressions/index.aspx .

20

http://www.desaware.com/products/books/net/regexpressions/index.aspx

State Machine Design Patterns – or How State
Machines can help you avoid creating bad
.NET code.
“Design patterns” is one of those terms that has received a great deal of
attention lately and can be intimidating to those who don’t realize that the
idea behind them is very simple. A design pattern is just a common way of
doing something.

For example: let’s say you want to swap two elements in an array. The
following pseudocode1 demonstrates a design pattern that performs this
task:

Temp = A(n)
A(n) = A(m)
A(m) = Temp

Unless a language contains a function designed to swap two variable,
you’ll see something that looks more or less like this code anywhere that
two array elements need to be swapped. This code can thus be thought of
as a design pattern for swapping elements in an array.

Design patterns enable us to look at common solutions (both good and
bad) for various problems.

Now, state machines are applicable in many different scenarios. There are
many problems that can be solved both with and without clearly defined
state machines, where the state machine based design pattern will improve

1 Pseudocode is “fake” code. It’s code that is in no particular language, and can’t actually
be compiled and run. It’s a mixture of descriptive text and something that looks like code
that anyone with a familiarity with any block structured language (such as C#, VB, C++)
can understand.

21

the code2. But there are a number of areas in .NET where state machine
based design patterns are vastly better than any other approach. They are:

• Performing long synchronous operations

• Any time you handle asynchronous operations

• Any time you use multithreading

• When implementing a protocol based application

In this section, you’ll see common but flawed design patterns for the first
two of these scenarios, and how you can use a state machine based design
pattern to eliminate those flaws. The third scenario will become clear as
you read the first two. The fourth scenario won’t be demonstrated because
it’s obvious – you can’t implement a non-trivial protocol without a state
machine – so any implementation that doesn’t use a clearly defined (and
properly designed) state machine is bound to be less reliable than an
implementation that is coded haphazardly.

There are many applications for state machines that fall outside of these
design patterns, some of which can be found in articles on our web site,
but these four areas tend to benefit most from formal implementation in
state machines (largely because implementations that don’t include formal
implementations of state machines tend to suffer the most problems).

Long Synchronous operations
One common problem in single threaded applications relates to
performing a sequence of time consuming synchronous operations. Let’s
say you have three long operations to perform in sequence. These can be
CPU intensive operations, or operations such as service or network
requests or database queries that are synchronous (i.e., you must wait until

2 I say clearly defined, because in many cases your code is acting as a state machine even
if you haven’t thought about it.

22

the operation concludes in order to continue). The obvious design pattern
is:

LongOperation1()
LongOperation2()
LongOperation3()

Or the closely related pattern
Do

LongOperation
Loop While …

The problem with this approach in a single threaded application is that
while you are waiting for this sequence to conclude, the rest of your
application is frozen. One design pattern I’ve seen in all too many Visual
Basic programs tries to alleviate the problem as follows:

LongOperation1()
Application.DoEvents3()
LongOperation2()
Application.DoEvents()
LongOperation3()

Or
Do

LongOperation
Application.DoEvents()

Loop While …

The DoEvents allows temporary event processing to occur (it’s the
equivalent of a PeekMessage call for those of you from the C++ world).
This is a terrible design pattern. First, the degree to which it actually helps
depends on the length of the long operations. This often results in “jumpy”
form behavior. Worse, the DoEvents command adds the possibility of
reentrancy – during the event the entire gamut of input messages becomes

3 The VB6 DoEvents command has its equivalent in the .NET
System.Windows.Forms.Application object.

23

possible and must be dealt with – otherwise you might find yourself
reentering this sequence – a potentially fatal problem. It is the exact
opposite of simplification.

A better design pattern is to turn this into a state machine such as the one
shown in the following pseudocode.

Enum StateVariable
 0 = DoLongOperation1
 1 = DoLongOperation2
 2 = DoLongOperation3
End Enum

On Timer
 Based on StateVariable
 Case 0: LongOperation1 ()

 StateVariable = 1
 Case 1: LongOperation2 ()
 StateVariable = 2
 Case 2: LongOperation3()
End

For a loop, you would have a single state, and during the state would
determine (based on a counter) if the state machine should terminate or
continue.

Now, this pattern is better. You’ll still get jumpy performance because you
are using a single thread, but you no longer have the problem of
reentrancy. Yes, input may come in between states, but you can easily
detect the current status of your state machine and deal with the input
accordingly.

With .NET, it becomes easy to create multithreaded applications, in which
case the following pattern becomes possible.

In main thread:
Create LongOperationThread(LongOperationThread_Start
)

24

In the launched thread

LongOperationThread_Start
 LongOperation1()
 LongOperation2()
 LongOperation3()

End

You can detect whether the operations are complete by checking the
thread object or waiting for the thread to terminate using the Join method.

This is a very reasonable pattern for this simple case. Problems occur in
three cases:

• What if this is a business object that has to support multiple clients.
Creating a new thread for each client or on each call is very
expensive in terms of system resources and can seriously impair
performance.

• What if its not a simple sequence of long operations, but rather a
series of long operations, where the choice of the operation to
perform depends on the results of the previous operation?

• If the long operations share ANY data with the main thread, you
run into the possibility of memory corruption due to a failure to
synchronize access to the data.

In the first case, the answer is to use a thread pool to perform the desired
operations. Each client uses a thread from the pool if one is available,
waiting if necessary for a thread to become available.

In the second case, the obvious answer is to implement a state machine
instead of a simple sequence. After each operation returns you can choose
the next state based on the result of the previous operation.

The third case is by far the most serious. Chapter 7 of Dan Appleman’s
book “Moving to VB.NET: Strategies, Concepts and Code” includes an
in-depth explanation of the sources of these synchronization problems and
the risks involved. How big are the risks? The book demonstrates an easy

25

to overlook problem in a financial application which causes an error on the
average of once every 50 million operations. The error causes an arbitrary
amount of money to appear or vanish. Obviously, it is not feasible to test
for errors that occur so rarely, yet the cost of these errors can be virtually
unlimited. Careful design is essential when creating multithreaded
applications.

Multithreading synchronization problems can occur any time data is
shared among threads. It is especially serious in .NET because the .NET
framework itself is not by and large thread safe. Thus it is essential that
programmers use great care when deciding to launch additional threads in
their applications – especially if they do not have experience designing
multithreaded applications.

Desaware’s StateCoder is ideal for implementing this design pattern. It
addresses all three issues:

1. State machines implemented using StateCoder can be run in their
own thread, or in a thread pool – as you prefer.

2. It is trivial to change the sequence of long operations into states.
The transition from one state to another is a single method call, and
the choice of state can be based on the results of the previous
operation.

3. With Desaware’s StateCoder, each state is an object that is not
accessible from the main operation other than through messages.
The architecture makes it easy to isolate data from the main thread
(in fact, you have to go out of your way to share data). More
important, each state machine runs in a single thread, and incoming
messages are synchronized to that thread. You’ll read more about
how this works later. But in a nutshell – it provides much of the
thread safety with which Visual Basic programmers are familiar,
but unlike Visual Basic 6, does not prevent you from bypassing the
protection an performing your own synchronization.

26

How this is accomplished will be discussed later. Meanwhile, the
StateCoder design pattern for this might be as follows:

In the main thread:
Create LongOperationStateMachine object.
LongOperationStateMachine.Start()

You can detect whether the operations are complete by polling the state
machine object, waiting for it (using a wait operation), or watching for an
event. The state machine object itself contains objects and code that
implement the state machine, but the details of that implementation are
hidden at this higher level of abstraction. The result is a dramatic
simplification in your program (especially in the case of more complex
state machines).

Long operations pose additional challenges if you want them to be
interruptible. For further discussion of design patterns related to
interruptible long operations, refer to our web site at
http://www.desaware.com/tech/statemachinelongop.aspx .

Asynchronous Operations
Regardless of whether a long operation takes place in a background thread
or a foreground thread, sequentially or as part of a state machine, that long
operation will tie up a thread for some period of time. Many such
operations provide the ability to perform the operation asynchronously.
The design pattern for an asynchronous operation in .NET is shown in the
following pseudocode:

The main thread starts the asynchronous operation:
AsyncResultVariable =
BeginOperation(DelegateToCallOnCompletion)

This function return immediately. When the operation is complete, the
completion function is called:

27

http://www.desaware.com/tech/statemachinelongop.aspx

CallOnCompletion(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
End

A state machine to perform the three long operations can be implemented
using a series of events as follows:

AsyncResultVariable =
BeginOperation(

DelegateToCompletionLongOperation1)

CallOnCompletionLongOperation1(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
 AsyncResultVariable =
 BeginLongOperation2(
 DelegateToCompletionLongOperation2)
End

CallOnCompletionLongOperation2(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
 AsyncResultVariable =
 BeginLongOperation3(
 DelegateToCompletionLongOperation2)
End

CallOnCompletionLongOperation3(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
End

You can, in fact, build a complex state machine simply by choosing which
asynchronous operation to start in each event.

If you were to look at a StateCoder implementation of a similar state
machine, you might find a similar pattern inside the state machine itself.
StateCoder provides full support for asynchronous operations, and in fact
encourages their use. The difference being that while the design pattern
might be used inside the state machine, the high level design pattern for
using the state machine would again look like this:

28

Create LongOperationStateMachine object.
LongOperationStateMachine.Start()

Isolation of the state machine implementation from the rest of your code is
a key feature of StateCoder.

What you don’t want to do is implement this design pattern:
AsyncResultVariable =

BeginOperation(
DelegateToCompletionLongOperation1)

Do
DoEvents

Loop until CompletionFlag1

AsyncResultVariable =
BeginOperation(

DelegateToCompletionLongOperation2)
Do

DoEvents
Loop until CompletionFlag2

AsyncResultVariable =
BeginOperation(

DelegateToCompletionLongOperation3)
Do

DoEvents
Loop until CompletionFlag3
Continue running...

CallOnCompletionLongOperation1(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
 CompletionFlag1 = True
End

CallOnCompletionLongOperation2(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
 CompletionFlag2 = True
End

CallOnCompletionLongOperation3(AsyncResultVariable)
 EndOperation(AsyncResultVariable)
 CompletionFlag3 = True

29

End

The programmer implementing this code is trying to run asynchronous
operations synchronously. At first glance, this code looks truly terrible.
But in fact, it is truly terrible. It does avoid the problem of freezing the
main thread, but opens the door to the reentrancy problems described
earlier. Any time you see this design pattern, your code is begging for a
redesign into a state machine.

30

Why Desaware’s StateCoder is the best way to
implement State Machines in .NET
Visual Basic developers know that components and products from
Desaware tend to be unique.

• We offered tools for subclassing and hooks before most VB
programmers even knew what subclassing was (SpyWorks – now
for .NET also).

• We offered components for using OLE Structured Storage from
VB when most VB programmers didn’t know what OLE
Structured storage is, and why it’s a great way to store data in
certain applications (StorageTools – now for .NET also).

• We figured out a way to make world class NT Services using VB –
so easily that many of our customers switched from C++ to VB
just to use this tool (honest! – Desaware’s NT Service Toolkit –
also the best way to create Services for .NET).

• We offered tools for detecting component conflicts and resolving
“DLL Hell” problems, before most programmers even knew what
DLL Hell was (VersionStamper).

These are tools and components that make important tasks easy or
possible – certainly less expensive to do with our tools than from scratch.
Yet, one common thread is that we often find ourselves introducing
programmers to technologies that they may not be very familiar with.
That’s why we always say that we at Desaware consider ourselves
educators, as well as component vendors.

So far, you’ve seen the case made for use of state machines in general. If
you are experienced with the use of state machines, you already know
everything you’ve read there, and probably more. If you’re new to state
machines, hopefully you are intrigued enough to realize that they are

31

worth learning about, regardless of the type of programming you are
doing.

In this section, we’ll show you how Desaware’s StateCoder fits into the
picture, and why we not only believe the outrageous claims we’re making,
but are using it as the infrastructure behind a series of .NET components

What is a StateCoder State Machine?
A state machine in StateCoder is made up of classes that you define that
inherit from base classes in the Desaware.StateCoder namespace. The
principle is exactly the same as that used to create other .NET classes such
as forms, controls and web pages.

The StateMachine object.
In StateCoder a state machine is any object that inherits from the class
Desaware.StateCoder.StateMachine or
Desaware.StateCoder.UnmanagedStateMachine.

Most of your state machines will derive from
Desaware.StateCoder.StateMachine, meaning that it is managed by the
StateCoder framework. That means the framework will be responsible for
watching for and sending messages, managing threading, synchronization,
exceptions and various and other tasks.

The most important part of defining your StateMachine class will be
defining the states. This is typically done using attributes. The
ContainsState(statename) attribute defines the states for the state machine.
You can also pass an array of state objects to the state machine when it is
created.

Your StateMachine object is the only object that will be accessible to your
main program. You might define properties or methods if you need to
specify any information to the state machine before it starts. You might

32

also add members for any data that needs to be shared by the states in the
state machine.

Then you’ll call the Start method to start the state machine running.

The StateMachine object has additional capabilities. It can raise events
when the state machine enters the end state. It can provide a waitable
object for you to wait for completion. It has a hook capability that allows
you to monitor state transitions. And, of course, you can build in
additional features as well.

But the key thing to remember is that all access to your state machine
should be through this object. This object provides much of the
encapsulation that helps StateCoder simplify use of state machines (and,
of course, does a lot behind the scenes so that you don’t have to).

State machines can signal the calling program that they have reached the
end state using an event or a wait handle.

The State objects.
Each state in your state machine is represented by a class that inherits
from the Desaware.StateCoder.State, Desaware.StateCoder.DynamicState
class (the latter allows you to define states dynamically and thus define
state machines at runtime), or a generic version of each that accepts the
type of the owner state machine as a parameter (VS 2005 only).

One of your state classes must have the “InitialState” attribute, and one the
“FinalState” attribute. Each state has a member that points to its state
machine, so you can access any data common to the state machine. Each
state overrides the method “MessageReceived” to process incoming
messages. Each state calls the “NextState” method to specify the next
state. It can also override the “EnterState” method that is called when the
state is entered (immediately after another state calls NextState). A state
object can also process incoming exceptions.

33

Now here’s the cool thing: Once you’ve created a state machine, you are
guaranteed that all messages will come into that state machine on the state
machine’s thread. You’re also guaranteed (obviously) that your state
machine will always be in a particular state. This means that unless you go
out of your way to create a new thread within the state machine, the only
possible area for multithreading synchronization problems are on the
public properties of your state machine object. The states themselves are
inherently self synchronizing.

But what if you think you do need a new thread inside a state machine?
No problem – just create another state machine! StateCoder state machines
can use other state machines. This is important, because it means that
instead of creating big complex state machines (and their corresponding
large complex state diagrams) you’ll tend to create smaller state machines
that call each other.

The Messages
Desaware’s StateCoder defines a message as a .NET object, which means
it can be anything you wish based on the needs of the state machine.
Messages are generated by objects that implement the IMessageSource
interface. This interface includes methods that allow you to determine if a
message is ready, to retrieve a message, and to retrieve a wait handle
(System.Threading.WaitHandle) that will be signaled when a message is
ready.

StateCoder includes a variety of base message source classes, including a
generic message source that can wrap any user defined message, and an
AsyncResultMessageSource class that works with any .NET class that
follows the standard .NET asynchronous call design pattern.

Message sources are a key factor in improving the thread safety of a
StateCoder state machine, because while the signaling event for the
message may be created on any thread, the message itself will always be

34

processed on the state machine’s own thread – thus eliminating a huge
potential source of subtle multithreading problems.

Every state machine can use as many message sources as it needs.
Message sources can be defined for the entire state machine, or can be
changed for each state.

Another important features is that every StateCoder state machine is itself
a message source! A message is considered ready when the state machine
enters its end state.

The rest
This is just a quick summary of the features of StateCoder. There’s a lot
going on behind in the framework to make sure that the state machines use
minimal system resources. While you can create state machines to run in
their own threads, well designed state machines (especially those that use
asynchronous operations) will typically run on the StateCoder thread pool.
This is essential for scalability – threads are expensive system resources.

What will you do with StateCoder?
The best way to learn about StateCoder is to download the demo from
www.desaware.com. This is a fully functional demo that includes all of
the documentation. It’s only limitation is that you can only run it with a
specific demo assembly. You’ll need the full product to use it with your
own applications.

We believe that StateCoder will help you create better .NET code more
quickly, regardless of whether you are building standalone applications,
web services or ASP.NET applications. If you are new to state machines,
then you will find the design patterns you learn with StateCoder will
become an indispensable tool for all your programming efforts, even when
you aren’t using the StateCoder framework.

35

http://www.desaware.com/

Tutorials
The following five tutorials are designed to help you to become familiar
with creating your own state machines. A Quick-Start section for building
your own state machine follows this section.

Tutorial 1: Building a state machine for long
operations
Let’s start with the very simple state machine that consists of performing
three long operations consecutively in the form.

LongOperation1()
LongOperation2()
LongOperation3()

You read earlier about the flaws of the DoEvents approach. You know
about the risks and challenges of creating background threads. The
StateCoderTutorial1 project demonstrates how you can use StateCoder to
not only provide a clean background implementation of this sequence, but
to simultaneously perform any number of background sequences
simultaneously without any synchronization problems.

The states.vb file contains the state machine implementation. First, you
have a class that defines the three long operations. Each one puts a thread
to sleep for a specified amount of time.

[VB]
Class LongOperations
 Public Shared OperationLength As Integer = 2000
 ' Default 2 seconds
 Public Shared Sub LongOp1()
 Threading.Thread.Sleep(OperationLength)
 End Sub
 Public Shared Sub LongOp2()
 Threading.Thread.Sleep(OperationLength)
 End Sub

36

 Public Shared Sub LongOp3()
 Threading.Thread.Sleep(OperationLength)
 End Sub
End Class

[C#]
class LongOperations
{
 public static int OperationLength = 2000;
 // Default 2 seconds
 public static void LongOp1()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }
 public static void LongOp2()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }
 public static void LongOp3()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }
}

The state machine will divide the three long operations into three different
states (since in a real scenario, you may wish to perform different
operations after each one). Each state begins its long operation when its
MessageReceived method is called, and will then set the state to the next
state. The following code illustrates this (refer to the VS2005 sample code
to see the generic version of this example):

[VB]
' The first state runs the first long operation
<InitialState()> Class FirstState
 Inherits State
 Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 LongOperations.LongOp1()

37

 nextstate("SecondState")
 End Sub
End Class

Class SecondState
 Inherits State
 Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 LongOperations.LongOp2()
 nextstate("ThirdState")
 End Sub
End Class

Class ThirdState
 Inherits State
 Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 LongOperations.LongOp3()
 nextstate("LastState")
 End Sub
End Class

<FinalState()> Class LastState
 Inherits State
End Class

[C#]
// The first state runs the first long operation
[InitialState()] class FirstState: State
{
 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 LongOperations.LongOp1();
 NextState("SecondState");
 }
 }

38

class SecondState: State
{
 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 LongOperations.LongOp2();
 NextState("ThirdState");
 }
}

class ThirdState: State
{
 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 LongOperations.LongOp3();
 NextState("LastState");
 }
}

[FinalState()] class LastState: State
{
}

The final state, as you see, doesn’t do anything in this example. You can,
if you wish, override the EnterState method of the final state to perform
some operation appropriate to the final state of the state machine.

The StateCoderTutorial1 Message Source
In this example we just want to move from one state to the next without
delay. This can be accomplished by a message source that is always ready.
It doesn’t actually have to return a message. The easiest way to
accomplish this is to define a message source that always returns True to
the MessageReady method as shown here:

[VB]
' Here's a message source that is always signaled,

39

' and returns a null message
Public Class AlwaysTrueMessageSource
 Inherits GenericMessageSourceBase

 Public Overrides ReadOnly Property MessageReady() _
 As Boolean
 Get
 Return True
 End Get
 End Property

 Public Overrides Function RetrieveMessage() As Object
 Return Nothing
 End Function
End Class

[C#]
// Here's a message source that is always signaled, and
returns a null message
public class AlwaysTrueMessageSource:
 GenericMessageSourceBase
{
 public override bool MessageReady
 {
 get
 {
 return(true);
 }
 }
 public override object RetrieveMessage()
 {
 return null;
 }
}

By inheriting the GenericMessageSourceBase class, all of the work of
implementing the wait handle and other default members is handled
automatically.

40

The StateCoderTutorial1 State Machine
Finally comes the state machine class itself. The ContainsState attribute is
used to specify the classes for the individual states.

[VB]
Imports Desaware.StateCoder
<ContainsState("Desaware.StateCoderTutorial1.FirstState"), _
ContainsState("Desaware.StateCoderTutorial1.SecondState"), _
ContainsState("Desaware.StateCoderTutorial1.ThirdState"), _
ContainsState("Desaware.StateCoderTutorial1.LastState")> _
Public Class ConsecutiveStateMachine
 Inherits StateMachine

 Public Sub New()
 MyBase.New(StateMachineFlags.CreateInNewThread)
 ActiveMessageSource = New AlwaysTrueMessageSource()
 End Sub

 Public SequenceNumber As Integer

End Class

[C#]
// Attributes to declare the states of our State Machine
[ContainsState("Desaware.StateCoderTutorial1_C.FirstState"),
ContainsState("Desaware.StateCoderTutorial1_C.SecondState"),
ContainsState("Desaware.StateCoderTutorial1_C.ThirdState"),
ContainsState("Desaware.StateCoderTutorial1_C.LastState")]
public class ConsecutiveStateMachine: StateMachine
{
 public ConsecutiveStateMachine():

base(StateMachineFlags.CreateInNewThread)
 {
 // Our message source will always

// return a 'signaled'
 ActiveMessageSource = new AlwaysTrueMessageSource();
 }
 public int SequenceNumber;
}

41

Because this state machine is performing very long operations (thus tying
up a thread), it doesn’t make sense to run the machine on the thread pool
(since it would block other state machines on the thread). So the state
machine uses the StateMachineFlags.CreateInNewThread flag to tell the
framework to run the state machine in its own thread. The message source
is set to the AlwaysTrueMessageSource created earlier.

The SequenceNumber is a value to help you keep track of state machines.

That’s all it takes.

True, it’s a bit more code that long operation calls separated by DoEvents
statements, but you’ll soon see that the benefits of this approach are even
greater than you might expect.

The StateCoderTutorial1 form
The StateCoderTutorial1 form has two buttons and a list control. The form
has a variable m_SequenceCounter to keep track of the number of times
the sequence (of three long operations) has been run, and identify each one
with a number.

VB: Private m_SequenceCounter As Integer
C#: private int m_SequenceCounter;

The RecordCompletion function is called to add a record in the list box
when a sequence has completed.
[VB]
 Private Sub RecordCompletion(ByVal SequenceNumber As _
 Integer)
 lstSequences.Items.Add("Completed Sequence #: " & _
 SequenceNumber)
 End Sub

[C#]
private void RecordCompletion(int SequenceNumber)
{

42

 lstSequences.Items.Add("Completed Sequence #: " +
 SequenceNumber.ToString());
}

The cmdNoState_Click method is called when you click the NoState
button. This performs the three long operations on the form’s main thread.
Freezing the form until it completes (as you would expect). This is
included just as a reminder of how bad this approach really is. You can
add DoEvents statements between the long operations if you wish to see
how little it helps and how bad that approach is as well.

[VB]
 Private Sub cmdNoState_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) _
 Handles cmdNoState.Click
 LongOperations.LongOp1()
 LongOperations.LongOp2()
 LongOperations.LongOp3()
 RecordCompletion(m_SequenceCounter)
 m_SequenceCounter += 1
 End Sub

[C#]
private void cmdNoState_Click(object sender,
 System.EventArgs e)
{
 LongOperations.LongOp1();
 LongOperations.LongOp2();
 LongOperations.LongOp3();
 RecordCompletion(m_SequenceCounter);
 m_SequenceCounter += 1;
}

Starting a state machine is a trivial process as well. You simply create the
state machine object and call its Start method. In this example, we’re
going to wire up the ReachedEndState event of the state machine to the
forms ReachedEndState function (which you’ll see shortly).

43

[VB]
Private Sub cmdState_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdState.Click
 Dim sm As New ConsecutiveStateMachine()
 sm.SequenceNumber = m_SequenceCounter
 m_SequenceCounter += 1
 AddHandler sm.ReachedEndState, _
 AddressOf ReachedEndState
 sm.Start()
End Sub

[C#]
public delegate void EndStateHandler(object sender);

private void cmdState_Click(object sender,
 System.EventArgs e)
{
 ConsecutiveStateMachine sm = new
 ConsecutiveStateMachine();
 sm.SequenceNumber = m_SequenceCounter;
 m_SequenceCounter += 1;

 EndStateHandler myhandler = new
 EndStateHandler(ReachedEndState);
 sm.ReachedEndState += new
 Desaware.StateCoder.StateMachineBase.
 ReachedEndStateEventHandler(myhandler);

 sm.Start();
}

The ReachedEndState method is called by the ReachedEndState event
when a state machine completes. Experienced .NET developers know that
forms in .NET are not thread safe. This will be discussed further in the
next tutorial, but rest assured, with StateCoder, the ReachedEndState event
(when attached to any Form or control that derives from
Windows.Forms.Control) will be raised in the correct thread.

 Private Sub ReachedEndState(ByVal sender As Object)

44

 Dim sm As ConsecutiveStateMachine
 sm = CType(sender, ConsecutiveStateMachine)

 RecordCompletion(sm.SequenceNumber)
 ' And dump the state machine
 RemoveHandler sm.ReachedEndState, _
 AddressOf ReachedEndState

 sm.Dispose()

 End Sub

private void ReachedEndState(object sender)
{
 ConsecutiveStateMachine sm;
 sm = (ConsecutiveStateMachine)sender;

 RecordCompletion(sm.SequenceNumber);
 // And dump the state machine

 EndStateHandler myhandler = new
 EndStateHandler(ReachedEndState);
 sm.ReachedEndState -= new
 Desaware.StateCoder.StateMachineBase.
 ReachedEndStateEventHandler(myhandler);
 sm.Dispose();
}

The ReachedEndState method also removes the state machine from the
event handler, and disposes it.

More on StateCoderTutorial1
There are a couple of other interesting points to note about the operation
of this simple state machine.

45

First of all, you may have noticed that the ConsecutiveStateMachine
object is created in a local variable of a function. What happens to the
state machine after the function exits?

It’s true that the variable to which you assigned the state machine was
cleared. However, as soon as you started the state machine, it was taken
over by the StateCoder framework. You don’t have a reference to it again
until it raises its completion event.

Now, it goes without saying that you don’t need to take this approach.
You can hold references to state machines in your application’s variables
or in a collection object. If you are going to work with just one instance of
a state machine at a time, you might even use the traditional “Dim
WithEvents” declaration to allow you to handle the completion event
without the AddHandler method call.

However, the approach shown here works just as well, and has the
advantage of dramatically simplifying your form’s code.

Another interesting consequence of this approach can be seen by clicking
multiple times on the “State Machine” button to create multiple state
machines. Each time you click on the button, a new state machine is
created and passed on to the StateCoder framework, where it is assigned a
thread and run.

This really illustrates the power of state machines. A more traditional
approach would require you to create your own threads, keep track of
them, carefully synchronize any situations where there might be shared
information between the threads, and be sure to tear them down on
completion.

These StateMachines, by default, have no shared memory, and thus no
possibility of synchronization problems. The only place in this example
where multithreading is an issue is the ReachedEndState event, each of
which is raised in the state machine’s thread. However, the only operation
that takes place in this event is the Form Invoke method, which marshals
the call back to the main form thread, and thus resynchronizes those calls.

46

You may also be wondering why bother with a message source that is
always signaled instead of just calling NextState directly within the
EnterState method? You could, arguably, just perform the operations in
the EnterState method, using NextState after each operation, instead of
bothering with the message source at all.

The reason for doing this is important to understand. Normally all calls
into the state objects occur on the state machine thread. The one exception
is the very first EnterState call, which takes place on the same thread that
calls Start. So if you performed the long operation in the EnterState
method, it would tie up the main thread (as would any subsequent
EnterState method called through the use of the NextState method). You
can read more about this on the section on State machine threading. The
fact that the EnterState method of the initial state is called on the thread
that calls the Start method does not pose a synchronization problem,
because the state machine is not yet running on a StateCoder thread and
does not begin to do so until the EnterState method exits. The benefit of
this approach is that if you end the state machine (either due to an
exception or setting the state to the final state) during the first EnterState
method call, the state machine never actually runs, which improves
efficiency in that situation.

47

Tutorial 2: Building a state machine for
asynchronous operations.
In the previous example you saw how to implement a state machine that
performs a sequence of long operations. Now let’s consider a slight
variation on the theme in which instead of performing a sequence of long
operations, you wish to perform a sequence of asynchronous operations.

Modify the state machine object as follows:

[VB]
Imports Desaware.StateCoder
<ContainsState("Desaware.StateCoderTutorial2.FirstState"), _
ContainsState("Desaware.StateCoderTutorial2.SecondState"), _
ContainsState("Desaware.StateCoderTutorial2.ThirdState"), _
ContainsState("Desaware.StateCoderTutorial2.LastState")> _
Public Class ConsecutiveStateMachine
 Inherits StateMachine

 Public Sub New()
 MyBase.New()
 End Sub

 Public SequenceNumber As Integer

End Class

[C#]
// Attributes to declare the states of our State Machine
[ContainsState("Desaware.StateCoderTutorial2_C.FirstState"),
ContainsState("Desaware.StateCoderTutorial2_C.SecondState"),
ContainsState("Desaware.StateCoderTutorial2_C.ThirdState"),
ContainsState("Desaware.StateCoderTutorial2_C.LastState")]
public class ConsecutiveStateMachine: StateMachine
{
 public ConsecutiveStateMachine():base()
 {
 }

48

 public int SequenceNumber;
}

You’ll notice two changes. First, the constructor no longer specifies the
StateMachineFlags.CreateInNewThread flag. That’s because state
machines don’t tie up thread resources (they run in a thread pool provided
by the .NET framework). So you can allow this state machine to run in the
normal StateCoder thread pool.

The other change is that we no longer use the AlwaysTrueMessageSource
message source. In asynchronous operations, it’s customary for each state
(which handles a single asynchronous operation) to set its own message
source during the EnterState method.

Before looking at the state objects in detail, let’s take a quick look at the
asynchronous operations.

[VB]
Public Delegate Sub LongOpDelegate()

Class LongOperations
 Public Shared OperationLength As Integer = 2000 '
Default 2 seconds
 Public Shared Sub LongOp1()
 Threading.Thread.Sleep(OperationLength)
 End Sub
 Public Shared Sub LongOp2()
 Threading.Thread.Sleep(OperationLength)
 End Sub
 Public Shared Sub LongOp3()
 Threading.Thread.Sleep(OperationLength)
 End Sub
End Class

[C#]
public delegate void LongOpDelegate();

49

class LongOperations
{
 public static int OperationLength = 2000;
 // Default 2 seconds
 public static void LongOp1()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }

 public static void LongOp2()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }

 public static void LongOp3()
 {
 System.Threading.Thread.Sleep (OperationLength);
 }
}

At first glance, these look exactly like the long operations performed
earlier. The difference here is the presence of a LongOpDelegate type.
This delegate makes it possible to invoke the various LongOp methods
asynchronously.

The StateTutorial2 State objects
Here’s what the Initial state now looks like.

[VB]
' The first state runs the first long operation
<InitialState()> Class FirstState
 Inherits State
 Private caller As LongOpDelegate

 Public Overrides Sub EnterState()
 caller = New LongOpDelegate(AddressOf _
 LongOperations.LongOp1)

50

 Dim ar As New AsyncResultMessageSource(_
 caller.BeginInvoke(_
 AsyncResultMessageSource.GetAsyncCallbackFunction,_
 Nothing))
 CType(machine, StateMachine).ActiveMessageSource =
 ar
 End Sub

 Public Overrides Sub MessageReceived(ByVal message As _
 Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 caller.EndInvoke(CType(message, IAsyncResult))
 nextstate("SecondState")
 End Sub

End Class

[C#]
[InitialState()] class FirstState: State
{

 private LongOpDelegate caller;

 public override void EnterState()
 {
 // Call LongOp1 asynchronously
 caller = new LongOpDelegate(LongOperations.LongOp1);
 AsyncResultMessageSource ar = new
 AsyncResultMessageSource(caller.BeginInvoke(
 AsyncResultMessageSource.GetAsyncCallbackFunction(),
 null));
 ((StateMachine)Machine).ActiveMessageSource = ar;
 }

 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 // Complete the LongOp1 asynchronous call
 caller.EndInvoke((IAsyncResult)message);
 NextState("SecondState");
 }

51

}

The state object has a private member named caller. This contains the
delegate that will be used to perform the asynchronous message call.

During the EnterState method call, the delegate is initialized to the
appropriate LongOp method.

The .NET framework has a common design pattern for virtually all
asynchronous operations. The pattern looks like this:

1. Call Beginxxxx to start the operation, returning an IAsyncResult
object and specifying an event to call when the operation
completes.

1. When the event arrives, call the Endxxx method to complete the
operation and retrieve a result.

Rather than create a custom message source for each type of asynchronous
operation, the StateCoder framework includes the
AsyncResultMessageSource class which can be used with virtually any
asynchronous operation.

The constructor for the object takes two parameters. The second is an
arbitrary parameter that is not used (or needed) with StateCoder. The first
is the result of the Beginxxx method call. In this case, it is the result of the
caller delegate’s BeginInvoke method call.

BeginInvoke requires you provide a delegate to an event to call when the
operation completes. The AsyncResultMessageSource objects simplifies
things by allowing you to always pass the result of the
AsyncResultMessageSource.GetAsyncCallbackFunction method call for
this parameter. This gives you a delegate to a static method to the
AsyncResultMessageSource class, which generates the ready signal for
the appropriate object when the asynchronous operation completes.

Finally, the AsyncResultMessageSource object is set to be the active
message source.

52

When the operation completes, the MessageReceived method is called
with the appropriate IAsyncResult object as the message. This gets passed
as a parameter to the caller delegates EndInvoke method.

The other two states work exactly the same way, except they refer to
different long operations.

And as for the StateCoderTutorial2 form? It is identical to the previous
example.

Asynchronous Operations and Events
Though it may not be obvious, this example illustrates yet another of the
services that the StateCoder framework provides for you behind the
scenes. You see, in .NET asynchronous operations, the delegate that is
called when the operation completes is always called on a thread
belonging to the .NET thread pool – which is NOT the same thread as the
application’s form. As you read earlier, forms in .NET are not thread safe,
so any use of the .NET asynchronous operation in a form or UserControl
based application must be careful to not only avoid accessing any User
interface element, but also to synchronize any access to the form’s
properties or fields.

The StateCoder framework for managed state machines detects when you
are attempting to raise an event to a form, or any object that derives from
the Windows.Forms.Control object. It automatically marshals the call to
the correct thread for you, eliminating a potential source of serious and
hard to detect errors.

53

Tutorial 3: Building an unmanaged state machine
So far you’ve seen state machines that represent a simple sequence of
states. While you can perform many tasks in this manner, more powerful
state machines incorporate decision making and branching within the state
machine to control the sequence of states.

In this example, we’ll explore the problem of performing a simple
transaction on a database. One of the big differences between ADO and
ADO.NET is the fact that ADO.NET is connectionless. This poses a
number of challenges. Consider the example of inventory management.

In ADO, you might open a connection to a database, read an inventory
record, lock it, calculate the new inventory value, and write the updated
value into the database. If anyone else attempts to modify the value while
you have it locked, they will be blocked until the record is unlocked (or an
error will occur).

In ADO.NET, records are not locked. So how do you update an inventory
record?

One possibility is to write a smarter update query or use a stored
procedure. But in this case we’ll show a more generic situation described
by the following state machine.

State1: Retrieve the current data value.

State 2: Attempt an update query that uses the original value as a criteria
– thus it will only execute if the data value is unchanged.

 On success, go to the end state.

 On failure, return to State 1 and try again.

State 3: Finish

54

The UpdateDataMachine state machine
The UpdateDataMachine state machine will have three states,
GetCurrentValue, DoTheUpdate and OperationComplete. Unlike previous
state machines, this one inherits from the UnmanagedStateMachine class.

Note that in practice you will rarely if ever use unmanaged state machines.
But it does have value for helping understand the program flow through a
state machine – hence it’s inclusion in this tutorial.

The UpdateDataMachine class has three public fields: ItemToModify is
the name of the product whose inventory is being updated. In this case it is
always “VCR”. The ItemsTransacted field is a value indicating the change
in inventory you desire, a positive number if you are buying product,
negative if you are selling. And the CurrentItemCount field indicates the
current inventory value.

[VB]
Imports System.Data
Imports Desaware.StateCoder

<ContainsState("StateCoderTutorial3.GetCurrentValue"), _
 ContainsState("StateCoderTutorial3.DoTheUpdate"), _
 ContainsState("StateCoderTutorial3.OperationComplete")> _
 Public Class UpdateDataMachine
 Inherits UnmanagedStateMachine
 Friend conn As OleDb.OleDbConnection
 Friend cmd As OleDb.OleDbCommand

 Public ItemToModify As String
 Public ItemsTransacted As Integer
 Public CurrentItemCount As Integer

 Public Sub New(ByVal dbpath As String)
 conn = New OleDb.OleDbConnection(_
 "Provider=Microsoft.Jet.OLEDB.4.0;Password=""""; _
 User " & "ID=Admin;Data Source= """ & dbpath _
 & """;Mode=Share Deny None)

55

 conn.Open()
 cmd = New OleDb.OleDbCommand()
 cmd.Connection = conn
 End Sub

End Class

[C#]
// Attributes to declare the states of our State Machine
[ContainsState("StateCoderTutorial3_C.GetCurrentValue"),
ContainsState("StateCoderTutorial3_C.DoTheUpdate"),
ContainsState("StateCoderTutorial3_C.OperationComplete")]
public class UpdateDataMachine:UnmanagedStateMachine
{
 internal System.Data.OleDb.OleDbConnection conn;
 internal System.Data.OleDb.OleDbCommand cmd;

 public string ItemToModify;
 public int ItemsTransacted;
 public int CurrentItemCount;

 public UpdateDataMachine(string dbpath)
 {
 // Intialize a connection to the database
 // string should look like: (any connection string)
 conn = new System.Data.OleDb.OleDbConnection(
 "Provider=Microsoft.Jet.OLEDB.4.0;Password=\"\";
 User ID=Admin;Data Source= \"" + dbpath +
 "\";Mode=Share Deny None;");
 conn.Open();
 cmd = new System.Data.OleDb.OleDbCommand();
 cmd.Connection = conn;
 }
}

The GetCurrentValue class has a shadowed Machine property that only
serves to perform a type conversion from the base type. All of the classes
have the same property in the VS2003 sample code. The VS2005 sample

56

code avoids the need for this property by inheriting from State(Of
UpdateDataMachine) (or state<UpdateDataMachine>). The generics
version of the state class handles these type conversions for you. The
EnterState method sets the string used to retrieve the value. You may
wonder, why set it here and not in the MessageReceived method? The
truth is, there is no reason other than to have it there in the event that this
state machine were to be adapted later for asynchronous database calls (in
which case the query setup and invocation would take place during the
EnterState method, and the results processed in the MessageReceived
method). But for now, it doesn’t matter where the string is set, as long as it
is set.

A query to retrieve the inventory value is executed during the
MessageReceived class. You might be wondering who calls the
MessageReceived class. After all, there is no message source. Hold that
thought – you’ll see how this happens later.

[VB]
<InitialState()> Class GetCurrentValue
 Inherits State
 Private m_ReadString As String

 Protected Shadows ReadOnly Property Machine() _
 As UpdateDataMachine
 Get
 Return (CType(MyBase.Machine, _
 UpdateDataMachine))
 End Get
 End Property

 Public Overrides Sub EnterState()
 m_ReadString = _
 "SELECT Products.Stock FROM(Products)WHERE " & _
 "(((Products.Product)=""" & Machine.ItemToModify _
 & """))"
 End Sub

57

 Public Overrides Sub MessageReceived(ByVal message As _
 Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 Machine.cmd.CommandText = m_ReadString
 Machine.CurrentItemCount = _
 Machine.cmd.ExecuteScalar()
 NextState("DoTheUpdate")
 End Sub
End Class

[C#]
[InitialState()] class GetCurrentValue: State
{
 private string m_ReadString;

 protected new UpdateDataMachine Machine
 {
 get
 {
 return ((UpdateDataMachine)base.Machine);
 }
 }

 public override void EnterState()
 {
 // Query string that reads the inventory value
 m_ReadString =
 "SELECT Products.Stock FROM(Products)WHERE
 (((Products.Product)=\"" + Machine.ItemToModify +
 "\"))";
 }

 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 // Retrieve the inventory value
 Machine.cmd.CommandText = m_ReadString;
 Machine.CurrentItemCount =
 (int)Machine.cmd.ExecuteScalar();
 NextState("DoTheUpdate");

58

 }
}

The DoTheUpdate class attempts to perform the update operation. First, it
checks to make sure that you aren’t trying to sell something you don’t
have (checking the newcount variable). If there is insufficient stock, you
send an exception to the state machine. This sets the state machine’s
LastException property to the specified exception and moves the state
machine to the end state.

The update query string only works if the current inventory value matches
that of the state machine’s CurrentItemCount value – meaning the
inventory has not been changed since the last time the database was
queried.

When the MessageReceived method is called, the update query executes.
If it succeeds, the state switches to the OperationComplete state, otherwise
it returns to the GetCurrentValue state and tries again.

[VB]
Class DoTheUpdate
 Inherits State(Of UpdateDataMachine)
 Private m_UpdateString As String

 Public Overrides Sub EnterState()
 Dim newcount As Integer
 newcount = Machine.CurrentItemCount + _
 Machine.ItemsTransacted
 If newcount < 0 Then
 Machine.SendException(New Exception(_
 "Insufficent stock for purchase"))
 Exit Sub
 End If
 m_UpdateString = _
 "UPDATE Products SET Products.Stock = " & _
 newcount.ToString & _
 " WHERE (((Products.Product)=""" & _
 Machine.ItemToModify & _

59

 """) AND ((Products.Stock)=" & _
 Machine.CurrentItemCount.ToString & "))"
 End Sub

 Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 Machine.cmd.CommandText = m_UpdateString
 Dim Lineschanged As Integer
 Lineschanged = Machine.cmd.ExecuteNonQuery()
 If Lineschanged = 0 Then
 Nextstate("GetCurrentValue")
 Else
 NextState("OperationComplete")
 End If
 End Sub
End Class

[C#]
class DoTheUpdate: State<UpdateDataMachine>
{
 private string m_UpdateString;

 public override void EnterState()
 {
 int newcount;
 newcount = Machine.CurrentItemCount +
 Machine.ItemsTransacted;
 if (newcount < 0)
 {
 Machine.SendException(new Exception(
 "Insufficent stock for purchase"));
 return;
 }
 // Query string that updates the inventory value
 // if it is unchanged
 m_UpdateString =
 "UPDATE Products SET Products.Stock = " +
 newcount.ToString() +
 " WHERE (((Products.Product)=\"" +
 Machine.ItemToModify + "\") AND ((Products.Stock)=" +

60

 Machine.CurrentItemCount.ToString() + "))";
 }

 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 Machine.cmd.CommandText = m_UpdateString;
 int Lineschanged;

 Lineschanged = Machine.cmd.ExecuteNonQuery();
 if (Lineschanged == 0)
 // The inventory value was changed by someone
 // else - need to try again
 NextState("GetCurrentValue");
 else
 NextState("OperationComplete");
 }
}

The OperationComplete state performs cleanup of the state machine’s
internal variables, releasing the database connection. It’s true, you could
perform cleanup by overriding the state machine’s Dispose method, but
then you’re relying on the client to remember to call Dispose. A properly
designed state machine4 always reaches the EnterState method, so it is the
appropriate place to clean up internal variables (those that need to be kept
around for the client to access after the final state is reached should be
cleaned up during the Dispose method).

[VB]
<FinalState()> Class OperationComplete
 Inherits State(Of UpdateDataMachine)

4 Managed state machines always execute the EnterState method of the final state.
However unmanaged state machines depend on the client to make sure methods are
called correctly.

61

 Public Overrides Sub EnterState()
 Machine.cmd.Dispose()
 Machine.conn.Close()
 Machine.conn.Dispose()
 End Sub
End Class

[C#]
[FinalState()] class OperationComplete:
State<UpdateDataMachine>
{

 public override void EnterState()
 {
 // Be sure to clean up
 Machine.cmd.Dispose();
 Machine.conn.Close();
 Machine.conn.Dispose();
 }
}

Managing an Unmanaged State Machine
With a regular managed state machine (one that derives from the
StateMachine class), the StateCoder framework takes responsibility for a
variety of tasks ranging from dispatching messages, managing message
sources, to synchronization and so forth. With an unmanaged state
machine, you take full responsibility for these tasks.

The sample program performs a simulation, where it executes 100 random
transactions, either buying or selling product depending on the state of the
option buttons. A list box records the result of each transaction.

A command button toggles the simulation on and off. It does so by
changing the state of a timer.

[VB]
Private Sub cmdControl_Click(ByVal sender As _

62

System.Object, ByVal e As System.EventArgs) _
Handles cmdControl.Click
 If Timer1.Enabled Then
 Timer1.Enabled = False
 cmdControl.Text = "Start"
 Else
 lstStatus.Items.Clear()
 cycles = 0
 Timer1.Enabled = True
 cmdControl.Text = "Stop"
 End If

End Sub

[C#]
private void cmdControl_Click(object sender,
 System.EventArgs e)
{
 if (Timer1.Enabled)
 {
 Timer1.Enabled = false;
 cmdControl.Text = "Start";
 }
 else
 {
 lstStatus.Items.Clear();
 cycles = 0;
 Timer1.Enabled = true;
 cmdControl.Text = "Stop";
 }
}

Each timer event performs another simulation cycle, creating the
UpdateDataMachine state machine and setting it’s fields.

[VB]
 Dim dbpath As String = _
 IO.Path.GetFullPath("..\Inventory.mdb")
 Dim m_Random As New Random()

63

 Dim cycles As Integer
 Const MAXCYCLES As Integer = 100

 Private Sub Timer1_Elapsed(ByVal sender As _
 System.Object, ByVal e As _
 System.Timers.ElapsedEventArgs) Handles _
 Timer1.Elapsed
 If cycles > MAXCYCLES AndAlso Timer1.Enabled _
 = True Then
 cmdControl_Click(Nothing, Nothing)
 Else
 cycles += 1
 End If
 Dim sm As New UpdateDataMachine(dbpath)
 sm.ItemToModify = "VCR"
 Dim transactioncount As Integer
 If optSelling.Checked Then
 transactioncount = 0 - m_Random.Next(1, 10)
 Else
 transactioncount = m_Random.Next(1, 10)
 End If
 sm.ItemsTransacted = transactioncount
 RunUnmanagedStateMachine(sm)
 End Sub

[C#]
string dbpath = System.IO.Path.GetFullPath(
"..\\..\\Inventory.mdb");
Random m_Random = new Random();
int cycles;
const int MAXCYCLES = 100;

private void Timer1_Elapsed(object sender,
System.Timers.ElapsedEventArgs e)
{
 if ((cycles > MAXCYCLES) && (Timer1.Enabled))
 cmdControl_Click(null, null);
 else
 cycles += 1;

 // Set up the state machine

64

 UpdateDataMachine sm = new UpdateDataMachine(dbpath);
 sm.ItemToModify = "VCR";
 int transactioncount;

 if (optSelling.Checked)
 transactioncount = 0 - m_Random.Next(1, 10);
 else
 transactioncount = m_Random.Next(1, 10);

 sm.ItemsTransacted = transactioncount;
 // Run the state machine
 RunUnmanagedStateMachine(sm);
}

The RunUnmanagedStateMachine method is called during the timer event
to actually run the state machine. It works by calling the sm.SendMessage
method repeatedly until the state machine completes. The StateCoder
framework does provide some services for you – if a state machine
performs a state transition during message processing, the state transition
occurs and the state’s EnterState method is called. However, all execution
of the unmanaged state machine takes place on the thread on which you
call the message. And no synchronization is provided should you try to
access the state machine on more than one message at a time.

Unlike managed state machines, there is no need for message sources,
though you are welcome to use them if you wish. If you do use a message
source, it is up to you to wait for a message and dispatch it. The
UnmanagedStateMachine class provides no message source services.

[VB]
Private Sub RunUnmanagedStateMachine(ByVal sm As _
 UpdateDataMachine)
 Try
 Do While Not sm.MessageReady
 sm.SendMessage(Nothing, Nothing)
 Loop
 If Not sm.LastException Is Nothing Then
 lstStatus.Items.Add(_

65

 sm.LastException.Message)
 Else
 If sm.ItemsTransacted > 0 Then
 lstStatus.Items.Add("Bought: " & _
 sm.ItemsTransacted.ToString)
 Else
 lstStatus.Items.Add("Sold: " & CStr(_
 -sm.ItemsTransacted))
 End If
 End If
 Catch ex As Exception
 lstStatus.Items.Add("Other error: " & _
 ex.Message)
 End Try
 sm.Dispose()
 End Sub

[C#]
private void RunUnmanagedStateMachine(UpdateDataMachine sm)
{
 try
 {
 // Here's a very simple dispatch loop that just _
 keeps sending empty messages
 // to the unmanaged state machine
 while (!sm.MessageReady)
 {
 sm.SendMessage(null, null);
 }

 if (!(sm.LastException == null))
 {
 lstStatus.Items.Add(sm.LastException.Message);
 }
 else
 {
 if (sm.ItemsTransacted > 0)
 lstStatus.Items.Add("Bought: " +
 sm.ItemsTransacted.ToString());
 else
 lstStatus.Items.Add("Sold: " +

66

 (-sm.ItemsTransacted).ToString());
 }
 }
 catch (Exception ex)
 {
 lstStatus.Items.Add("Other error: " + ex.Message);
 }
 sm.Dispose();
}

When you run this sample program, you will notice that the form remains
almost completely frozen during execution (depending on the speed of
your system and the duration of the timer, which by default is very short).
If you wish the form to be responsive, you’ll have to lengthen the timer
interval so that it is longer than the typical database operation. This will,
of course, slow down the simulation as well.

67

Tutorial 4: From unmanaged to managed state
machines
Tutorial 4 shows the UpdateStateMachine state machine revised to run as
a managed state machine. The UpdateStateMachine class is changed to
inherit from StateMachine instead of UnmanagedStateMachine.

A managed state machine needs a message source. This poses an
interesting dilemma for this example. You could use a message source that
is always true (like the AlwaysTrueMessageSource message source
defined in tutorial #1. However, in this case we’ll use a timer message
source with a short duration. This allows us to run the state machine on the
thread pool and gives time for other state machines to run if they are
present5. The AlarmMessageSource message source is included with
StateCoder and acts as an alarm or interval timer message source. This
line is added to the constructor of the state machine:

Me.ActiveMessageSource = New AlarmMessageSource(Nothing, _
 New TimeSpan(10000)) ' 10ms interval
this.ActiveMessageSource = new AlarmMessageSource(
 TimeSpan.Zero, new TimeSpan(10000)); // 10ms interval

The state classes themselves are substantially unchanged.

The real change takes place in the form. While there is no longer a need to
run the state machine, you still need to set up the state machine and start it
as shown in the new timer event.

5 The StateCoder framework allocates time to every state machine in the thread pool even
if its message source is always ready. However, you do have to return from the
MessageReceived method in order for other state machines to run. That’s why we put
each state machine in its own thread in tutorial #1.

68

 Private Sub Timer1_Elapsed(ByVal sender As _
 If Timer1.Enabled = False Then Exit Sub
 ' .NET quirk?
 If cycles > MAXCYCLES Then
 cmdControl_Click(Nothing, Nothing)
 Else
 cycles += 1
 End If
 Dim sm As New UpdateDataMachine(dbpath)
 sm.ItemToModify = "VCR"
 Dim transactioncount As Integer
 If optSelling.Checked Then
 transactioncount = 0 - m_Random.Next(1, 10)
 Else
 transactioncount = m_Random.Next(1, 10)
 End If
 sm.ItemsTransacted = transactioncount
 sm.Start()
 sm.MessageReadySignal.WaitOne()
 ReachedEndState(sm)
 sm.Dispose()
 End Sub

private void Timer1_Elapsed(object sender,
 System.Timers.ElapsedEventArgs e)
 if (!Timer1.Enabled)
 return; // .NET quirk?

 if (cycles > MAXCYCLES)
 cmdControl_Click(null, null);
 else
 cycles++;

 // Set up the state machine
 UpdateDataMachine sm = new UpdateDataMachine(dbpath);
 sm.ItemToModify = "VCR";
 int transactioncount;

 if (optSelling.Checked)
 transactioncount = 0 - m_Random.Next(1, 10);

69

 else
 transactioncount = m_Random.Next(1, 10);
 sm.ItemsTransacted = transactioncount;
 EndStateHandler myhandler = new
 EndStateHandler(ReachedEndState);
 sm.Start();
 sm.MessageReadySignal.WaitOne();
 ReachedEndState(sm);
 sm.Dispose();
}

The state machine’s MessageReadySignal property is used to obtain a
WaitHandle which is used to wait for the state machine to complete. If it
weren’t there, you would end up creating potentially hundreds of state
machines, which the framework can handle, but will start raising
ADO.NET errors as you run out of available connections. The
ReachedEndState method processes the message that occurs when the
state machine finishes its operation, and records the transactions in the list
box.

There is a subtle issue in this example. Why not just add the
ReachedEndState event to the event handler and process it that way? The
problem is that because the ReachedEndState event is synchronized to the
form, it can’t be sent while the form thread is in a wait state. The default
case has the ReachedEndState event being raised before the state
machine’s WaitHandle is signaled (this can be modified using the
ReachedEndStateEventAfterSignal flag). Even if you were to use this flag
to be sure the form will exit the wait state before the event is raised, in this
example the next timer event will arrive immediately, placing the thread
back in the wait state and thus freezing the application (deadlock). As a
general rule you should either respond to the ReachedEndState event, or
use the wait handle – but not both.

 Public Shadows Sub ReachedEndState(ByVal sender _
 As Object)
 Dim sm As UpdateDataMachine

70

 sm = CType(sender, UpdateDataMachine)
 If Not sm.LastException Is Nothing Then
 lstStatus.Items.Add(sm.LastException.Message)
 Else
 If sm.ItemsTransacted > 0 Then
 lstStatus.Items.Add("Bought: " & _
 sm.ItemsTransacted.ToString)
 Else
 lstStatus.Items.Add("Sold: " & CStr(_
 -sm.ItemsTransacted))
 End If
 End If
 End Sub

public void ReachedEndState(object sender)
{
 UpdateDataMachine sm;
 sm = (UpdateDataMachine)sender;
 if (!(sm.LastException == null))
 {
 lstStatus.Items.Add(sm.LastException.Message);
 }
 else
 {
 if (sm.ItemsTransacted > 0)
 lstStatus.Items.Add("Bought: " +
 sm.ItemsTransacted.ToString());
 else
 lstStatus.Items.Add("Sold: " +
 (-sm.ItemsTransacted).ToString());
 }
}

When you try running this project, you’ll find that it is really a terrible
solution. It is considerably slower than the previous example (mostly
because the state machine uses an internal timer that is set to 100 states per
second (based on the alarm message source time of 10ms), and partly
because of the additional overhead involved in marshaling between

71

threads). It suffers from the same frozen form as earlier, made worse by
the fact that the example actually suspends the user interface thread while
waiting for the state machine to complete!

You might wonder why this tutorial was even included. Well, the answer
to that will become clear in the next tutorial.

72

Tutorial 5: Nested state machines
The big problem with the approaches shown in both Tutorial 3 and
Tutorial 4 is due to the architecture. We have two different things going
on:

6. We have a synchronous long operation – performing the database
update.

6. We have a fast loop performing repetitive calls to the synchronous
long operation.

In Tutorial 3, we tried running both of these tasks in the main thread, with
predictable results (the user interface effectively froze).

One solution might be to convert the inventory update to an asynchronous
task. But remember, even though we are using a windows application to
demonstrate these state machines, in practice you’ll probably be using
state machines for other types of applications such as web applications in
ASP.NET. In that case, you may well want the operation to complete
before you respond to the user, so a synchronous operation is exactly what
you want.

So rather than looking for an asynchronous solution to the first task, in
Tutorial 5 we fix the application’s performance by moving the simulator
out of the main application thread. How? Easy – by creating another state
machine!

The SimulationMachine state machine contains only two states. The first
state runs the UpdateDataMachine state machine. The second state is the
final state.

The SimulationMachine class demonstrates several new techniques. First,
it has a field named Updater that holds a reference to the
UpdateDataMachine state machine. It has a couple of public fields to let
the client specify whether the simulator is selling or buying inventory, and

73

how many cycles remain to complete. The client can terminate the state
machine by setting the LeftToDo variable to zero.

We still want the form to receive notification for each transaction. To
make this possible, the SimulationMachine has an event to pass
notifications to the form, and a method that can be called by the states to
cause the event to be raised to the form.

[VB]
<ContainsState("StateCoderTutorial5.Inprocess"), _
 ContainsState("StateCoderTutorial5.finished")> _
 Public Class SimulationMachine
 Inherits StateMachine

 Friend DataPath As String
 Friend Updater As UpdateDataMachine

 Public Selling As Boolean

 Public LeftToDo As Integer

 Public Sub New(ByVal dbpath As String)
 DataPath = dbpath
 End Sub

 Public Event TransactionNotificationEvent(ByVal _
 message As String)

 Friend Sub SendTransactionNotification(ByVal message _
 As String)
 RaiseEvent TransactionNotificationEvent(message)
 End Sub

End Class

[C#]

[ContainsState("StateCoderTutorial5_C.Inprocess"),
ContainsState("StateCoderTutorial5_C.finished")]

74

public class SimulationMachine: StateMachine
{

 internal string DataPath; // Path to database
 internal UpdateDataMachine Updater;
 // Nested state machine
 public bool Selling; // True if selling product
 //(subtract from inventory)
 public int LeftToDo; // Cycles remaning

 public SimulationMachine(string dbpath)
 {
 DataPath = dbpath;
 }

 // Declare event to raise, need to declare a delegate
 public delegate void TransactionHandler(string message);
 // Event to raise to the client on each transaction.
 // Note this event is NOT automatically marshalled if
 // the client is a form
 public event TransactionHandler
 TransactionNotificationEvent;

 // Called by states to raise transaction notification
 internal void SendTransactionNotification(
 string message)
 {
 TransactionNotificationEvent(message);
 }
}

The first class, Inprocess, does most of the work for this state machine.
You’ll see here many of the elements that used to be in the timer event.
There is the m_Random variable that generates random numbers. The
StartMachine private method creates the UpdateDataMachine state
machine, sets up the various fields, and starts the state machine. This
method is called both by the EnterState method, and by at the end of the
MessageReceived method if the state machine remains in the current state.

75

A key part of this method is the setting of the ActiveMessageSource
property to the newly created UpdateDataMachine. One of the most
important features of the StateCoder framework is that state machines are
themselves message sources, where the message is considered ready as
soon as the state machine terminates. A state machine may override its
RetrieveMessage method to return a message, but in this case (in fact, in
most cases), the fact that the state machine has completed is all you really
care about.

So what is happening here is that the StartMachine method creates a new
UpdateDataMachine, registers it as an active message source, then starts
it. When that state machine completes its operation, the MessageReceived
method will be called.

[VB]
<InitialState()> Public Class Inprocess
 Inherits State

 Private m_Random As New Random()

 Protected Shadows ReadOnly Property Machine()
 As SimulationMachine
 Get
 Return CType(MyBase.Machine, SimulationMachine)
 End Get
 End Property

 Private Sub StartMachine()
 Dim submachine As New
 UpdateDataMachine(Machine.DataPath)
 Machine.Updater = submachine
 Machine.ActiveMessageSource = submachine
 submachine.ItemToModify = "VCR"

 Dim transactioncount As Integer

 If Machine.Selling Then
 transactioncount = 0 - m_Random.Next(1, 10)

76

 Else
 transactioncount = m_Random.Next(1, 10)
 End If
 submachine.ItemsTransacted = transactioncount

 submachine.Start()
 End Sub

 Public Overrides Sub EnterState()
 StartMachine()
 End Sub

[C#]

[InitialState()] class Inprocess: State
{
 private Random m_Random = new Random();

 protected new SimulationMachine Machine
 {
 get
 {
 return ((SimulationMachine)base.Machine);
 }
 }

 private void StartMachine()
 {
 // Create the internal state machine
 UpdateDataMachine submachine = new
 UpdateDataMachine(Machine.DataPath);
 Machine.Updater = submachine;
 // The UpdateDataMachine is the message source
 Machine.ActiveMessageSource = submachine;
 submachine.ItemToModify = "VCR";

 int transactioncount;
 // Set up the UpdateDataMachine parameters
 if (Machine.Selling)
 transactioncount = 0 - m_Random.Next(1, 10);
 else

77

 transactioncount = m_Random.Next(1, 10);

 submachine.ItemsTransacted = transactioncount;

 submachine.Start();
 }

 public override void EnterState()
 {
 StartMachine();
 }

When the message is retrieved, the class processes the results of that
operation. Here you’ll see code that used to be in the form class, where a
specific message is generated for each transaction. The
SimulationMachine’s SendTransactionNotification method passes this
method to the state machine class, which in turn raises an event to the
form.

If the LeftToDo field indicates that the state machine should continue with
the simulation, the StartMachine method is called to create a new
UpdateDataMachine and start the process over. Otherwise, the state
machine switches to the finished state, which does absolutely nothing.

[VB]
Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 Dim udm As UpdateDataMachine
 udm = Machine.Updater
 If Not udm.LastException Is Nothing Then
 Machine.SendTransactionNotification(_
 udm.LastException.Message)
 Else
 If udm.ItemsTransacted > 0 Then
 Machine.SendTransactionNotification(_
 "Bought: " & udm.ItemsTransacted.ToString)

78

 Else
 Machine.SendTransactionNotification(_
 "Sold: " & CStr(-udm.ItemsTransacted))
 End If
 End If
 udm.Dispose()
 If Machine.LeftToDo > 0 Then
 Machine.LeftToDo-=1
 StartMachine()
 Else
 nextstate("finished")
 End If
End Sub

End Class

<FinalState()> Public Class finished
 Inherits State
End Class

[C#]
 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 UpdateDataMachine udm;
 // UpdateDataMachine finished
 //(it generated the message)
 udm = Machine.Updater;
 // Notify the client of a transaction completion
 if (!(udm.LastException == null))
 {
 Machine.SendTransactionNotification(
 udm.LastException.Message);
 }
 else
 {
 if (udm.ItemsTransacted > 0)
 Machine.SendTransactionNotification(
 "Bought: " + udm.ItemsTransacted.ToString());
 else

79

 Machine.SendTransactionNotification(
 "Sold: " + (-udm.ItemsTransacted).ToString());
 }
 udm.Dispose(); // Dispose the current machine
 if (Machine.LeftToDo > 0)
 {
 Machine.LeftToDo-=1;
 StartMachine();
 }
 else
 NextState("finished");
 }
}

[FinalState()] public class finished: State
{
}

The form is much simpler than in previous examples. The command
button event starts the simulation state machine as you’ve seen earlier. It
stops the simulation state machine by setting the LeftToDo field to zero
and allowing it to terminate naturally (which is much cleaner than calling
the AbortStateMachine method).

[VB]
Dim dbpath As String = IO.Path.GetFullPath(_
"..\Inventory.mdb")
Const MAXCYCLES As Integer = 100

Private WithEvents m_SimulationMachine As SimulationMachine

Private Sub cmdControl_Click(ByVal sender As _
 System.Object, ByVal e As System.EventArgs) _
 Handles cmdControl.Click
 If cmdControl.Text = "Start" Then
 lstStatus.Items.Clear()
 m_SimulationMachine = New SimulationMachine(dbpath)
 cmdControl.Text = "Stop"

80

 m_SimulationMachine.LeftToDo = MAXCYCLES
 If optSelling.Checked Then _
 m_SimulationMachine.Selling = True
 m_SimulationMachine.Start()
 Else
 cmdControl.Text = "Start"
 m_SimulationMachine.LeftToDo = 0
 End If
End Sub

[C#]

string dbpath = System.IO.Path.GetFullPath(
"..\\..\\Inventory.mdb");
const int MAXCYCLES = 100;

private SimulationMachine m_SimulationMachine;

private void cmdControl_Click(object sender,
System.EventArgs e)
{
 if (cmdControl.Text == "Start")
 {
 lstStatus.Items.Clear();
 m_SimulationMachine = new SimulationMachine(dbpath);
 m_SimulationMachine.TransactionNotificationEvent
 += new SimulationMachine.TransactionHandler(
 SimulationMachine_TransactionNotificationEvent);
 m_SimulationMachine.ReachedEndState+= new
 Desaware.StateCoder.StateMachineBase.
 ReachedEndStateEventHandler(
 m_SimulationMachine_ReachedEndState);
 cmdControl.Text = "Stop";
 m_SimulationMachine.LeftToDo = MAXCYCLES;
 if (optSelling.Checked)
 m_SimulationMachine.Selling = true;
 m_SimulationMachine.Start();
 }
 else
 {
 cmdControl.Text = "Start";

81

 m_SimulationMachine.LeftToDo = 0;
 }
}

The SimulationMachine’s TransactionNotificationEvent requires special
handling. While the ReachedEndState event of a state machine
automatically marshals to the correct thread for a form, automatic
synchronization is not provided for other events that you define in a state
machine. The following code shows how you should invoke a method on
the form using a delegate by calling the form’s Invoke method to marshal
the call to the correct thread.

[VB]
Private Delegate Sub SetListStringFunc(ByVal _
message As String)

Private Sub SetListString(ByVal message As String)
 lstStatus.Items.Add(message)
End Sub

Private Sub _
 m_SimulationMachine_TransactionNotificationEvent (_
 ByVal message As String) Handles _
 m_SimulationMachine.TransactionNotificationEvent
 Me.Invoke(New SetListStringFunc(AddressOf _
 SetListString), New String() {message})
 End Sub

[C#]

private delegate void SetListStringFunc(string message);

private void SetListString(string message)
{
 lstStatus.Items.Add(message);
}

82

private void
m_SimulationMachine_TransactionNotificationEvent(
string message)
{
 SetListStringFunc mySetListStringHandler =
 new SetListStringFunc(SetListString);
 this.Invoke(mySetListStringHandler, new
 string[]{message});
}

The ReachedEndState event in this example is only used for cleanup. We
don’t really care when the simulation state machine actually finishes.

[VB]
Private Sub m_SimulationMachine_ReachedEndState(ByVal _
 sender As Object) Handles _
 m_SimulationMachine.ReachedEndState
 m_SimulationMachine.Dispose()
 cmdControl.Text = "Start"
 m_SimulationMachine = Nothing
End Sub

[C#]

private void m_SimulationMachine_ReachedEndState(
 object sender)
{
 m_SimulationMachine.TransactionNotificationEvent-=
 new SimulationMachine.TransactionHandler(
 m_SimulationMachine_TransactionNotificationEvent);
 m_SimulationMachine.ReachedEndState-= new
 Desaware.StateCoder.StateMachineBase.
 ReachedEndStateEventHandler(
 m_SimulationMachine_ReachedEndState);
 cmdControl.Text = "Start";
 m_SimulationMachine.Dispose();
 m_SimulationMachine = null;
}

83

You’ll find that this example works much better than the previous two.
Not only does the form remain responsive, but you’ll see the list box being
updated in real time as the inventory is updated.

Review
This concludes the introductory tutorials. You’ve learned the basics of
creating state machines using StateCoder. You’ve seen how they can be
applied both to handle long background operations and asynchronous
operations. You haven’t seen large numbers of synchronization objects
and SyncLock calls – because the StateCoder framework is largely self-
synchronizing. You’ve seen how to create a custom messages source, how
to use several of the built in message sources, and how to let state
machines call other state machines and use them as message sources.

Now it’s time to look at some more realistic examples of using
StateCoder.

84

StateCoder Quick Start

Creating a Simple Managed State Machine
There are 9 steps involved when creating a simple managed state machine
using StateCoder. This section will summarize each step then guide you
through these steps to create a simple timer-based state machine.

Step 1 – Create Project
Create a new .NET Windows Application project (you can create other
project types but for the sake of simplicity, this quick start uses a
Windows Application project), add a new “States” class file for the state
machine (you may also add a copy of the “States” template file). Add a
reference from your project to the .NET assembly “Desaware StateCoder”.

Step 2 – Assign Names
After designing your state machine, assign names to your state machine
including namespace, state machine name, and names for each state.

Step 3 – Editing your “States” class file

Add the “Imports Desaware.StateCoder” (VB) or “using
Desaware.StateCoder;” (C#) statements to the top of the “States”
class file. If you are using VB, we also recommend that you add the
“Option Explicit On” and “Option Strict On” code statements
to the top of your States class file or make sure these are set in your
project settings.

85

Step 4 – Create your StateMachine class
Declare your state machine class object and inherit it from the
“StateMachine” class object. You will generally declare your state
machine object as a public object. Assign the “ContainsState” attribute
to your state machine for each state it supports.

[VB]

<ContainsState("YourStateMachineNameSpace.FirstState"), _
ContainsState("YourStateMachineNameSpace.SecondState"), _
ContainsState("YourStateMachineNameSpace.ThirdState"), _
ContainsState("YourStateMachineNameSpace.LastState")> _
Public Class YourStateMachine
 Inherits StateMachine

[C#]

[ContainsState("YourStateMachineNameSpace.FirstState"),
ContainsState("YourStateMachineNameSpace.SecondState"),
ContainsState("YourStateMachineNameSpace.ThirdState"),
ContainsState("YourStateMachineNameSpace.LastState")]
public class YourStateMachine: StateMachine

Step 5 – Create your State classes
Add your State class objects and inherit them from the “State” class object
or it’s generic version. You will generally declare your state classes as a
Friend (VB) or internal (C#) object (assuming that the state machine
and state classes are in the same file). Assign the “InitialState” and
“FinalState” attributes to your first and last state classes.

86

[VB]

<InitialState()> Friend Class FirstState
 Inherits State
or
 Inherits State(Of YourStateMachine)
 :
 :
<FinalState()> Friend Class LastState
 Inherits State
or
 Inherits State(Of YourStateMachine)

[C#]

[InitialState()] internal class FirstState: State
or
[InitialState()] internal class FirstState:
State<YourStateMachine>

 :

 :
[FinalState()] internal class LastState: State
or
[FinalState()] internal class LastState:
State<YourStateMachine>

Step 6 – Add functions to your state machine
Generally, you want to include one or more constructors for your state
machine class. In your state machine constructor, you would usually
assign the state machine’s StateMachineFlags (if you don’t want to
use the default ThreadPool) by calling the base class’s constructor, and set
the state machine’s ActiveMessageSource or
ActiveMessageSources property to assign a message source. If you do

87

not assign a message source in the state machine’s constructor, be sure to
assign one before you exit the first state’s EnterState subroutine,
otherwise an exception will be raised.

[VB]

Public Sub New()
 MyBase.New(StateMachineFlags.CreateInNewThread Or _
 StateMachineFlags.ForceEndStateOnAbort)
 ' We assign a 5 second timer message source
 ActiveMessageSource = New _
 Desaware.StateCoder.AlarmMessageSource(_
 TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5))
End Sub

[C#]

public
MyStateMachine():base(StateMachineFlags.CreateInNewThread |
StateMachineFlags.ForceEndStateOnAbort)
{
 // We assign a 5 second timer message source
 this.ActiveMessageSource = new
 Desaware.StateCoder.AlarmMessageSource(
 TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5));
}

Step 7 – Add functions to your states
Generally, your state classes (with the exception of the last state) will
include an override of the MessageReceived subroutine where you
would normally attach code to transition to the next state. Your state
classes may also include an override of the EnterState subroutine
where you would normally attach code to start this particular state. If you

88

need to access the state machine from any of your state classes and you’re
not using the generic version of the state class, you’ll probably want to
shadow the state machine’s readonly Machine property to retrieve a
reference to the state machine object. Another common function to
override is the state object’s ExceptionReceived subroutine. Override
this subroutine to do your own exception handling or to prevent the state
machine from automatically ending.

[VB]

<InitialState()> Friend Class FirstState
 Inherits State

 ' The Machine property isn’t used if inheriting from
 ' the generic State(Of …) class.
 Protected Shadows ReadOnly Property Machine() _
 As MyStateMachine
 Get
 Return CType(MyBase.Machine, MyStateMachine)
 End Get
 End Property

 Public Overrides Sub EnterState()
 ' Run your code for this state
 End Sub

 Public Overrides Sub MessageReceived(ByVal message _
 As Object, ByVal source As _
 Desaware.StateCoder.IMessageSource)
 ' transition to the next state
 NextState("SecondState")
 End Sub
End Class

89

[C#]

[InitialState()] internal class FirstState: State
{

 // The Machine property isn’t used if inheriting from
 // the generic State(Of …) class.
 protected new MyStateMachine Machine
 {
 get
 {
 return ((MyStateMachine)base.Machine);
 }
 }

 public override void EnterState()
 {
 // Run your code for this state
 }

 public override void MessageReceived(object message,
 Desaware.StateCoder.IMessageSource source)
 {
 // transition to the next state
 NextState("SecondState");
 }
}

Step 8 – Start your State Machine

Create an instance of your state machine object, then call the Start
function to start your state machine. StateCoder will call the EnterState
function of the first state before returning from the Start function call.
You can assign a delegate to the state machine’s
StateTransitionMonitor property. The
StateTransitionMonitor property is used to monitor state transitions
and will call your delegate each time a state transition is about to occur.

90

This feature is strictly used to monitor state transitions, do not use it to
alter state transitions. You can also assign a delegate to the state machine’s
ReachedEndState event. The ReachedEndState event is use to notify
you that the state machine has completed.

[VB]

mysm = New MyStateMachine()
' Hook the state transition event to our function
mysm.StateTransitionMonitor = AddressOf _
StateTransitionEvent
' Hook the end state event to our function
AddHandler mysm.ReachedEndState, AddressOf _
ReachedEndStateEvent
' Start the state machine
mysm.Start()

Private Sub StateTransitionEvent(ByVal EnteringState _
 As String)
 ' State transitioned to "EnteringState"
End Sub

Private Sub ReachedEndStateEvent(ByVal sender As Object)
 ' State machine completed
End Sub

[C#]

mysm = new MyStateMachine();
// Hook the state transition event to our function
mysm.StateTransitionMonitor = new
Desaware.StateCoder.StateTransition
(MyStateTransitionEvent);
// Hook the end state event to our function
EndStateHandler myhandler = new
EndStateHandler(MyReachedEndStateEvent);

91

mysm.ReachedEndState += new
Desaware.StateCoder.StateMachineBase.ReachedEndStateEventHa
ndler(myhandler);
// Start the state machine
mysm.Start();

private delegate void EndStateHandler(object sender);

private void MyReachedEndStateEvent(object sender)
{
 // State machine completed
}

private void MyStateTransitionEvent(string enteringstate)
{
 // State transitioned to "enteringstate"
}

Step 9 – Wait for your State Machine to end
Attach code to your ReachedEndStateEvent function. This will be called
by StateCoder if you had earlier set your state machine’s ReachedEndState
event to a delegate handler. You should remove the delegate handler from
your state machine object, and dispose of your state machine in this
function.

[VB]

Private Sub ReachedEndStateEvent(ByVal sender As Object)
 Dim mysm As MyStateMachine
 mysm = CType(sender, MyStateMachine)
 ' State machine completed, do cleanup
 RemoveHandler mysm.ReachedEndState, AddressOf _
 ReachedEndStateEvent
 mysm.Dispose()
End Sub

92

[C#]

private void MyReachedEndStateEvent(object sender)
{
 MyStateMachine mysm;
 mysm = (MyStateMachine)sender;
 // State machine completed, do cleanup
 EndStateHandler myhandler = new
 EndStateHandler(MyReachedEndStateEvent);
 mysm.ReachedEndState -= new
Desaware.StateCoder.StateMachineBase.ReachedEndStateEventHa
ndler(myhandler);
 mysm.Dispose();
}

Example: Creating a simple timer based state
machine
This sample will go through the steps in creating a simple state machine
that uses a timer to transition to the next state. The project source is
located in the Quick Start folder.

Step 1 – Create Project
Create a new .NET Windows Application project named QuickStart (both
assembly and namespace). Add a new “States” class file to this project
(you may instead include a copy of the “States” template file to this
project). Add a reference from your project to the .NET assembly
“Desaware StateCoder”.

Step 2 – Assign Names
The state machine will be named QuickStartStateMachine. This state
machine will contain four states named FirstState, SecondState,

93

ThirdState, and FinalState. The FirstState will have the InitialState
attribute and the LastState will have the FinalState attribute.

Step 3 – Editing your “States” class file

Add the “Imports Desaware.StateCoder” (VB) or “using
Desaware.StateCoder;” (C#) statements to the top of the “States”
class file. If you are using VB, we also recommend that you add the
“Option Explicit On” and “Option Strict On” code statements
to the top of your States class file.

Step 4 – Create your StateMachine class
Declare the QuickStartStateMachine state machine class object and inherit
it from the “StateMachine” class object.

[VB]

<ContainsState("QuickStart.FirstState"), _
ContainsState("QuickStart.SecondState"), _
ContainsState("QuickStart.ThirdState"), _
ContainsState("QuickStart.LastState")> _
Public Class QuickStartStateMachine
 Inherits StateMachine

[C#]

namespace QuickStart
{
 // Attributes to declare the states of your State
Machine
 [ContainsState("QuickStart.FirstState"),
 ContainsState("QuickStart.SecondState"),
 ContainsState("QuickStart.ThirdState"),
 ContainsState("QuickStart.LastState")]

94

 public class QuickStartStateMachine: StateMachine
 {

Step 5 – Create your State class
Create the FirstState, SecondState, ThirdState, and LastState class objects,
inherit them from the “State” class object. Declare the state classes as a
Friend (VB) or internal (C#) object. Assign the “InitialState”
and “FinalState” attributes to the FirstState and LastState classes. See
the example code for the generics version of this example.

[VB]

<InitialState()> Friend Class FirstState
 Inherits State
End Class

Friend Class SecondState
 Inherits State
End Class

Friend Class ThirdState
 Inherits State
End Class

<FinalState()> Friend Class LastState
 Inherits State
End Class

[C#]

[InitialState()] internal class FirstState: State
{
}

95

internal class SecondState: State
{
}

internal class ThirdState: State
{
}

[FinalState()] internal class LastState: State
{
}

Step 6 – Add functions to your state machine
Add a constructor to the state machine. The constructor will call the
StateMachine base class’s constructor passing it the CreateInNewThread
and ForceEndStateOnAbort flags. The constructor will call the
StateMachine base class’s SetTraceLevel to display tracing information
when the project runs in the Visual Studio environment. Finally, the
constructor sets the state machine’s ActiveMessageSource property to a
new AlarmMessageSource object which sets the message source to a 5
second interval alarm.

[VB]

Public Sub New()
 MyBase.New(StateMachineFlags.CreateInNewThread Or _
 StateMachineFlags.ForceEndStateOnAbort)
 MyBase.SetTraceLevel(SCTraceSwitch.TraceOptions.All)
 ActiveMessageSource = New _
 Desaware.StateCoder.AlarmMessageSource(_
 TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5))
End Sub

96

C#

public
QuickStartStateMachine():base(StateMachineFlags.CreateInNew
Thread | StateMachineFlags.ForceEndStateOnAbort)
{
 QuickStartStateMachine.SetTraceLevel
 (SCTraceSwitch.TraceOptions.All);
 this.ActiveMessageSource = new
 Desaware.StateCoder.AlarmMessageSource(
 TimeSpan.FromSeconds(5), TimeSpan.FromSeconds(5));
}

Step 7 – Add functions to your states

For our sample, we will just override the MessageReceived subroutine
where we add code to transition to the next state.

[VB]

' In the FirstState Class
Public Overrides Sub MessageReceived(ByVal message As _
Object, ByVal source As Desaware.StateCoder.IMessageSource)
 NextState("SecondState")
End Sub

' In the SecondState Class
Public Overrides Sub MessageReceived(ByVal message As _
Object, ByVal source As Desaware.StateCoder.IMessageSource)
 NextState("ThirdState")
End Sub

' In the ThirdState Class
Public Overrides Sub MessageReceived(ByVal message As _
Object, ByVal source As Desaware.StateCoder.IMessageSource)
 NextState("LastState")
End Sub

97

[C#]

// In the FirstState Class
public override void MessageReceived(object message,
Desaware.StateCoder.IMessageSource source)
{
 NextState("SecondState");
}

// In the SecondState Class
public override void MessageReceived(object message,
Desaware.StateCoder.IMessageSource source)
{
 NextState("ThirdState");
}

// In the ThirdState Class
public override void MessageReceived(object message,
Desaware.StateCoder.IMessageSource source)
{
 NextState("LastState");
}

Step 8 – Start your State Machine
Add a label and command button to your form and attach the following
code to the button’s click event. For our sample state machine, we want to
be notified when a state changes, and also when the state machine ends.
We assign a delegate to the state machine’s StateTransitionMonitor
property to inform us when a state is about to change. We hook a handler
to the state machine’s ReachedEndState event to notify us when the state
machine ends.

98

[VB]

Dim qs_sm As QuickStartStateMachine

qs_sm = New QuickStartStateMachine()
' Hook the state transition event to our function
qs_sm.StateTransitionMonitor = AddressOf _
StateTransitionEvent
' Hook the end state event to our function
AddHandler qs_sm.ReachedEndState, AddressOf _
ReachedEndStateEvent
' Start the state machine
qs_sm.Start()

[C#]

QuickStartStateMachine qs_sm;
qs_sm = new QuickStartStateMachine();

// Hook the state transition event to our function
qs_sm.StateTransitionMonitor = new
 Desaware.StateCoder.StateTransition
(StateTransitionEvent);

// Hook the end state event to our function
EndStateHandler myhandler = new
EndStateHandler(ReachedEndStateEvent);
qs_sm.ReachedEndState += new
Desaware.StateCoder.StateMachineBase.ReachedEndStateEventHa
ndler(myhandler);

// Start the state machine
qs_sm.Start();

Finally, declare the delegate functions in your Form class.

99

[VB]

Private Sub StateTransitionEvent(ByVal EnteringState _
As String)
 Label1.Text = "State transitioned to " + EnteringState
End Sub

Private Sub ReachedEndStateEvent(ByVal sender As Object)
End Sub

[C#]

private delegate void EndStateHandler(object sender);

private void StateTransitionEvent(string enteringstate)
{
 Label1.Text = "State transitioned to " + enteringstate;
}

private void ReachedEndStateEvent(object sender)
{
}

Step 9 – Wait for your State Machine to end
Attach code to the ReachedEndStateEvent function for cleanup. Remove
the delegate handler from the state machine object and dispose the state
machine in this function.

[VB]

Private Sub ReachedEndStateEvent(ByVal sender As Object)
 Dim qssm As QuickStartStateMachine

 qssm = CType(sender, QuickStartStateMachine)

100

 RemoveHandler qssm.ReachedEndState, AddressOf _
 ReachedEndStateEvent
 Label1.Text = "State machine completed"
 qssm.Dispose()
End Sub

[C#]

private void ReachedEndStateEvent(object sender)
{
 QuickStartStateMachine qs_sm;
 qs_sm = (QuickStartStateMachine)sender;

 Label1.Text = "State machine completed";

 // And dump the state machine
 EndStateHandler myhandler = new
EndStateHandler(ReachedEndStateEvent);
 qs_sm.ReachedEndState -= new
Desaware.StateCoder.StateMachineBase.ReachedEndStateEventHa
ndler(myhandler);
 qs_sm.Dispose();
}

Run the State Machine and watch the state changes updated on the label
control. You can start more than one state machine by repeatedly clicking
on the command button. Look at the Output window in Visual Studio
while the State Machine is running and look at the tracing information
output from the State Machine SetTraceLevel property. One question you
may have is why is the State Machine variable declared as a local variable
in the command button’s click event. Can that variable be garbage
collected after the State Machine starts? The answer is that once you start
the State Machine, StateCoder holds a reference to your State Machine
object so it will not be garbage collected until after the state machine ends.

101

Sample Applications
State machines are a fundamental concept in programming. It is therefore
impossible for us to even begin to list all the places where you might end
up using StateCoder. We’ve developed a number of examples that we
think illustrate the capabilities of the package, and help you see the range
of possibilities. In this section you’ll find a brief description of each
sample application and some insight into its architecture. Implementation
details for each application can be found by reading through the
application code itself.

Retrieving Information from the Internet
You saw in the tutorial section how a state machine can be deployed to
perform a series of asynchronous operations. One of the most common
asynchronous operations you’ll see is that of requesting information
through networks, especially calls to read data from web sites or execute
web service calls.

The AmazonRank application solves a problem that we were interested in.
We wanted the ability to quickly read a list of book rankings from
Amazon.com (our president, Dan Appleman, has five books and four e-
books in print, and we have an office pool every week to guess the
average ranking6).

This application demonstrates the following features:

• Using a state machine to perform a series of asynchronous
operations.

• Implementing web requests in a state machine.

6 Just kidding. Dan made us say that. He really wanted it so he could monitor not only his
books, but others that he works on in his additional role as editorial director at Apress.

102

• Extracting data from a web page using Regular Expressions7.

• Using isolated storage.

• Marshaling state machine events to form threads.

7 Refer to Dan Appleman’s EBook “Regular Expressions with .NET” for details on using
Regular Expressions.

103

http://www.desaware.com/Ebook3L2.htm

Do it yourself transactioning
This application (found in the Samples\Transactioning directory of your
StateCoder installation) demonstrates the following features:

• Implementing transactioning using StateCoder

• Building your own inheritable state machines

• Sharing state objects among state machines

• Tracing

• Nesting of state machines.

• Testing and simulation of state machines

About Transactioning
Transactioning is a subject that, for all that has been written about it, can
be rather confusing – especially when programming for Windows. The
problem is that the terminology and subsystems that handle transactions
keep changing.

Here then, is a one page explanation of transactioning that will hopefully
put everything into context, and give us a common ground in order to
discuss transactioning in the context of StateCoder and state machines.

What is a transaction?
It is a sequence of operations that meet the following requirements:

A: The entire sequence of operations occurs. If any one fails, then any
effects of any of the operations must be reversed so that it is as if none
of them had occurred (Atomicity)

C: The data managed by the transaction must remain Consistent. It may
not be corrupted or made invalid by the transaction, whether it
succeeds or fails.

104

I: Each transaction is Isolated from all others. It runs as if it is the only
one in the system.

D: The results of a transaction are Durable: Once executed successfully,
the results are stored (on disk or other reasonably permanent location).

Certainly a transaction server such as those in Enterprise Services is
suitable for many applications, especially complex transactions and
enterprise solutions. However, any algorithm that meets the ACID
requirements meets the definition of a transaction. In many cases it makes
sense to rely on other tools to implement transactions – for example: in a
database backed web application you may find that the transactioning
provided by your database is more than sufficient for your purposes.

It turns out that state machines are great tools for implementing
transactions. After all:

• A state machine defines a series of operations.

• You have complete control over the order of operations, and
knowledge of whether each one has succeeded or failed.

• StateCoder based state machines are inherently independent of
each other. The members of each state machine class and its
individual state objects cannot be accessed by any other8.

• Consistency and Durability can be incorporated into your design.
For example: if you save your results during the final state, you
can be certain that your state machine will always save its results9.

The StateCoderAutoBid and StateCoderAuctionDatabase (in the
Transactions directory) demonstrate a simple transactioning scheme. This
example takes advantage of the rather brute force record locking scheme

8 Of course, you could figure out a way to do this, but it would take some extra effort on
your part.
9 Barring an invalid application termination, of course.

105

of opening an XML database for exclusive access – not something you
would want to do in real life (you’d be much more likely to use update
queries such as shown in tutorials 3 through 5), but it does illustrate the
point nicely.

The sample application divides into the following parts:

The StateCoderAuctionDatabase component.
This component manages all access to the underlying AuctionInfo.xml
database, a simple auction database that contains a list of registered users,
a list of items being auctioned, and the current price and bidder.

It implements a number of state machines:

• The adbsm state machine: This is a base state machine object that
provides functions to perform operations on the XML database. It
is designed to be inherited by other state machines that perform
specific operations.

• The UserListSM state machine: Derives from adbsm. This state
machine retrieves a list of users from the XML database.

• The AuctionListSM state machine: Derives from adbsm. This state
machine retrieves from the XML database a list of items available
for auction.

• The AuctionInfoSM state machine: Derives from adbsm. This state
machine retrieves from the XML database information about a
single item being auctioned.

• The BidOnItemSM state machine: Derives from adbsm. This state
machine enters a bid transaction on the database. The bid either
succeeds or fails (atomicity). The state machine insures that either
all or none of the fields for an item are updated (consistency). The
state machine guarantees that it cannot be interfered by other
simultaneous bids (locks out other access until it is finished –

106

isolation). And the state machine makes sure the bid is stored in
the database if it succeeds, or the contents of the database remain
unchanged if it fails (durability).

• The AuctionBidSM state machine: Derives from adbsm. Performs
automatic bidding on an item starting with the current price,
applying an increment if a bid fails, and continuing until either the
maximum price is reached or the bid succeeds.

Because many of the state machines perform similar tasks, they can
actually share the same state classes.

The StateCoderAutoBid Application
As much fun as it is to experiment with a single state machine, the real fun
doesn’t begin until you start experimenting with larger numbers of state
machines. The AutoBid application tests the StateCoderAuctionDatabase
component by creating a large number of bidders, each of which is trying
to purchase an item at the lowest price possible, up to a specified
maximum price. This allows you to stress test the state machine and make
sure that it is, in fact, implementing the transactions correctly.

107

Building Dynamic State Machines
This application demonstrates:

• Dynamic creation of a state machine based on an XML database.

• Various late bound dynamic invocation techniques.

• Marshaling state machine to form threads.

• Using the QueuedStream stream class.

• Using the ParsingStreamReader message source.

About Dynamic State Machines
So far all of the state machines you have seen have been defined purely in
code. The states are defined statically using the ContainsState attribute.
The StateCoder framework is responsible for actually creating instances of
your state objects.

The StateCoder framework also makes it possible to define state machines
dynamically “on the fly.” This is accomplished by creating the state
objects in your application and passing them as an array to your state
machine class. When creating dynamic state machines, you need not use
the <InitialState> and <FinalState> attributes to identify the start and end
state. The StateCoder framework assumes that the first state in the array is
the initial state and the last state in the array is the final state. As with
static state machines, you must have two states in each state machine.

It is important to distinguish between unmanaged/managed state machines
and static/dynamic states. Every combination of state machine and state is
allowed as shown in the following table:

108

State Machine \ State Static Dynamic

Unmanaged States defined using
the ContainsState
attribute. Messages
dispatched by your
code.

States created by your
code. Messages
dispatched by your
code.

Managed States defined using
the ContainsState
attribute. States run on
the StateCoder thread
pool and messages are
dispatched by the
StateCoder
framework.

States created by your
code. States run on the
StateCoder thread pool
and messages are
dispatched by the
StateCoder framework.

State objects in a dynamic state machines always derive from the
DynamicState class.

The CommandLine Sample Application
The CommandLine sample application implements a simple tool that
allows you to invoke shared methods and properties of the .NET
framework directly from the command line. However, rather than making
you find the method and enter the full namespace name for the method,
this application divides the supported methods into categories and
provides simple names that map into the various commands.

Each category represents an operating “mode” that you enter using a
command, and exit using another command. Thus, by typing
“Diagnostics” you enter diagnostic mode where certain commands are
supported. You can then type “Exit” to exit diagnostic mode and either
enter another mode, or exit the application by typing “Exit” again.

109

Each “mode” represents a different state in the state machine. The states
are generated at runtime based on the contents of the XML file.

The following XML is an example of the input to the CommandLine
program:

<?xml version="1.0" encoding="utf-8"?>
<StateMachineSchema
xmlns="http://tempuri.org/XMLStates.xsd">
 <State>
 <Name>InitialState</Name>
 <Input>
 <Pattern>Diagnostics</Pattern>
 <NextState>DiagnosticState</NextState>
 </Input>
 <Input>
 <Pattern>Application</Pattern>
 <NextState>ApplicationState</NextState>
 </Input>
 <Input>
 <Pattern>Exit</Pattern>
 <NextState>FinalState</NextState>
 </Input>
 </State>
 <State>
 <Name>DiagnosticState</Name>
 <Input>
 <Pattern>Processes</Pattern>

<Execute>System.Diagnostics.Process.GetProcesses</Execute>
 </Input>
 <Input>
 <Pattern>Tracing</Pattern>

<Execute>System.Diagnostics.Trace.Listeners</Execute>
 </Input>
 <Input>
 <Pattern>Exit</Pattern>
 <NextState>InitialState</NextState>
 </Input>

110

 </State>
 <State>
 <Name>ApplicationState</Name>
 <Input>
 <Pattern>Domain</Pattern>

<Execute>System.AppDomain.CurrentDomain</Execute>
 </Input>
 <Input>
 <Pattern>Thread</Pattern>

<Execute>System.AppDomain.GetCurrentThreadId</Execute>
 </Input>
 <Input>
 <Pattern>Exit</Pattern>
 <NextState>InitialState</NextState>
 </Input>
 </State>
 <State>
 <Name>FinalState</Name>
 </State>
</StateMachineSchema>

The <State> tag defines a state. Within a <State> tag you have:

• The <Name> tag specifies the name of the state. Each state name
must be unique.

• One or more <Input> tags represent a user’s command line input
into the state and response to that input
Within the <Input> tag:

o The <Pattern> tag specifies the actual user input, or
“message” into the state for this <Input> block.

o The <NextState> tag specifies the state to go to after
processing this input.

o The <Execute> tag specifies the method to execute when
this pattern is detected.

111

A schema file is provided to allow verification of the XML before
processing of the file.

Refer to the application code for further details regarding the
implementation of this state machine.

112

Improving performance in dynamic ASP.NET web
sites
This application demonstrates:

• Use of StateCoder in the context of ASP.NET applications.

• Dynamic graphics in ASP.NET

Predictive ASP.NET and Desaware's StateCoder
If you read Microsoft's documentation and various articles about how to
create ASP.NET development, there are one theme that you will hear over
and over:

Always use stateless components because stateless
components improve scalability

All of ASP.NET's components and web controls are built based on this
principle. We're told that objects should not be stored in the application's
session variables. Any information that needs to be stored between
requests is stored in hidden fields on the page, as cookies, in a database, or
using any of the other persistence techniques supported by ASP.NET. By
avoiding the accumulation of objects, this approach results in improved
scalability.

But this approach comes with a price. And that price is in the form of
performance.

To understand the price, it's important to consider where your server
spends time when a page request comes in. Consider a typical page. It
consists of:

• Static content: This is HTML that is determined by the page URL
and does not vary from user to user.

113

• Linked static content: These are static images or other resources
that are present on the page, but read through separate requests.

• Dynamic content: This is HTML or other data that is customized
for each user.

• Linked dynamic content: These are dynamic images or other
resources that are customized for each user and read through
separate requests.

Where does a server spend its time when a request comes in?

• Rebuilding the ASP.NET objects

• Loading and sending static content

• Generating and sending dynamic content.

Of these, the biggest performance impact tends to be due to the dynamic
content. Static content not only requires no processing beyond loading
from disk, it can be efficiently cached as well by both ASP.NET and IIS.
Consider your own browsing experience: the greatest delays come from a
server responding to a request that is unique to your situation - generating
a custom map, purchasing a product, performing an inventory request,
waiting for that annoying ad to show up from a separate (and slower) ad
banner server...

This leads us to a self-evident and logical conclusion:

The more customization and processing required to
generate a dynamic user page, the slower the

response will seem to the user.
And worse, since dynamic content is often generated on outside servers
(such as ad servers or increasingly, web services), the response time may
not even be under your direct control!

These conclusions are obvious and the situation is unavoidable.

Well, maybe not.

114

Predictive ASP.NET™
There are some situations where delays due to customization are
inevitable. You can't, for example, charge a user for an order before they
place it.

But it turns out that there are many applications where these delays are not
unavoidable. This is because of the reality of how users actually use web
sites.

Users do NOT access web pages randomly.
In a real web site, users tend to follow certain

common paths which can be determined through web
logs.

Some of these paths are obvious. When a user requests a page, it is
virtually certain that they will immediately request all of the images that
appear on that page. Others are less obvious and vary from site to site. Yet
they are measurable. You can make statements about a site along the lines
of "If a user reaches page X, there is a n% chance they will next go to
page Y".

It turns out that there is one other important factor that relates to dynamic
content. While some customization (such as charging for a purchase) can
only take place in response to a user request, many types of customization
are in practice optional. For example: ideally, you might wish to
customize a banner ad based on past purchase history or known interests
of the user. However, you can get away with a generic ad. Other types of
data mining based on what you know about a user can generate
customized content that is a "bonus" - an opportunity to provide a richer
user experience, but not essential to the use of the web application.

Combine these two facts, and suddenly the rules for ASP.NET change.

If you have a high degree of confidence as to what a
user is likely to do next on your site.

or

115

If you would like to create customized content that
can improve the user experience, but do not want to

make the user wait for it.
then your application can benefit from using Desaware's StateCoder to
implement Predictive ASP.NET techniques. What is Predictive ASP.NET?
That's what we call our approach for using StateCoder to not only
maintain the state of objects between requests, but to perform ongoing
processing between requests to prepare dynamic information for the next
anticipated user request.

No, we're not Crazy
The idea of Predictive ASP.NET is so contrary to every message you've
heard about the advantage of statelessness that you might think we've
completely lost our senses. We haven't.

We have nothing against stateless components. They have all of the
advantages that Microsoft claims for them. However, we do not believe
that statelessness is an all or nothing proposition. Consider images, for
example:

When a page includes links to images, you know your server is going to
get a request for those images. If they are static images, this is not a
problem - because caching will help maintain high performance. But what
if they are custom images? Say you are running a photo site and know
through a login or cookie who the user is, and wish to extract their photos
from a database or retrieve them from an offline web service. Your server
is going to have to extract them sooner or later anyway. With StateCoder,
rather than waiting for each individual image request to come in, you can
start a state machine that continues to work in the background after the
initial page request is sent (or even while it is being sent). By the time the
individual image requests arrive, StateCoder may well have completed
preparing the images, allowing them to be sent immediately to the user.
Even if they are not ready, the wait for the user will be shorter.

116

Or consider an advertising scenario. You may know through experience
that once a user hits your site, they will be around for at least another half
dozen page views. If you know the user from a previous visit (and have
identified them via a Cookie or other scheme), you might want to prepare
advertising that is customized for the user. However, this is not essential.
So you launch a StateCoder state machine after the first request. This state
machine mines your database for past experience with the user and starts
generating a selection of custom advertising for the user. If the user's next
request comes in before the state machine is ready, you can serve up one
of your generic ads immediately without delay. But there's a good chance
the dynamic content will be ready, in which case you can provide a fully
customized page instantly using the data that has been generated since the
last request. You can continue to serve up the customized data, deleting it
only after the user has not made a request in a certain amount of time.

You Choose the Tradeoff
Predictive ASP.NET with StateCoder represents a choice and a tradeoff.
What you are saying is this:

In return for tying up some additional resources (objects held in memory,
and the risk of using some server time to generate content that may never
be used) - you gain dramatically improved performance for those using
your web application.

And improved performance is a big deal - fast sites are less frustrating,
more popular, and tend to keep people around longer. They also become
the "first choice" in cases where there are multiple sites to choose from.

How StateCoder handles Predictive ASP.NET
StateCoder is Desaware's new .NET framework for the creation of state
machines. For those new to State Machines, refer to the introduction to
State machines earlier in this manual and to articles on
www.desaware.com. With regards to ASP.NET, each state machine you
design implements a sequence of operations. This sequence can perform
any operation you wish. It is perfectly suited for asynchronous operations

117

http://www.desaware.com/

including other web requests or web service requests. A StateCoder state
machine can be stored in an ASP.NET session object and continue to run
in the background! This is very different from most objects stored in
ASP.NET session object which just sit there waiting for the next request.
For those system that cannot use session objects (say, with web farms), the
Predictive ASP.NET state machines can run on a separate web server
which can be accessed regardless of which web server receives a request.

Most important, the StateCoder framework manages its own thread pool
and efficiently shares threads among all of the state machines in a process
(even if they belong to different sessions). This means that you have
complete control over how much of your systems resources are tied up
with background operations. If you were to simply create background
threads for each session, the impact on your system's performance could
be huge. However, by dedicating a limited number of threads for
Predictive ASP.NET operations, you can gain the benefits of this approach
without jeopardizing the overall performance of your server.

The StateCoderWeb1 and Web1Statemachine sample programs (included
with the StateCoder demo and the full StateCoder product), demonstrate
how you can use Predictive ASP.NET to dramatically improve the
performance of web sites in dynamic content scenarios.

The example simulates a simple online commerce site. In this site, there
are two pieces of optional dynamic content - that is, content that we would
like to make dynamic, but can be static (or missing) if it is not
immediately available.

Each page has a graphic - a logo or banner ad if you will. The default is to
provide a static graphic, however a dynamically generated graphic would
be preferred (in this example, a graphic containing the user's name). In
addition, it would be nice to offer the customer recommendations based on
previous purchases.

When the pages load, they check to see if the state machine has completed
creating the dynamic data. If not, the user is immediately sent static data

118

that is already prepared, or the data is simply omitted (as you prefer). If
the data is ready, it is sent immediately to the user.

For details on how this is implemented, review the StateCoderWeb1 and
Web1StateMachine assemblies.

119

Reference
This section contains reference information for each of the StateCoder
classes. Though it is in the form of a reference, we strongly encourage you
to read it carefully as it describes in details how to build state machines
using the StateCoder framework.

State Classes
The State and DynamicState classes are the classes on which you build
individual states in a state machine.

The State Class
The State class is the base class for every state in a state machine. There
are two ways of defining states for a state machine: Static and Dynamic.

The State class is available in two forms, the normal form and the generics
form which takes as its parameter the type of the state machine class
associated with the state.

State(Of class derived from StateMachineBase)

State<class derived from StateMachineBase>

In a static state machine, each state is defined by its own class, each
derives from the base State class and has its own name. For example:

VB
<InitialState()>Public Class myInitialState
Inherits State
End Class

C#
[InitialState()]class myInitialState:State
 {

120

 }

The attributes InitialState or FinalState are used to specify which is the
initial state and which is the final state for a static state machine. You must
define one (and only one) initial state, and one (and only one) final state
for each state machine.

The name of the state is the name of the class – in this case the same code
defines a state named “myInitialState”.

A state machine that uses static State objects is defined by using the
ContainsState attribute on the StateMachine class in this form:

VB
<ContainsState("Namespace.someinitialstate"), _
 ContainsState("Namespace.someotherstate"), _
 ContainsState("Namespace.somefinalstate")> _
Public Class SearchMachine
 Inherits StateMachine
End Class

C#
[ContainsState("Namespace.someinitialstate"),
ContainsState("Namespace.someotherstate"),
ContainsState("Namespace.somefinalstate")]
public class SearchMachine: StateMachine
 {
 }

The ContainsState attribute must include the full name of the state
(including the namespace). The state name is case sensitive. States can be
defined in any order. In static state machines, the individual state objects
are created by the framework.

121

State Object Properties
Machine

VB: Protected Overridable ReadOnly Property
Machine() As StateMachineBase
C#: protected virtual StateMachineBase Machine
For generic version:
VB: Protected Overridable ReadOnly Property
Machine() As class derived from StateMachineBase
C#: protected virtual class derived from
StateMachineBase Machine

This property returns a reference to the state machine that
owns this state object. When using the generics form of the
State class in VS2005, this will return the type of your state
machine. When using the normal form or VS2003, you will
frequently shadow this method in your state object to provide
a reference to your own type of state machine. For example: If
your state machine object is of type myStateMachine, you
might define the following override:
Private Shadows ReadOnly Property Machine() _
As myStateMachine
 Get
 Return CType(MyBase.Machine, _
 myStateMachine)
 End Get
End Property

If your State object is intended to be used by two different
state machines you should avoid using the generic form of the
class, and be cautious in creating a shadowed property because
it can lead to errors unless the return type is set to an interface
that is common to both state machines.

122

State Object Methods
EnterState

VB: Public Overridable Sub EnterState()
C#: public virtual void EnterState()

This method is called by the framework when
entering a state. You will usually override this
method to perform any necessary tasks. One
common task during this method is to set one or
more message sources for the state machine.

If your state machine is managed (inherits from the
StateMachine class) and there are no active message
sources on return from this method, your state
machine will abort with an exception. If this method
is being called due to a call to the state machine’s
Start method, the exception will be passed on to the
caller of the Start method. If this method is called by
the framework, the state machine will go directly to
the end state, call the end state’s ExceptionReceived
method, and set the state machine’s LastException
property.

When called from a managed state machine, this
method is always called on the thread that is running
the state machine, except for when it is called for the
initial state (in which case it is called on the thread
that is creating the state machine).

ExceptionReceived
VB: Public Overridable Sub
ExceptionReceived(ByVal ex As Exception)
C#: public virtual void
ExceptionReceived(Exception ex)

This method is called by the framework when an
exception occurs during the operation of a state
machine. Refer to the section on State Machines and
Exceptions for further details. For managed state
machines, this method will be called on the state

123

machine’s thread regardless of source (the sole
exception being exceptions that occur during the
EnterState method of the initial state.

The default behavior of this method if not
overridden is to set the State Machine’s
LastException property to the exception that
occurred and to switch immediately to the Final
state. If you override this method to handle an
exception directly, be sure to set the State Machine’s
LastException property if you wish the exception to
be registered with the state machine.

When called from a managed state machine, this
method is always called on the thread that is running
the state machine.

MessageReceived

VB: Public Overridable Sub
MessageReceived(ByVal message As Object,
ByVal source As IMessageSource)
C#: public virtual void
MessageReceived(Object message,
IMessageSource source)

This method is called by the framework when a
message is sent to a state. It is up to you to interpret
the meaning of messages based on your own state
machine and to handle them accordingly – any
object can be passed as a message. You will almost
always override this method, as it forms the heart of
each state machine. The source parameter refers to
the message source that sent the message.

This method will never be called for the final state in
a state machine.

When called from a managed state machine, this

124

method is always called on the thread that is running
the state machine

NextState
VB: Protected Sub NextState(ByVal
TheNextState As String)
C#: protected void NextState(String
TheNextState)

This method is called by your state class code in
order to switch execution to a different state. The
EnterState method of the next state will be called
before this method returns. If the EnterState method
raises an unhandled exception, this method will
catch the exception and call the ExceptionReceived
method for that state (not the current state), passing
it a reference to the exception object.

Specifying an invalid state will cause an
“InvalidState” exception to be raised.

ToString
VB: Public Overrides Function ToString()
As String
C#: public override String ToString()

Returns the name of the state as defined by the type
of the state.

WARNING! Do not override this method. It is left
overridable because the DynamicState type must
override it. If you override it, the framework will not
work correctly.

The DynamicState Class
The DynamicState class derives from the base State class and is the base
class for every state in a dynamically defined state machine.

125

The DynamicState class is available in two forms, the normal form and the
generics form which takes as its parameter the type of the state machine
class associated with the state.

DynamicState(Of class derived from StateMachineBase)

DynamicState<class derived from StateMachineBase>

In a dynamic state machine, all of the states are typically implemented by
a single class which derives from the base DynamicState class. For
example:

[VB]
Public Class myDynamicState
Inherits DynamicState
Public Sub New(ByVal StateName As String)

MyBase(Statename)
End Sub

End Class

[C#]

public class myDynamicState: DynamicState
{
 public myDynamicState(

String StateName):base(StateName)
 {

 }
}

Each dynamic state is constructed with a reference to a StateMachine or
UnmanagedStateMachine object (referring to the actual state machine in
which it will be used) and the name of the state. Each state name in a state
machine must be unique.

126

A state machine that uses dynamic state objects is created by passing an
array of these state objects to the StateMachine object’s constructor. The
first object is always considered the initial state. The last object is always
considered the final state. The InitialState and FinalState attributes should
not be used with dynamic states.

DynamicState Object Properties
Machine Inherited from State

DynamicState Object Methods
Constructor

VB: Public Sub New(ByVal StateName As
String)
C#: public DynamicState(String StateName)

Create dynamic states after you’ve created your state
machine object (derives from StateMachine or
UnmanagedStateMachine). Pass the name of the
state as the StateName parameter. Each state name in
a state machine must be unique.

EnterState Inherited from State

ExceptionReceived Inherited from State

MessageReceived Inherited from State

NextState Inherited from State. Uses the name specified by the
DynamicState constructor to identify states.

ToString
VB: Public NotOverridable Overrides
Function ToString() As String
C#: public override sealed String
ToString()

Returns the name of the state as defined when the
object was constructed.

127

State Machine Classes
The StateMachineBase, StateMachine and UnmanagedStateMachine
classes are the classes on which you build state machines. These classes
use state classes to define the states in the state machine.

The StateMachineBase class
The StateMachineBase class forms the foundation on which state
machines are built. Classes you create should not inherit directly from
this class! Instead, your classes should inherit from the StateMachine and
UnmanagedStateMachine classes.

Nevertheless, many of the members of the StateMachineBase class are
common to both, so they are defined in this section. Only members that
are accessible through the StateMachine and UnmanagedStateMachine
classes are shown here.

StateMachineBase properties
LastException

VB: Public Overridable Property
LastException() As Exception
C#: public virtual Exception
LastException

The StateCoder framework traps any unhandled
exceptions that occur while the state machine is
running. Your state machine is notified of these
exceptions by the framework, which calls the
ExceptionReceived method for the current State
object. The most recent exception can also be
determined by reading this property.

This property is most often used by external
code that is using the state machine to determine
what caused a state machine to terminate in the
event of an error. This property is set by the
ExceptionReceived method of the current state.

128

You will typically not override this property,
however may do so if you wish to perform
additional processing when an exception occurs.

EndStateName
VB: Public ReadOnly Property
EndStateName As String
C#: public String EndStateName

Returns the name of the final state of this state
machine.

Name
VB: Public Property Name As String
C#: public String Name

This is a user defined name for the state
machine. It is used by the ToString override
when returning a string representation for the
state machine, and is used during tracing.

StateTransitionMonitor
VB: Public WriteOnly Property
StateTransitionMonitor As
StateTransition
C#: public StateTransition
StateTransitionMonitor

Delegate:
VB: Public Delegate Sub
StateTransition(ByVal EnteringState As
String)
C#: public delegate void
StateTransition(String EnteringState)

When set, the specified delegate is called before
each state transition. The delegate is called
before the EnterState method call on the State
object. This event will be raised on the same
thread as the EnterState method call. Refer to
State Machine Threading for details.

This method is most often called to monitor the

129

progress of a state machine. You should NOT
use it to modify the behavior of the state
machine (switch states, change message sources,
etc.). Aside from the fact that doing so violates
the principles of encapsulation that state
machines are designed to promote, the
framework is not designed to handle arbitrary
actions during this call.

StateMachineBase methods
AbortStateMachine

VB: Public Overridable Sub
AbortStateMachine()
C#: public virtual void AbortStateMachine

This method is called to abort a state machine’s
operation outside of the normal message sequence.
The default behavior is to send the
StateAbortException to the current state’s
ExceptionReceived method. If the state machine
has the StateMachineFlags.ForceEndStateOnAbort
flag set, the state machine will be set to the end
state as well.

If you override this method, you should always call
the base class method.

GetState
VB: Protected Overridable Function
GetState(ByVal StateName As String) As
State
C#: protected virtual State
GetState(String StateName)

Returns the State object based on the state name.
States in the framework are always identified by

130

name, which consists of either the Type (for State
objects) or assigned Name (for DynamicState
objects).

Reset
VB: Public Overridable Sub Reset()
C#: public virtual void Reset()

This method resets a StateMachine to its initial
state. The StateMachine object must currently be in
the End state or an EndStateReset StateException
exception will be thrown. Any Message Sources set
previously in the state machine will have been
cleared when the previous state machine finished
executing, and will thus need to be set. You must
call the Start method to restart the state machine
after calling this method

ToString
VB: Public Overrides Function ToString()
As String
C#: public override String ToString()

Returns the name of the state machine in the form
type (name) where type is the type name of the
state machine object, and name is the value of the
Name property if set. The ToString method is used
primarily during tracing.

StateMachineBase events
ReachedEndState

VB: Public Event ReachedEndState(ByVal
sender As Object)
C#: public event
ReachedEndStateEventHandler
ReachedEndState(Object sender)

This event is raised by a state machine when it

131

enters its end state. The EnterState method of the
End State object will be called before this event is
raised. The WaitHandle for the state machine will be
signaled after this event is raised unless the
RaiseEndStateEventAfterSignal state machine flag
is specified. For unmanaged state machines, this
event will be raised on the same thread as the
EnterState method call. Refer to State Machine
Threading for details.

This event may be overridden (and is overridden by
the StateMachine class), but it is unlikely you will
need to do so.

IMessageSource Implementation
StateMachineBase objects can serve as message sources to other state
machines. To do so, the StateMachineBase object implements the
IMessageSource interface. Override these methods to define the way your
state machine implements a message source.

MessageReady
VB: Public ReadOnly Property
MessageReady As Boolean
C#: public Boolean MessageReady

This property is called by other state machines
to determine if the state machine has entered the
end state. It also provides a general mechanism
to determine if a state machine is in the end
state.

MessageReadySignal
VB: Public ReadOnly Property
MessageReadySignal() As WaitHandle
C#: public WaitHandle
MessageReadySignal

This property is called by other state machines
to retrieve a wait handle which is signaled once
a message is ready. The default behavior is to

132

return a System.Threading.ManualResetEvent
object whose signal state is True if the state
machine is in the end state and false otherwise.

MessageSourceOptions
VB: Public Overridable ReadOnly
Property MessageSourceOptions As
MessageSourceFlags
C#: public virtual MessageSourceFlags
MessageSourceOptions

This property allows you to specify additional
options for the behavior of the state machine
when acting as a message source. The default
value MessageSourceFlags.OneShot.

This corresponds to the Flags property of the
IMessageSource interface.

RetrieveMessage
VB: Public Overridable Function
RetrieveMessage() As Object
C#: public virtual Object
RetrieveMessage

This method may be called by the other state
machine to retrieve a message defined by the
current state machine. Override this method to
specify the message to return. The default is to
return Nothing (null).

WaitExpiration
VB: Public Overridable Property
WaitExpiration() As DateTime
C#: public virtual DateTime
WaitExpiration

This property allows you to set a timeout for a
message source. The default implementation is
to store any value you set. The default member
value is Nothing (null). Override this to
calculate expiration values on the fly.

133

The StateMachine Class
The StateMachine class will be the base class for most of your state
machines. When you inherit from the StateMachine class, you create a
managed state machine – one that is managed by the StateCoder
framework. The framework takes care of message dispatch, threading and
most synchronization tasks.

StateMachine properties
ActiveMessageSource

VB: Public WriteOnly Property
ActiveMessageSource As IMessageSource
C#: public IMessageSource
ActiveMessageSource

This is a shortcut to setting a single message
source for a state machine. See
ActiveMessageSources.

ActiveMessageSources
VB: Public Property
ActiveMessageSources As
IMessageSource()
C#: public IMessageSource[]
ActiveMessageSources

One or more valid message sources must be
defined at all times for the state machine to work
(except for when the state machine is in the end
state). This property sets and retrieves an array
of message sources. Use the
ActiveMessageSource property to set a single
messages source.

Setting this property clears any existing message
sources. Any message sources with
MessageSourceFlags set to AutoDispose will be
disposed at that time.

LastException Inherits from StateMachineBase

134

Name Inherits from StateMachineBase

StateTranstionMonitor Inherits from StateMachineBase

StateMachine methods
Constructor

VB: Public Sub New()
Public Sub New(ByVal flags As
StateMachineFlags)
Public Sub New(ByVal flags As
StateMachineFlags, ByVal States() As
DynamicState)
C#: public StateMachine()
public StateMachine(StateMachineFlags
flags)
public StateMachine(StateMachineFlags
flags, DynamicState[] States)

The flags option allows you additional control over
the operation of the state machine (refer to the
StateMachineFlags enumeration).

The States() array is used to create state machines
using dynamic state objects. Refer to the
introduction to the State class and Dynamic State
class for further details.

AbortStateMachine
VB: Public Overrides Sub
AbortStateMachine()
C#: public override void
AbortStateMachine()

This method is called to abort a state machine’s
operation outside of the normal message sequence.
The default behavior is to send the
StateAbortException to the current state’s

135

ExceptionReceived method. If the state machine
has the StateMachineFlags.ForceEndStateOnAbort
flag set, the state machine will be set to the end
state as well.

If you override this method, you should always call
the base class method.

Note that due to synchronization issues, a state
machine will not abort immediately.

GetState Inherits from StateMachineBase

Reset Inherits from StateMachineBase

If you override this method, be sure to call the base
class method.

SendException
VB: Protected Overrides Sub
SendException(ByVal ex As Exception)
C#: protected override void
SendException(Exception ex)

This method is called by the framework to send
messages to the state classes in the state machine.
You should never call it in your state machine
class.

You may override it (to monitor exceptions),
however should be careful to call the base class
method if you do so.

This method is always called on the thread that is
running the state machine.

If you raise an exception during the processing of
this method, it will be ignored.

It is possible for multiple exceptions to be sent to a

136

state.

SendMessage
VB: Protected Overrides Sub
SendMessage(ByVal msg As Object, ByVal
source As IMessageSource)
C#: protected override void
SendMessage(Object msg, IMessageSource
source)

This method is called by the framework to send
messages to the state classes in the state machine.
You should never call it in your state machine
class.
You may override it (to monitor messages),
however should be careful to call the base class
method if you do so.

This method is always called on the thread that is
running the state machine.

If you raise an error during the processing of this
method, it will be reflected back to a
SendException call for the current state (which
may be different from the one that executed this
method if the NextState method was called).

Start
VB: Public Overridable Sub Start()
C#: public virtual void Start()

Call this method to start operation of the state
machine. You will typically do this after you have
created the state machine and set any message
sources (for cases where the messages sources are
not set by the State objects).

If you override this method, be sure to call the base
class method.

If no message source is active by the time this
command returns, an exception will be raised.

137

ToString Inherits from StateMachineBase

StateMachine events
ReachedEndState

VB: Public Event ReachedEndState(ByVal
sender As Object)
C#: public event
ReachedEndStateEventHandler
ReachedEndState(Object sender)

This event is raised by a state machine when it
enters its end state. The EnterState method of the
End State object will be called before this event is
raised. The StateCoder framework examines all
handlers registered for this event. If the handler is
derived from the System.Windows.Forms.Control
class (which includes all forms and controls), the
framework will marshal the event to the control’s
thread, providing automatic synchronization for
these applications.

Event handlers registered to other classes will not be
marshaled (use care if you raise an event to a class
that has direct access to form or control methods or
properties). Handlers to static methods will also not
be marshaled. Refer to State Machine Threading for
details.

The UnmanagedStateMachine Class
The UnmanagedStateMachine class allows you to use the state machine
framework to define state machines that are run entirely under control of
your own application. Because the framework is not involved in the actual
running of the state machine, it provides no protection relating to thread

138

safety and no synchronization. All message dispatching must be
performed manually. There is no automatic support for message sources.

UnmanagedStateMachine properties
LastException Inherits from StateMachineBase

Name Inherits from StateMachineBase

StateTranstionMonitor Inherits from StateMachineBase

UnmanagedStateMachine methods
Constructor

VB: Public Sub New()
Public Sub New(ByVal flags As
StateMachineFlags)
Public Sub New(ByVal flags As
StateMachineFlags, ByVal States() As
DynamicState)
C#: public UnmanagedStateMachine()
public
UnmanagedStateMachine(StateMachineFlags
flags)
public Unmanaged
StateMachine(StateMachineFlags flags,
DynamicState[] States)

The flags option allows you additional control over
the operation of the state machine (refer to the
StateMachineFlags enumeration).

The States() array is used to create state machines
using dynamic state objects. Refer to the
introduction to the State class and Dynamic State
class for further details.

139

AbortStateMachine Inherits from StateMachineBase

GetState Inherits from StateMachineBase

Reset Inherits from StateMachineBase

SendException
VB: Protected Overrides Sub
SendException(ByVal ex As Exception)
C#: protected override void
SendException(Exception ex)

This will immediately send an exception to the
current state’s ExceptionReceived method.

SendMessage
VB: Protected Overrides Sub
SendMessage(ByVal msg As Object, ByVal
source As IMessageSource)
C#: protected override void
SendMessage(Object msg, IMessageSoruce
source)

This will immediately send a message to the current
state’s MessageReceived method.

ToString Inherits from StateMachineBase

UnmanagedStateMachine events
ReachedEndState Inherits from StateMachineBase

140

The StateMachineFlags Enumeration
The StateMachineFlags enumeration is an optional parameter that is
passed to the StateMachine and UnmanagedStateMachine constructor to
control the behavior of the state machine.

StateMachineFlags enumeration values
None No flag specified

CreateInNewThread Only applies to StateMachine objects. This
flag indicates that a state machine should run
in a private thread. Normally managed state
machines run in a thread pool.

Private threads should only be used for state
machines that perform very long operations
synchronously (where processing a message
might block the operation of other state
machines in the thread).

ForceEndStateOnAbort When this flag is set, the receipt of a
StateAbortException exception by the
StateMachineBase class will force the state
machine into the end state (which will also
cause the end state’s EnterState method to be
called). If not set, receipt of this exception
will simply send the exception to the current
state, and cease operation.

ReachedEndStateEvent-
AfterSignal

Normally, the ReachedEndStateEvent is
raised before the state machine’s WaitHandle
is signaled. This flag changes the behavior so
that the WaitHandle is signaled first. This is
necessary if you have a form or control
thread both waiting for the state machine

141

wait handle and responding to events (which
is not recommended anyway because of the
risk of race conditions).

Exception Classes
In managed state machines, the StateCoder framework traps exceptions
that take place while the state machine is running and send them to the
ExceptionReceived method for the current state. This guarantees that
exceptions are not only directed to the current state, but are raised in a
consistent manner. Refer to the section “State Machines and Exceptions”
for more information on how the StateCoder framework handles
exceptions.

Exceptions that are generated by the StateCoder framework derive from
the StateException class. This class behaves identically to the .NET
framework ApplicationException class.

The StateException class
The following exceptions are raised by the framework:

Reset method is only valid for state machines in their end
state

Indicates the Reset method was called for an active state machine.

Illegal Parameter Value
Generic message indicating that you passed an invalid parameter to
a StateCoder object method or property.

142

Wrapped object is not valid
Message sources often wrap an internal object – for example: a
stream message source contains a stream. This error indicates that
the internal object is not valid.

Asynchronous operation is already in progress
Several StateCoder message source objects perform asynchronous
operations. This error is raised when you attempt to start an
asynchronous operation on an object when one is already in
progress.

Duplicate State Name Found - State names must be unique
within a state machine.

This exception is raised when you attempt to create a new state
machine object that has duplicate states.

Duplicate or missing Initial State
This exception is raised when you define a state machine that has
no initial state, or more than one state marked with the InitialState
attribute.

Duplicate or missing End state
This exception is raised when you define a state machine that has
no end state, or more than one state marked with the FinalState
attribute.

Initial and End states must be different
This exception is raised when you define a state machine in which
the initial and final state are the same.

Invalid state specified
This exception is raised when an attempt is made to switch to a
non-existent state. This will typically occur when you pass an
invalid state parameter to the NextState method in a state class.

143

This exception will also occur during construction of a static state
machine if a ContainsState attribute parameter is invalid. You can
trap the exception and read the exception’s message to find the
name of the invalid state.

One common cause of this exception is typographical errors in the
state name, including capitalization. Remember – state names are
case sensitive.

State Machine has already started
This exception is raised if you attempt to start a state machine that
is already running.

Message source missing on start command
This exception is raised if a message source is not specified by the
time the state machine’s Start method returns. The message source
can be specified before the Start method is called, or during the
EnterState method of the current state.

Call to StartRead is invalid unless RequiresExplicitStart flag is
True

This exception is raised if you call the StartRead method of the
ParsingMessageSource class if the RequiresExplicitStart flag was
not specified when the source was created.

The specified process does not exist
The process identifier specified in the constructor of the
ProcessMessageSource class does not refer to a valid process.

The StateAbortException class
The StateAbortException class is raised when a state machine is aborted.
This is usually a result of a call to the AbortStateMachine method of the
state machine class. In managed state machines, it can also be called if an
application domain terminates while a state machine is active.

144

The StateTimeoutException class
The StateTimeoutException is raised by the StateCoder framework when a
message source times out.

The MessageSource property of this exception object can be used to
retrieve a reference to the message source that timed out.

Message Sources
Message sources comprise the third main tier of the StateCoder
framework. The StateMachineBase (and descendent) classes represent the
state machine as a whole. The State (and descendent) classes represent
individual states in the state machine. And Message sources (any class that
implements the IMessageSource interface), represent the input to the states
that cause them to perform operations and transition from one state to the
next.

Managed state machines (those that derive from the StateMachine class)
are tightly integrated with message sources. You must make sure that at
least one message source is always active between the time the state
machine is started (when it returns from the Start method10) and the time it
enters the end state. Message sources can be set from your state machine
class, or from individual state classes (allowing message sources to vary
from one state to the next). The framework synchronizes message sources
so that messages are always dispatched on the thread on which the state
machine is running – avoiding many problems inherent in multithreading
applications.

Each managed state machine has a single Active Source list, that
comprises all of the message sources that are currently active. Message
sources should only be present in one state machine list – they cannot be

10 The message source may be set before calling the Start method, or may be set within
the EnterState method of the initial state.

145

shared (this is obvious – since it makes no sense for a single message
source to be providing messages to two state machines simultaneously).

Unmanaged state machines, in which you dispatch all messages directly to
the state machine, provide no automatic support for message sources,
however you may create and use them (watching for and then dispatching
messages) if you wish.

In addition to defining the standard IMessageSource interface, the
StateCoder framework includes a number of useful message sources.

The IMessageSource Interface

Flags
VB: ReadOnly Property Flags() As
MessageSourceFlags
C#: MessageSourceFlags Flags { get; }

This allows you to specify additional options for
how the StateCoder framework will handle the
message source when used with managed state
machines. Refer to the MessageSourceFlags
enumeration for details.

This property has no effect on unmanaged state
machines.

You should not raise an exception when this
property is read.

MessageReady
VB: ReadOnly Property MessageReady() As
Boolean
C#: Boolean MessageReady { get; }

This property is used to determine if the message
source has a message ready. Return True if a
message is ready, False otherwise.

146

This property can be read multiple times.
However, once the message is actually read using
the RetrieveMessage method, this property
should either reset to False (if no new message is
ready), or remain True (if the next message is
ready).

You should not raise exceptions when this
property is read.

MessageReadySignal
VB: ReadOnly Property
MessageReadySignal() As WaitHandle
C#: WaitHandle MessageReadySignal { get;
}

This property is used to retrieve a wait handle
which is signaled once a message is ready. A wait
handle is any object that derives from
System.Threading.WaitHandle.

Note that multiple message sources are permitted
to share wait handles (a useful way to conserve
resources, allowing a framework that manages
multiple message sources to use one wait handle
to signal when any of the sources is ready). This
means that you should always use the
MessageReady property to check if a message is
ready, and not rely only on the wait handle.

If you are using a message source with
unmanaged state machines, keep in mind that the
.NET wait functions do not permit duplicate wait
handles. The StateCoder framework deals with
this situation automatically with managed state
machines.

You MUST return a valid WaitHandle object

147

when this method is called. Any exception raised
when processing this method is considered fatal
and will cause the state machine to abort.

RetrieveMessage
VB: Function RetrieveMessage() As Object
C#: Object RetrieveMessage()

This method is called to retrieve a message. A
message can be any arbitrary object as defined by
the message source. It is up to you to make sure
that your state machine properly interprets and
handles incoming messages.

Once a message is retrieved, the message source
should either be ready to return the next message,
or should start (or be prepared to start) another
message retrieval operation. Each message may
be retrieved only once with this property.

Note that some message sources, such as timer
alarms, may not actually return a message – in
those cases the fact that the source is ready
provides sufficient information to the state
machine.

With managed state machines, any errors raised
during this method will be reflected back to the
ExceptionReceived method of the current state.

WaitExpiration
VB: Property WaitExpiration() As
DateTime
C#: DateTime WaitExpiration {get; set; }

This allows you to set a timeout for a message
source. You may return DateTime.MinValue
(zero) to indicate that no expiration time is set.

With managed state machines, you should set
timeout values at the same time as you set the
message source. Changing the WaitExpiration

148

value while the framework is waiting for
messages will not change the expiration (i.e.,
once the framework starts waiting on a message
source, the expiration time is already set). The
expiration of a message source will cause a
StateTimeoutException to be sent to the current
state’s ExceptionReceived method.

This property has no effect with unmanaged state
machines, though you may of course use it if you
wish.

You should not raise an exception when this
property is read.

The MessageSourceFlags Enumeration
The MessageSourceFlags enumeration provides additional information to
the StateCoder framework as to how message sources should be handled.
The value is returned by the Flags property of the IMessageSource
interface.

MessageSourceFlags Values
None 0 – No flags specified

OneShot When the StateCoder framework sees a message
source with this option set, it automatically
removes it from the Active Source list for the
state machine after a message is processed.

This option is designed for message sources, such
as state machines, that are intended to produce
only a single message and then be destroyed.

AutoDispose This indicates that a message source implements

149

the IDisposable interface and needs to be
disposed. It also indicates that the message source
should be used only once and that you wish the
framework to Dispose it automatically when it is
removed from the Active Source list for a state
machine.

The AlwaysSignaledWaitHandle Class
The StateCoder framework uses wait handles to suspend a thread if none
of the state machines in a thread have a message ready. Thus, generally
speaking, if you define a message source that was always able to provide a
message (which is not at all uncommon – a text processing state machine
would fall into this category), you might think it would never actually
need to provide a wait handle. The framework would always see that it’s
MessageReady property is True, and would thus never request a wait
handle from the MessageReadySignal property.

However, it turns out that it is necessary for message sources that are
always ready to nonetheless return a wait handle. This is for two reasons:

1. The IMessageSource.MessageReadySignal property is specified as
always returning a valid wait handle.

2. In practice, it is possible for a state machine to be added to a thread
right after the framework decides it needs to suspend a thread. In
which case a wait handle may be requested from the message
source.

The AwaysSignaledWaitHandle class implements the shared (static)
method Handle, that returns a ManualResetEvent object that is always
signaled.
Public Shared ReadOnly Property Handle() As WaitHandle

150

You should use the handle retrieved from this method in any case where
your message source needs to return a signaled object. This significantly
reduces the resource load on the system. Remember, the StateCoder
framework allows the same wait handle to be shared among multiple
message sources.

The GenericMessageSourceBase Class
The GenericMessageSourceBase class provides an efficient base class
implementation for all message sources that do not generate their own
wait handles, or that wrap internal objects that do not generate their own
wait handles.

GenericMessageSourceBase members
Dispose

VB: Public Overridable Sub Dispose()
Implements IDisposable.Dispose
C#: public override void
IDisposable.Dispose

The GenericMessageSourceBase class
implements IDisposable in order to close the
ManualResetEvent wait handle. You should call
Dispose on this class when you are through with
it. You may override the Dispose method if your
message source has cleanup that needs to be
done, in which case you should always call the
base class Dispose method as well.

Finalize
VB: Protected Overrides Sub Finalize()
C#: ~GenericMessageSourceBase

The GenericMessageSourceBase class
implements Finalize in order to close the
ManualResetEvent wait handle. You should call
Dispose on this class when you are through with
it. You may override the Finalize method if your

151

message source has cleanup that needs to be
done, in which case you should always call the
base class Dispose method during the Finalize
event.

Objects that are Disposed will not also be
finalized.

SourceFlags
VB: Public Overridable Property
SourceFlags As MessageSourceFlags
C#: public virtual MessageSourceFlags
SourceFlags

You may override the default message source
flags. Or you may set the source flags for an
individual instance of a message source. The
default value is zero.

MessageReady
VB: Public MustOverride ReadOnly
Property MessageReady As Boolean
public Boolean
C#: public abstract Boolean
MessageReady

You must override this property to indicate
whether a message is ready for your message
source. Be sure to call the
SetExistingWaitHandle method any time the
MessageReady state for your message source
changes.

MessageReadySignal
VB: Public ReadOnly Property
MessageReadySignal As WaitHandle
C#: public WaitHandle
MessageReadySignal

The GenericMessageSourceBase class returns a
manual reset event whose signaled value
depends on the value of the MessageReady
property (which you have overridden).

152

RetrieveMessage
VB: Public MustOverride Function
RetrieveMessage() As Object
C#: public abstract Object
RetrieveMessage

You must override this method to return a
message from your message source.

SetExistingWaitHandle
VB: Protected Sub
SetExistingWaitHandle(ByVal signaled As
Boolean)
C#: protected void
SetExistingWaitHandle(Boolean signaled)

Use this method to control the signal state of the
wait handle for your message source. Typically
you will call it with the signaled parameter set to
True any time a message is ready, and with the
signaled parameter set to False any time a
message is no longer ready (often after the
message is read using the RetrieveMessage
method).

WaitExpiration
VB: Public Overridable Property
WaitExpiration() As DateTime
C#: public virtual DateTime
WaitExpiration

You may override this method to provide your
own expiration timeouts for your message
source. The default implementation simply treats
this as a variable you can set. The default value
is no timeout.

For further information on using this class, refer to the tutorial on building
custom message sources.

153

The AsyncResultMessageSource Class
The AsyncResultMessageSource class makes it easy to use virtually any
asynchronous operation as a message source. This class allows you to
perform most asynchronous operations without creating a custom message
source for each one. The following code shows a typical scenario, in this
case for a web request.

[VB]
httpwr = CType(WebRequest.Create(newuri), _
HttpWebRequest)
' Start the async request
msource = New AsyncResultMessageSource(_
httpwr.BeginGetResponse(_

AsyncResultMessageSource.GetAsyncCallbackFunction() _
, Nothing))
' Set the request as the message source
ActiveMessageSource = msource

[C#]
httpwr = (HttpWebRequest)(WebRequest.Create(newuri));
 // Start the async request
msource = new
AsyncResultMessageSource(httpwr.BeginGetResponse(
AsyncResultMessageSource.GetAsyncCallbackFunction(),
null));
// Set the request as the message source
ActiveMessageSource = msource;

The AsyncResultMessageSource class provides a generic AsyncCallback
delegate that can be used with most .NET asynchronous operations, thus
eliminating the need to define your own delegate to handle asynchronous
operations. When the asynchronous operation is complete, the
AsyncResultMessageSource object will be ready and will return the
internal IAsyncResult object as the message which can then be processed
as necessary to end the asynchronous operation as shown here:

154

[VB]
Public Overrides Sub MessageReceived(ByVal message As
Object, _
ByVal source As IMessageSource)
iar = CType(message, IAsyncResult)
webresponse = CType(httpwr.EndGetResponse(iar),
HttpWebResponse)

[C#]
public override void MessageReceived(object message,
IMessageSource source){
IAsyncResult iar;
iar = (IAsyncResult)message;
webresponse = (HttpWebResponse)
(Machine.httpwr.EndGetResponse(iar));

The AsyncResultMessageSource class correctly handles asynchronous
operations that complete synchronously immediately when started, thus
allowing it to be used as a generic solution.

AsyncResultMessageSource members
AsyncCallbackFunction

VB: Public Overridable Sub
AsyncCallbackFunction(ByVal ar As
IAsyncResult)
C#: public virtual void
AsyncCallbackFunction(IAsyncResult
ar)

This method can be overridden if you are
creating a derived class and wish to perform
some operation during the actual
asynchronous delegate call rather than
waiting for the message to be processed.

This method is a “stub” and has no default
behavior.

Constructor
VB: Public Sub New(ByVal Async As
IAsyncResult)
public C#:

155

AsyncResultMessageSource(IAsyncResult
Async)

The constructor for this class requires an
IAsyncResult value that is the result of
launching an asynchronous operation.

Dispose
VB: Public Overridable Sub Dispose()
Implements IDisposable.Dispose
C#: public virtual void
IDisposable.Dispose()

The AsyncResultMessageSource class
implements IDisposable in order to clear
internal resources. You should call Dispose
on this class when you are through with it.
You may override the Dispose method if your
message source has cleanup that needs to be
done, in which case you should always call
the base class Dispose method as well.

Finalize
VB: Protected Overrides Sub
Finalize()
C#: ~AsyncResultMessageSource

The AsyncResultMessageSource class
implements Finalize in order to clear internal
resources. You should call Dispose on this
class when you are through with it. You may
override the Finalize method if your message
source has cleanup that needs to be done, in
which case you should always call the base
class Dispose method during the Finalize
event.

Objects that are Disposed will not also be
finalized.

156

Flags
VB: Public Overridable ReadOnly
Property Flags As MessageSourceFlags
Implements IMessageSource.Flags
C#: public MessageSourceFlags
IMessageSource.Flags

This property returns the
MessageSourceFlags value for this message
source. The base class returns both
MessageSourceFlags.OneShot and
MessageSourceFlags.AutoDispose in
recognition of the fact that an asynchronous
operation is an operation that produces a
single result.

GetAsyncCallbackFunction
VB: Public Shared Function
GetAsyncCallbackFunction() As
AsyncCallback
C#: public static AsyncCallback
GetAsyncCallbackFunction()

Use this method to retrieve an AsyncCallback
delegate which you can pass to methods that
start asynchronous operations. This
eliminates the need to define separate
methods and delegates for different
asynchronous operations.

MessageReady
VB: Public ReadOnly Property
MessageReady As Boolean Implements
IMessageSource.MessageReady
C#: public Boolean
IMessageSource.MessageReady

This property returns True once the
asynchronous operation is complete or if it
completes synchronously.

157

MessageReadySignal
Public ReadOnly Property
MessageReadySignal() As WaitHandle
Implements
IMessageSource.MessageReadySignal

This property returns the wait handle for the
asynchronous operation. A signaled wait
handle is returned if the operation completed
synchronously.

RetrieveMessage
VB: Public Overridable Function
RetrieveMessage() As Object
Implements
IMessageSource.RetrieveMessage
C#: public virtual Object
IMessageSource.RetrieveMessage()

The default implementation of this method
returns the original IAsyncResult object
passed to the constructor of this object.

Override this to return a different message if
you are creating a derived class.

The ManualMessageSource class
The ManualMessageSource class is a sealed (not inheritable) message
source that allows you to send messages from any external code into a
state machine. The class queues messages, and handles all necessary
synchronization.

The ManualMessageSource members
Dispose Inherits from GenericMessageSourceBase

SourceFlags Inherits from GenericMessageSourceBase

MessageReady
VB: Public Overrides ReadOnly Property
MessageReady As Boolean
C#: public override Boolean
MessageReady

158

Returns True if a message is available in the
messages source’s internal message queue.

MessageReadySignal Inherits from GenericMessageSourceBase

RetrieveMessage
VB: Public MustOverride Function
RetrieveMessage() As Object
C#: public abstract Object
RetrieveMessage()

Retrieves a message from the queue if one is
present.

SendMessage
VB: Public Sub SendMessage(ByVal obj As
Object)
C#: public void SendMessage(Object obj)

Call this method to add a message to the message
source queue.

The AlarmMessageSource class
The AlarmMessageSource class is a sealed (not inheritable) message
source that wraps a timer. It handles both single alarm and periodic timer
events. This class inherits from the GenericMessageSourceBase class.

The AlarmMessageSource members
Constructor

VB: Public Sub New(ByVal AlarmTimer As
TimeSpan, ByVal IntervalTimer As
TimeSpan)
Public Sub New(ByVal AlarmTimer As
TimeSpan, ByVal IntervalTimer As
TimeSpan, Flags as MessageSourceFlags)
C#: public void AlarmMessageSource
(TimeSpan AlarmTimer, TimeSpan
IntervalTimer)
public void AlarmMessageSource (TimeSpan
AlarmTimer, TimeSpan IntervalTimer,
MessageSourceFlags Flags)

159

The constructor takes an alarm value and Interval
value. Refer to the documentation for the
System.Threading.Timer class for details on how
these parameters work (they are passed from this
constructor directly to the wrapped Timer
object)11. The MessageSourceFlags allows you to
specify flags for this message source.

Change
VB: Public Sub Change(ByVal AlarmTimer
As TimeSpan, ByVal IntervalTimer As
TimeSpan)
C#: public void Change(TimeSpan
AlarmTimer, TimeSpan IntervalTimer)

This method changes the timer values. Refer to
the documentation for the
System.Threading.Timer.Change method for
details on the how these parameters work (they
are passed from this method directly to the
wrapped Timer object).

Dispose Inherits from GenericMessageSourceBase

SourceFlags Inherits from GenericMessageSourceBase

MessageReady
VB: Public Overrides ReadOnly Property
MessageReady() As Boolean
C#: public override Boolean MessageReady

Returns True if the internal timer has elapsed.

MessageReadySignal Inherits from GenericMessageSourceBase

RetrieveMessage
VB: Public Overrides Function
RetrieveMessage() As Object
C#: public override Object

11 Reminder: The first constructor of the TimeSpan class takes an integer value that
specifies ticks in units of 100ns. Multiply by 10,000 to specify milliseconds.

160

RetrievMessage()

Returns True if the timer has elapsed. False
otherwise. Calling this method also resets the
timer. If the timer is set up to be a periodic timer,
the MessageReady property is set to False and the
message source is set up to wait for the next timer
event.

WaitExpiration Inherits from GenericMessageSourceBase

The ProcessMessageSource class
The ProcessMessageSource class is a sealed (not inheritable) message
source that signals and remains signaled when a specified process exits.
This class inherits from the GenericMessageSourceBase class.

The ProcessMessageSource members
Constructor

VB: Public Sub New(ByVal ProcessID As
Integer)
Public Sub New(ByVal ProcessFileName As
String)
Public Sub New(ByVal ProcessFileName As
String, ByVal ProcessCmdLine As String)
C#: public void ProcessMessageSource
(int ProcessID)
public void ProcessMessageSource (string
ProcessName)
public void ProcessMessageSource (string
ProcessName, string ProcessCmdLine)

The ProcessID parameter is the process number
of a running process you want to wait on.
ProcessFileName and ProcessCmdLine is used
for cases where you want to launch a new process
and wait for that process to exit.
ProcessFileName is the file name of the process

161

to run, include the full path of the file if
necessary. ProcessCmdLine is a string
containing any additional command line
arguments to pass to the process to launch.

Dispose Inherits from GenericMessageSourceBase

SourceFlags Set to AutoDispose and OneShot.

MessageReady
VB: Public Overrides ReadOnly Property
MessageReady() As Boolean
C#: public override Boolean MessageReady

Returns True if the process has exited. After the
RetrieveMessage function is called, will return
False.

MessageReadySignal Inherits from GenericMessageSourceBase

RetrieveMessage
VB: Public Overrides Function
RetrieveMessage() As Object
C#: public override Object
RetrievMessage()

Returns the internal System.Diagnostics.Process
object. You can retrieve additional information
for the process through the exposed functions.
Note that certain Process properties are not
accessible after the process has terminated.

WaitExpiration Inherits from GenericMessageSourceBase

The ParsingStreamReader class
The ParsingStreamReader class turns any stream into a message source. In
doing so, it performs a number of useful tasks:

162

Dan Appleman
After RetrieveMessage is called it should return False. Okay.

• Allows a state machine to begin processing input from a stream
before all of the data has been retrieved (in the case of
asynchronous operations).

• Allows a state machine to process input on streams such as Sockets
where the content determines when data can be processed.

• Allow you to break up stream data into messages based on either a
predefined set of rules, a regular expression, or a custom parser.

The ParsingStreamReader handles any text based stream.

With it’s ability to parse incoming stream data, the ParsingStreamReader
is incredibly useful even outside of state machines!

The ParsingStreamReader class is sealed (not inheritable).

The ParsingStreamReader Members
Constructor

VB: Public Sub New(ByVal BaseStream As
Stream, ByVal Parser As IMessageParser,
ByVal flags as
ParsingStreamReaderFlags)
Public Sub New(ByVal BaseStream As
Stream, ByVal UseEncoder As
Text.Encoding, ByVal Parser As
IMessageParser, ByVal flags as
ParsingStreamReaderFlags)
C#: public ParsingStreamReader(Stream
BaseStream, IMessageParser Parser,
ParsingStreamReaderFlags flags)
public ParsingStreamReader(Stream
BaseStream, Text.Encoding UseEncoder,
IMessageParser Parser,
ParsingStreamReaderFlags flags)

The BaseStream parameter defines the stream
that is wrapped by the ParsingStreamReader.
The UseEncoder parameter specifies the encoder
to use for the string (the default is

163

UTF8Encoding). The Parser parameter specifies
an object that implements the IMessageParser
interface (which will be defined later).

The flags parameter allows you to specify one or
more of the following flags from the
ParsingStreamReader enumeration:

RequiresExplicitStart – The stream reader must
be started with an explicit call to the StartRead
method and stopped with an explicit call to the
StopRead method.

QueueFinalChars – Any leftover (unmatched)
text in the stream when the end of the stream is
reached, will be treated as a message. When not
set, leftover text is discarded.

Dispose Inherits from GenericMessageSourceBase

Note! Calling Dispose on the
ParsingStreamReader does NOT close or
Dispose the underlying stream.

Finalize Inherits from GenericMessageSourceBase

SourceFlags Inherits from GenericMessageSourceBase. The
default return value is zero.

MaxInternalQueueSize
VB: Public Property
MaxInternalQueueSize As Integer
C#: public int MaxInternalQueueSize

The ParsingStreamReader parses incoming
string data as it arrives and stores individual
messages in an internal queue. This property
specifies the maximum number of items to store
in the queue. Once the queue is full, parsing will
stop until enough messages are read to reduce

164

the queue size below this threshold. While not
parsing data, incoming information will be
buffered.

MessageReady
VB: Public ReadOnly Property
MessageReady() As Boolean
C#: public Boolean MessageReady {get;}

Returns True if a message is available in the
messages source’s internal message queue.

MessageReadySignal Inherits from GenericMessageSourceBase

RetrieveMessage
VB: Public Function RetrieveMessage()
As Object
C#: public Object RetrieveMessage()

Retrieves a message from the queue if one is
present. Retrieves a null object (Nothing) when
the end of the stream is reached.

StartRead
VB: Public Sub StartRead()
C#: public void StartRead()

Use when the RequiresExplicitStart flag is set to
begin the stream read operation.

StopRead
VB: Public Sub StopRead()
C#: public void StopRead()

Call this method to abort a read operation. When
the RequiresExplicitStart flag is set, this method
is called to notify the reader that the end of file
has been reached.

WaitExpiration Inherits from GenericMessageSourceBase

The RequiresExplicitStart flag is used in cases where you may be writing
data into a stream in segments, each of which, when read, will cause an
end of file indication. A good example of this is the CommandLine
example, where the same console stream is reused and an end of file is

165

reached at the end of each line. In that case the StartRead and StopRead
methods are used for each read operation on a given stream.

The IMessageParser interface
This interface contains the single method:

VB: Sub Parse(ByVal que As Queue, ByRef Chars() As
Char)

C#: void Parse(Queue que, Char[] Chars)

Each time it is called, it removes as many characters as possible from the
Chars() array, parsing them into individual messages that are placed on the
Queue object.

The ParsingClass Class
The StateCoder framework includes the ParsingClass class, which
implements the IMessageParser interface.

The ParsingType enumeration defines the type of parsing supported by
this class as follows:

 LineBreak = 1
 RegularExpression = 98
 Custom = 99

The LineBreak option parses the incoming text into lines, where each line
consists of a message. With this option, a CRLF pair, or standalone CR or
standalone LF are considered line breaks.

The RegularExpression option parses the incoming text according to a
Regular Expression expression. You can learn more about Regular
Expressions in Dan Appleman’s PDF-EBook “Regular Expressions with
.NET”

166

http://www.desaware.com/Ebook3L2.htm
http://www.desaware.com/Ebook3L2.htm

The Custom option allows you to specify a delegate to do custom parsing
of the incoming text.

The ParsingClass Members
Constructor

VB: Public Sub New(ByVal ParseType As
ParsingType)
C#: public void ParsingClass(ParsingType
ParseType)

Use this constructor to specify parsing types that do
not require additional parameters. At this time only
ParsingType “LineBreak” is supported with this
constructor.

Constructor
VB: Public Sub New(ByVal Pattern As
String, Optional ByVal options As
RegexOptions = RegexOptions.None)
C#: public void ParsingClass(String
Pattern, RegexOptions options)

The Pattern represents the Regular Expression to use
for parsing. Each Regular Expression Match is
considered a message. Unmatched text is discarded.
The RegexOptions parameter specifies the
RegexOptions to use for the search.

Constructor
VB: Public Sub New(ByVal CustomParser As
ParseNextFunction)
C#: public void(ParseNextFunction
CustomParser)

Use this constructor to specify a custom parsing
function. The custom parsing function must match
the delegate:

VB: Public Delegate Function
ParseNextFunction(ByVal Chars() As Char,
ByVal StartLoc As Integer, ByRef NextStart
As Integer) As Integer

167

C#: public delegate int
ParseNextFunction(Char[] Chars, int
StartLoc, ref int NextStart)

The function should start scanning the text at the
location specified by StartLoc, and set the NextStart
parameter to the location of the start of the next
message.

The ParsingClass object will extract the message
from the Chars() array and add it to the queue.

The ParsingClass implements the IMessageParser interface and can be
passed as a parameter to the constructor of the ParsingStreamReader class.

The QueuedStream class
The QueuedStream class is a custom stream class that is designed to be
particularly useful with the ParsingStreamReader class. It is very similar
to a MemoryStream class, except for the following:

• Data is always written synchronously into the stream.

• Data can be retrieved synchronously or asynchronously from the
stream (in other words, the stream will block or wait for data to be
written, much like a pipe would).

• Data is always read first in, first out.

• The QueuedStream class is thread safe for multiple writer, single
reader operations.

The QueuedStream class is demonstrated in the CommandLine sample
application.

168

The QueuedStream Members
Constructor

VB: Public Sub New()
C#: public QueuedStream()

See the parameterless constructor for the
MemoryStream class for more information..

SyncRoot
VB: Public ReadOnly Property SyncRoot
As Object
C#: public Object SyncRoot {get;}

An object you can use for SyncLock operations
in derived classes.

IsClosed
VB: Public ReadOnly Property IsClosed
As Boolean
C#: public bool MaxInternalQueueSize
{get;}

True if the stream has been closed.

CanRead Inherits from Stream. This property is always
True.

CanSeek Inherits from Stream. This property is always
False.

CanWrite Inherits from Stream. This property is always
True.

Length
VB: Public ReadOnly Property Length As
Integer
C#: public int Length {get;}

Returns the number of bytes currently in the
stream.

The remaining members are identical to the MemoryStream class with the
following critical exceptions:

All Read operations on a MemoryStream are synchronous, and if data is
unavailable the function returns immediately with no data (indicating end
of stream).

169

With the QueuedStream class, an empty stream is considered “waiting”
for data (much like a NetworkStream). The QueuedStream class will block
(or in the case of an async read, wait) until data becomes available or the
stream is closed.

All data is appended to the stream. All data is read from the beginning of
the stream.

FrameWork control
The StateCoder framework exposes additional methods that allow you to
customize the behavior of the framework. These consist of static methods
of the StateManager class.

StateManager static methods
MaxThreadPoolSize

VB: Public Shared Property
MaxThreadPoolSize As Integer
C#: public static int
MaxThreadPoolSize

This property specifies the maximum
number of threads that will be created on
the StateCoder thread pool for a given
process. The default number is 4. The
legal range is 1 to 200 (though 200 is far
more than is practical for most
applications).

You can reduce the size of the thread pool
at any time, however threads will only be
removed through attrition as the state
machines they run terminate naturally.
Thus the change will not take place
immediately or in a deterministic time

170

frame.

This property has no impact on the
number of threads that may be created for
state machines that are instructed to run in
their own thread.

MachinesPerThreadThreshold
VB: Public Shared Property
MachinesPerThreadThreshold() As
Integer
C#: public static int
MachinesPerThreadThreshold

This property indicates the number of
state machines that should exist in a
thread before the framework considers
creating a new thread. The StateCoder
framework does not create new threads
unless all of the current threads in the
thread pool have at least this many state
machines active. Note that under no
circumstances will a thread be created if
that would cause the thread pool size to
increase beyond the value of the
MaxThreadPoolSize property. Thus you
might have more state machines in a
thread than specified by this property. The
default value for this property is 8. There
is no maximum value for this property.

The StateManager class has additional public properties and methods that
are used by the framework. They are not intended to be called from user
code. Doing so may cause the framework to fail to operate correctly
and is definitely unsupported.

171

Diagnostic Classes
Debugging state machines poses its own set of challenges, especially
when you have many states, or many state transitions. The StateCoder
framework therefore provides sophisticated tracing capability that is
integrated into the .NET framework’s diagnostic and instrumentation
system. You can read more about this system in the section “State
Machine Tracing and Diagnostics.”

The SCTraceSwitch class
The SCTraceSwitch class inherits from the base
System.Diagnostics.Switch class. The display name for configuration
settings is “StateCoderSwitch”, the description is “Statecoder state
machine tracing”.

This class defines the public TraceOptions enumeration that defines the
types of tracing you wish to enable and allows you to fine tune the
information that is captured. The tracing used is the logical Or of the
TraceOptions values.

TraceOptions Enumeration Values
Off = 0 Tracing is disabled

Undefined = 0 Tracing is disabled

EnterState = 1 Tracing occurs immediately before the
EnterState method of the current state is called.

MessageReceived = 2 Tracing occurs immediately before the
MessageReceived method of the current state
is called to process a message.

StateTransition = 4 Tracing occurs on state transitions. The trace
will occur before both the EnterState method
call, and the StateTransitionMonitor hook if
one is installed.

172

ExceptionReceived = 8 Tracing occurs immediately before the
ExceptionReceived method of the current state
is called to process an exception.

FinalState = 16 Tracing occurs after the state machine has
entered the final state (after the EnterState
method for the final state has been called, and
after the state machine’s end state event has
been raised and wait handle has been signaled).

Reset = 32 Tracing occurs when the state machine Reset
method is called.

All = 255 All tracing is enabled.

SCTraceSwitch Class Members
Level

VB: Public Property Level() As
TraceOptions
C#: public TraceOptions Level

This property sets and retrieves the current
TraceOption enumeration value that defines
the tracing level.

OnEnterState
VB: Public ReadOnly Property
OnEnterState() As Boolean
C#: public Boolean OnEnterState

This property returns True if EnterState
tracing is enabled.

OnMessageReceived
VB: Public ReadOnly Property
OnMessageReceived() As Boolean
C#: public Boolean OnMessageReceived

This property returns True if
MessageReceived tracing is enabled.

OnStateTransition
VB: Public ReadOnly Property
OnStateTransition() As Boolean
C#: public Boolean OnStateTransition

173

This property returns True if StateTransition
tracing is enabled.

OnExceptionReceived
VB: Public ReadOnly Property
OnExceptionReceived() As Boolean
C#: public Boolean
OnExceptionReceived

This property returns True if
ExceptionReceived tracing is enabled.

OnFinalState
VB: Public ReadOnly Property
OnFinalState() As Boolean
C#: public Boolean OnFinalState

This property returns True if FinalState
tracing is enabled.

OnReset
VB: Public ReadOnly Property
OnReset() As Boolean
C#: public Boolean OnReset

This property returns True if Reset tracing is
enabled.

The StateCoderTraceEvent class
While most tracing situations rely on simple text messages written to a
debugger, the StateCoder tracing system is designed to capture a great deal
of information that can then be analyzed using any tool able to read a data
table (such as a database or Excel).

The StateCoderTraceEvent class hold the information for a single trace
event.

StateCoderTraceEvent Members
CurrentState

VB: Public ReadOnly Property
CurrentState As String
C#: public String CurrentState

174

This returns the state name of the current state
when this event is raised. If a state transition
event occurred, this will be the new state.

EventType
VB: Public ReadOnly Property EventType
As String
C#: public String EventType

This returns the TraceOptions enumeration name
for this event. For example “StateTransition” or
“MessageReceived”

ExceptionDescription
VB: Public ReadOnly Property
ExceptionDescription As String
C#: public String ExceptionDescription

This returns the exception for ExceptionReceived
events. The string takes the form A:B, where A is
the result of the ToString method on the
exception object, and B is the exception message.

MachineName
VB: Public ReadOnly Property MachineName
As String
C#: public String MachineName

This returns the name of the state machine that
generated this event. This is derived from the
state machine’s Name property.

MachineType
VB: Public ReadOnly Property MachineType
As String
C#: public String MachineType

This returns the class name of the state machine
that generated this event.

Message
VB: Public ReadOnly Property Message As
String
C#: public String Message

This returns the string representation of the
message (using the ToString method of the
message) that generated this event (valid for

175

MessageReceived events).

MessageSource
VB: Public ReadOnly Property
MessageSource As String
C#: public String MessageSource

This returns the string representation of the
message source (using the ToString method of
the message source) that generated this event
(valid for MessageReceived events).

ToString
VB: Public Overrides Function ToString()
As String
C#: public override String ToString

This override provides a detailed English text
description of the event.

The output format of trace information in the standard debug window
(which is produced by the ToString method of the TraceEvent class) is as
follows:

statemachine [(machinename)] message [currentstate] [details]

statemachine := The class name of the state machine class.

machinename := The value of the Name property for the state machine if
available.

message := A description of the trace event.

currentstate := If applicable, the name of the current state.

details := Additional details about the event.

176

The SCTraceListener class
The SCTraceListener class inherits from the base
System.Diagnostics.TraceListener class. The default listener simply
displays a string description of each event (using the ToString method for
each SCTraceEvent object). The SCTraceListener builds a database of
events which can be accessed in your application or can dump a CSV file
format table for later examination using the tools of your choice.

The table format defined by the Listener consists of the following fields:

• EventType

• MachineName

• MachineType

• CurrentState

• MessageSource

• Message

• Exception

These fields all contain strings and correspond to the matching properties
of the StateCoderTraceEvent object.

The SCTraceListener class only records trace events marked as belonging
to the StateCoder category.

SCTraceListener Members
Constructor

VB: Public Sub New()
C#: public void SCTraceListener()

Constructs the listener and initializes the
internal DataSet into which events will be
stored.

GetData VB: Public ReadOnly Property
GetData As DataSet
C#: public DataSet GetData

177

Retrieves a DataSet containing all traced
events. The DataSet contains a single
DataTable object with the fields described
previously.

MachineNameFilter VB: Public Property
MachineNameFilter As String
C#: public String MachineNameFilter

If set, only entries that have a machine
name where the machine name matches this
value, are stored.

MachineTypeFilter VB: Public Property
MachineTypeFilter As String
C#: public String MachineTypeFilter

If set, only entries that have a machine type
(class name) where the machine type
matches this value, are stored.

Write VB: Public Overloads Overrides Sub
Write(ByVal message As String)
C#: public override void
Write(String message)

Called by the tracing system, this method
has no effect.

Write VB: Public Overloads Overrides Sub
Write(ByVal message As Object,
ByVal category As String)
C#: public override void
Write(Object message, String
category)

Called by the tracing system, this method
records events generated by the framework.
Only events belonging to the “StateCoder”
category and messages of type
StateCoderTraceEvent are recorded.

178

WriteLine See Write and WriteLine
Dispose VB: Protected Overloads Overrides

Sub Dispose(ByVal IsDisposing As
Boolean)
C#: protected override void
Dispose(Boolean IsDisposing)

You should dispose the listener when you
are finished with it.

DumpCSV Public Sub DumpCSV(ByVal
outputstream As IO.Stream)
public void DumpCSV(IO.Stream
outputstream)

Dumps the current contents of the DataSet
in the CSV format to the specified stream.
The DataSet is not cleared by this
operation.

179

State Machine Threading Issues
One of our original purposes in developing StateCoder related directly to
the problem of multithreading and asynchronous programming. The fact
of the matter is that anybody who claims that multithreaded programming
is easy has never done it. It is difficult, and while it can provide many
benefits, it can also lead to bugs that are difficult to find and correct. In
fact, when you see a Windows application freeze or crash, odds are pretty
good that you’ve just run into a threading bug, one that occurs so rarely
that the developers have not been able to reproduce it reliably enough to
correct it.

When Desaware started writing VBX control (oh so many years ago), we
first wrote a C++ class framework for those controls (though we never
commercialized it, it was the first C++ class framework for VBX controls
written). So it was that when we looked at the kinds of products we
wanted to do for .NET, we decided we needed a strong framework for
multithreaded and asynchronous operations on which to build our future
products.

But this time we decided to share this technology in a commercial product.

If you’ve read through this manual, you already have a good
understanding of how threading works in StateCoder. But here is a brief
summary of the issues that you should keep in mind.

All calls into a state machine are on the state machine’s
thread, except...
The StateCoder framework assigns each state machine to a single thread
(either on the thread pool12, or a dedicated thread, depending on the flag
settings when the state machine is created. All messages to each state will
arrive on that same thread. This dramatically reduces the risk of

12 Each Application Domain has its own StateCoder thread pool.

180

multithreading problems. However, there are some exceptions and
potential problems that you should be aware of:

• The EnterState method of the initial state is called on the thread
that calls the Start method of the state machine. If you call the
NextState method during the EnterState method of the initial state,
that state’s EnterState method (and any subsequent states called in
this matter) will also run on that thread. However, the state
machine will not actually start running until the state machine’s
Start method call returns, so there is no possibility of a
synchronization error between these EnterState calls and any
operation within the StateCoder framework.

• Any public properties in your state machine object that can be
accessed by both state objects and outside objects, should either be
synchronized, or you should establish clear rules on accessing
those properties. For example: only access those properties before
the state machine’s Start method is called or after it ends.

• Any public methods of your state machine that can call directly
into state objects pose a risk of threading conflicts.

• Avoid exposing state objects to the outside world (allowing any
direct access to state objects), or in reverse, allowing state objects
access to the outside world other than through the state machine
object. Doing so allows the objects exposed to be accessed
simultaneously by multiple threads – which is exactly what you’re
trying to avoid.

• Events raised from the state machine object are always raised in
the state machine’s thread (with the exception of the
ReachedEndState event – see next bullet). This poses a potential
synchronization issue that should be considered – especially when
raising events to a form or control (classes that derive from
System.Windows.Forms.Control are not thread safe). Also, be

181

aware that if a form’s thread is suspended, the attempt to raise this
event will cause a deadlock.

• The ReachedEndState event automatically detects if the target of
the event derives from System.Windows.Forms.Control (is a form
or control) and raises the event on the correct thread. However, for
all other targets the event is raised on the state machine’s thread.

• The State Machine’s WaitHandle is signaled before the
ReachedEndState event is raised. As a rule, you should either use
the WaitHandle, or the event, but not both. Trying to use both
could cause a deadlock in certain situations.

As you can see, while the StateCoder framework does a great deal to
protect you from threading problems when you follow the rules, it does
not prevent you from creating your own sets of problems if you allow
simultaneous access to objects from different threads.

Unmanaged state machines are exactly that – unmanaged
All calls into the state machine classes come from your code. These state
machines do not run on the StateCoder thread pool. Therefore all
threading issues and synchronization issues are up to you.

182

State Machines and Exceptions
One of the key design issues with StateCoder related to the handling of
exceptions. Exception handling in StateCoder all draws on one basic
principle: It is a very bad idea for code running in the background (in its
own thread) to be able to raise exceptions that can interfere with the
running of your main thread. Since these exceptions are not in the call
stack for your main thread, there is no way to catch them, and allowing an
application to just terminate at any time if the developer forgets to handle
an exception doesn’t sound like a good way to make development easier
and software more stable.

For Managed State Machines
From the underlying principles just described, the following design
features and development practices apply:

• There are a number of exceptions that can occur during the
construction of a state machine. The most common of these is if
the StateCoder framework cannot create all of the state objects
defined by the state machine’s ContainsState attributes. Licensing
errors are also raised immediately on construction. These
exceptions are raised in the code creating the state machine.

• By default, you cannot send exceptions to state machines. This is a
design feature, not a limitation. The protected SendException
method is intended to be called only by the StateCoder framework.
You may override the SendException method to provide global
exception handling for your state machine instead of handling
exceptions in each state independently.

• Exceptions that your code raises during the MessageReceived and
EnterState methods are immediately sent to the current state’s
ExceptionReceived method (internally the state machine’s
protected SendException method is called).

183

• Exceptions raised during your state’s ExceptionReceived method
are usually ignored. This is to avoid a stack overflow as each
ExceptionReceived method raises an exception that then gets sent
to the ExceptionReceived method. However, if you raise serious
errors, such as attempting to set an invalid state, the state machine
will abort.

• The default behavior of the state class ExceptionReceived method
is to set the state machine into the end state and to set the State
Machine’s LastException property. This may be overridden.

• Calling the AbortStateMachine method on a state machine will
almost always cause a StateAbortException to be sent to the
ExceptionReceived method of the current class (internally the state
machine’s protected SendException method is called). It may
cause this exception to be sent multiple times. However, there is a
chance that it will not be called if the state machine terminates
normally before the exception is processed.

• Unless you have overridden the exception handling functions,
throwing an error in your state machine code causes the exception
to be reflected to the ExceptionReceived method, and the state
machine’s LastException property is set. You can simply set the
state machine’s LastException property directly and use the
NextState method to direct the state machine to the desired state. It
does the same thing but is a bit faster (however, it also bypasses
the tracing that can be performed during the state machine’s
SendException call).

This may sound confusing, but it is actually fairly simple. The bottom line:
Unless you override the default exception handling, any exception that
occurs in your state machine code will cause the state machine to go
directly to the end state, and its LastException property to contain a
reference to the exception.

184

Franky Wong
Should this be override?

For Unmanaged State Machines
As with threading, unmanaged state machines provide minimal protection
with regards to exceptions. Specifically:

• There is no error handling for the SendMessage method.
Exceptions raised during this call will be bubbled up to the caller.

• There is no error handling for the SendException method.
Exceptions raised during this call will be bubbled up to the caller.
To clarify: The SendException method calls the
ExceptionReceived method of the current state. If the
ExceptionReceived method raises an error, that exception will be
raised to the caller of the SendException method.

• Exceptions that occur during the EnterState method call on a state
(which is triggered by a NextState call made by a state or
SetNextState call in a state machine), will be trapped and cause an
immediate call to the SendException method. This means that if
your EnterState implementation raises an error, you can expect the
exception to immediately arrive in the form of an
ExceptionReceived call.

• State machine errors (such as invalid states or licensing errors) will
raise exceptions to the caller when they occur.

185

Design Issues for Using StateCoder with
Components
There are a few additional issues to consider when using StateCoder with
a component (such as a WebControl, UserControl, class library, etc.)

• If your component uses StateCoder internally to implement its
functionality, and does not expose any state machines directly to
the container, the container (obviously) will not need to reference
the StateCoder DLL. If you need to expose an actual state machine
to the container, you will need to shadow any public or protected
state machine methods and events so that the container will not
need to reference the StateCoder DLL.

• If a container references the StateCoder DLL directly, the
container developer must own a StateCoder license.

• The ReachedEndState event will automatically synchronize to
forms or controls. However, if the object receiving the event does
not derive from Windows.Forms.Control, the event is raised on the
state machine’s thread. If you forward this event to your
component’s container (by raising another event), you should
either warn the user of this synchronization issue, or perform your
own synchronization.

186

State Machine Tracing and Diagnostics
As you are aware, a state machine in StateCoder is made up of a
StateMachine class, and an arbitrary number of State classes (or rather,
classes that derive from these base classes). As a state machine runs, it
processes messages that come in to the state machine. These messages,
which can take virtually any form, cause the state machine to switch from
state to state. The framework can manage large numbers of state
machines, handling various tasks from thread management to
synchronization, dispatching messages to the appropriate place as it runs.

Traditional debugging approaches often become challenging when dealing
with numerous threads and asynchronous operations, and those limitations
become apparent when working with state machines as well. It can be
difficult to trace the operation of a single state machine out of hundreds
and to log information about the messages and state machines so that you
can understand the operation and analyze any problems that may be
occurring. Stepping through an application can take too long, and it can be
difficult to set breakpoints because the conditions you would need may
complex or unknown.

Traditional tracing techniques (such as Debug.Print in VB6) is too
verbose.

To address this problem, the StateCoder framework includes built-in
instrumentation based on the .NET diagnostic namespaces.

The following is a brief introduction to the .NET tracing system along
with how it is extended for StateCoder. Please visit our web site for details
on availability of an in-depth tutorial on .NET tracing in general.

187

Traditional Tracing
Every VB6 programmer has added tracing to a program using statements
such as Debug.Print. In the VB6 model, such tracing is very simple as
shown here:

Your Program

Output Window

Text

Figure 3 – Traditional “VB6” style tracing

Diagnostic output consists of simple strings that are sent to an output or
debug window, and only while running in the design environment.

The diagnostic output scheme in .NET is considerably more sophisticated.
It addresses a number of issues:

• Methods that allow you to generate diagnostic data consisting of
arbitrary objects, not just text.

• A mechanism to specify what type of diagnostic data a program
should generate. The decision on what types of data to generate
can be changed using an external configuration file.

• A way to customize the processing of diagnostic data, sending it to
different listeners.

188

Figure 4 illustrates the .NET tracing architecture.

Your Program

Output Window Event Log Custom Listener

Switch

Category, Object

Trace Listeners

Figure 4 – Tracing in .NET

The Switch – Deciding what to report
The .NET framework comes with two Switch classes, the BooleanSwitch
and TraceSwitch class. The Boolean Switch class turns tracing on or off.
The TraceSwitch class allows you to specify a level from 1 to 5 indicating
the severity of errors you with to examine.

Let’s start by looking at the Boolean Switch.

The TracingPaper sample application creates an instance of a
BooleanSwitch object when the form is loaded thus:

Private Shared m_BooleanSwitch As BooleanSwitch

if m_BooleanSwitch is Nothing Then m_BooleanSwitch _
= New BooleanSwitch("TraceBooleanSwitch", _

189

"Test of Boolean Tracing")

The text “TraceBooleanSwitch” identifies the name of this switch.
Switches should always be Shared variables. When you create the object,
the framework goes out to your application’s configuration file which has
the name of your application followed by the suffix .config, and which
looks something like this:

<configuration>
 <system.diagnostics>
 <switches>
 <add name="TraceBooleanSwitch" value="1" />
 </switches>
 </system.diagnostics>
</configuration>

The configuration file must be in the same directory as your executable.
By changing the value of this entry, you can turn the switch on and off. In
your code, you use the BooleanSwitch variable you created to decide
whether or not to generate diagnostic information as shown here in the
cmdBoolean button click event:

Private Sub cmdBoolean_Click(ByVal sender As
System.Object, _
ByVal e As System.EventArgs) Handles cmdBoolean.Click
 If m_BooleanSwitch.Enabled Then _
 Trace.WriteLine(_
 "Command1 was clicked", "Button")
End Sub

The TraceSwitch is similar, except that the values range from 1 to 5, and
in your code instead of using the Enabled property to decide whether to
output data, you check the level value of the TraceSwitch object. If the

190

information is more “severe” than the current level, you write it to the
Trace objects.

This illustrates the general approach to tracing an application. You decide
what types of switches you wish to use, and assign them names. You
decide in your code what type of information to send for various switches
and levels. Let me stress this – it’s up to you to decide what these switches
actually mean. And you can have more than one switch active at once.

You can also define custom switches. StateCoder defines a custom switch
named “StateCoderSwitch” (built of class SCTraceSwitch) that uses the
following public enumeration to decide what types of information should
be traced.

<Flags()> Public Enum TraceOptions
 Off = 0
 Undefined = 0
 EnterState = 1
 MessageReceived = 2
 StateTransition = 4
 ExceptionReceived = 8
 FinalState = 16
 Reset = 32
 All = 255
End Enum

You can set the SCTraceSwitch switch in your application’s configuration
file. For example, the configuration file:

<configuration>
 <system.diagnostics>
 <switches>
 <add name="StateCoderSwitch" value="24" />
 </switches>

191

 </system.diagnostics>
</configuration>

turns on the FinalState and ExceptionReceived enumerations.

In .NET, you are not limited to tracing string. You can also pass objects to
the Trace routine. StateCoder uses this internally. Instead of calling the
internal Trace routines with strings, it passes them objects that contain
detailed information about the event that occurred. This is the
StateCoderTraceEvent object. You probably will not use this object unless
you write your own custom listener.

The SCTraceListener Object
The default trace listener simply dumps a text string to the output window.
StateCoder defines the SCTraceListener object to receive internal
StateCoder events (all internal StateCoder trace events belong to the
category “StateCoder”.

There are two ways to add listeners. You can do so from configuration
files, in which case you add entries in the configuration file that specify
the type of the listener and from which assembly to load it, along with
initialization data. But you can also create a listener on the fly in order to
add additional debugging features to your own applications. This is the
usual approach when using the built in StateCoder instrumentation.

You would typically add the following code to your application’s startup
code:

DebugListener = New
Desaware.StateCoder.SCTraceListener()
‘ Trace.Listeners.Clear()
Trace.Listeners.Add(DebugListener)

192

The reason for clearing the default listeners is that when you turn on all of
the StateCoder instrumentation, you can find yourself seeing a great many
events. But this is optional. As you run the program, the SCTraceListener
object will be passed a reference to a StateCoderTraceEvent object each
time one of the events that matches the current Switch value is detected.
The information from these objects is used to load an ADO.NET DataSet
object held by the listener.

In effect, this builds, on the fly, a database of detailed trace information.
You can access this DataSet directly, dump it to an XML file, execute
queries on it, and so on. You can also dump it into a CSV format file that
can easily be read into a spreadsheet – a handy way for examining the
behavior of one or more state machines.

The StateCoderAutobid and StateCoderAuctionDatabase sample projects
demonstrate the use of tracing.

193

Licensing and Distribution
Here’s the short version:

• Desaware’s StateCoder is licensed on a per-machine basis. That
means each computer on which you wish to develop applications
using StateCoder, must have it’s own license and be installed with
its own unique installation code. Contact Desaware for discounted
extra system licenses for use with test systems.

• There are no fees to distribute executable files, web services,
Windows Services or ASP.NET applications that use StateCoder.

• You will, however, need an embedded distribution license if you
wish to distribute components such as UserControls, WebControls
or class libraries that use StateCoder. Each component that you
wish to redistribute with StateCoder requires its own embedded
distribution certificate – which you can purchase from Desaware.

Distributing an Application
To Distribute your executable (EXE, web service, Windows service or
ASP.NET application):

1. Use the StateCoderCert.exe program to create a new
runtime certificate for your assembly. Enter the short
assembly name (not the strong name, and not the
namespace) for the assembly. This will create a file named
assembly.StateCoder.RuntimeCert.ResX.

1. Add the file assembly.StateCoder.RuntimeCert.ResX as a
resource to your application’s main assembly.

1. Distribute the file DesawareStateCoder11.dll or
DesawareStateCoder20.dll with your application. You will
typically install it in the same directory as your
application’s executables.

194

That’s all there is to it!

Distributing a Component
To Distribute your component (UserControl, WebControl or class library):

3. Contact Desaware to purchase an embedded license for
your component. You will be provided with an
embedded installation code.

3. Use the StateCoder Embedded Certificate Utility to
create an embedded certificate for your component.
Enter your installation code and the name of the
assembly. This will create a file named
assemblyname.StateCoder.EmbeddedCert.Resx. This
file is your embedded certificate.

3. Add the embedded certificate as a resource to your
components main assembly.

3. Distribute the file StateCoder.dll with your application.
You will typically install it in the same directory as
your application’s executables.

This will allow others to use your component in design mode and to debug
it, even though they do not have the StateCoder product.

WARNING!
Do not use the same installation code on more than

one machine when installing StateCoder.
Do not use the same embedded installation code to

create certificates for more than one component.
We encourage you to read about specific design issues relating using
StateCoder with components.

195

More On Licensing
When designing our licensing system, we wanted to set a balance. On one
hand, we wanted to provide reasonable protection for our software. On the
other hand, we really dislike very long installation codes, internet based
activation codes, and especially licensing schemes that could cause some
outsider to disable your applications.

So we came up with this certificate based scheme that we believe will be a
fair compromise. The general idea is as follows:

Demo mode
The StateCoder component that you download from our site as a demo, is
the actual StateCoder component. However, without the product installed,
the component runs in demo mode. This means it will only work with
certain assemblies - specifically, the ones we provide as demonstration
versions and any assembly named StateCoderDemo.

This allows you full functionality of the product for evaluation purposes,
but is obviously not suitable (or licensed) for use in your own applications
or components, or for further distribution.

Design/Debug Mode
Once you install the StateCoder product, the StateCoder component is
enabled for use on that development system.

If you copy applications that use this component onto other development
systems (which is common in team development environments) or onto
test systems, everything will work fine as long as each system has a
unique installation code.

However, if you have used the same installation code on more than one
system (which of course you wouldn’t do because it is a violation of your
license), the component will not work.

196

Runtime Distribution with Applications
When A StateCoder component lands on a system that does not have
StateCoder installed, it by default returns to demo mode – which isn’t
particularly useful in terms of allowing your application to run.

When you installed StateCoder, the installer created a runtime certificate
file named StateCoder.RuntimeCert.resx. When you add this to your top
level assembly, it informs StateCoder that it should not enter demo mode,
but rather should run normally.

Embedded Distribution with Components
A runtime certificate will allow an application to run, but will not permit
debugging of the application. When distributing components, you
obviously will want your clients to be able to debug their applications that
use your components.

To allow this you may purchase an embedded license. The embedded
installation code you purchase from Desaware will allow you to create an
embedded certificate that is bound to your component’s assembly name.
This will be a file named yourassembly.StateCoder.EmbeddedCert.ResX.
When you add this to the top level assembly of your component, it informs
StateCoder that it should be allow debugging.

But remember – don’t use the embedded installation code to create more
than one certificate. If you do so, and StateCoder detects it, it will cause a
license violation.

Switching between Computers
Each StateCoder installation is bound to a computer based on the
computer name. It is our experience that developers rarely change the
name of their computer, so this seems a reasonable approach. If you wish
to move the product from one machine to another (i.e., uninstall from one

197

machine, and install on another using the same installation code), you
must do the following:

• Uninstall StateCoder from the first machine.

• Install StateCoder on the new machine.

• Recreate any embedded certificates for your components that were
created on this machine (you may use the same embedded
installation codes as before).

• Rebuild any applications or components that were built on this
system using the new certificates.

Please keep in mind that Desaware has very reasonably priced multiple
unit licenses. Also, if you have an unusual scenario, please call us and
we’ll work things out.

198

Technical Support
For information on customer support and last minute changes, refer to the
file readme.wri on the StateCoder CD (or in the main application directory
for electronic downloads). This file is compatible with write.exe (included
with each copy of Windows).

There is a saying in the software world that no non-trivial program is
completely bug free. The corollary to that saying is that no program with
more than 10 lines in it is non-trivial. StateCoder is emphatically non-
trivial....

StateCoder has undergone extensive testing to make it as bug free as
possible. Nevertheless, it is possible that some have crept through. Please
write or send us a fax if you find one, and include all of the steps needed
to reproduce the problem. Also, if there are any files needed to reproduce
the error, send them to us via Email.

StateCoder is a class framework. While we have done, and will continue
to do everything possible to ensure that the framework is bug free, it is not
possible for us to provide general support on .NET, or on specific
applications using StateCoder. In other words – we cannot debug your
code for you. We strongly encourage you to read the documentation
carefully and make sure that your code follows the guidelines provided.

If you have any questions you are also welcome to refer to our Frequently
Asked Questions section of our web site.

We would also appreciate your suggestions regarding this manual.
Specific comments and questions are especially welcome. We have
attempted to address as many questions as possible, but if you run into
something confusing, please let us know so that we can incorporate
revisions into the next edition and post them to our web site.

199

Finally, and perhaps most important, we would love to hear your
suggestions for improvements to StateCoder, or any suggestions you may
have for new products or components.

Please address all correspondence to:

Desaware, Inc.
3510 Charter Park Drive, Suite 48

San Jose, CA 95125

Telephone: 408/404-4760 Fax: 408/404-4780

Web Site: http://www.desaware.com

E-mail: support@desaware.com

200

	Introduction
	StateCoder Features
	New Features for Version 2.0

	What are State Machines, and Why Should You Care?
	Why are State Machines Important?

	State Machine Design Patterns – or How State Machines can he
	Long Synchronous operations
	Asynchronous Operations

	Why Desaware’s StateCoder is the best way to implement State
	What is a StateCoder State Machine?
	The StateMachine object.
	The State objects.
	The Messages
	The rest

	What will you do with StateCoder?

	Tutorials
	Tutorial 1: Building a state machine for long operations
	The StateCoderTutorial1 Message Source
	The StateCoderTutorial1 State Machine
	The StateCoderTutorial1 form
	More on StateCoderTutorial1

	Tutorial 2: Building a state machine for asynchronous operat
	The StateTutorial2 State objects
	Asynchronous Operations and Events

	Tutorial 3: Building an unmanaged state machine
	The UpdateDataMachine state machine
	Managing an Unmanaged State Machine

	Tutorial 4: From unmanaged to managed state machines
	Tutorial 5: Nested state machines
	Review

	StateCoder Quick Start
	Creating a Simple Managed State Machine
	Step 1 – Create Project
	Step 2 – Assign Names
	Step 3 – Editing your “States” class file
	Step 4 – Create your StateMachine class
	Step 5 – Create your State classes
	Step 6 – Add functions to your state machine
	Step 7 – Add functions to your states
	Step 8 – Start your State Machine
	Step 9 – Wait for your State Machine to end

	Example: Creating a simple timer based state machine
	Step 1 – Create Project
	Step 2 – Assign Names
	Step 3 – Editing your “States” class file
	Step 4 – Create your StateMachine class
	Step 5 – Create your State class
	Step 6 – Add functions to your state machine
	Step 7 – Add functions to your states
	Step 8 – Start your State Machine
	Step 9 – Wait for your State Machine to end

	Sample Applications
	Retrieving Information from the Internet
	Do it yourself transactioning
	About Transactioning
	What is a transaction?

	The StateCoderAuctionDatabase component.
	The StateCoderAutoBid Application

	Building Dynamic State Machines
	About Dynamic State Machines
	The CommandLine Sample Application

	Improving performance in dynamic ASP.NET web sites
	Predictive ASP.NET and Desaware's StateCoder
	Predictive ASP.NET™
	No, we're not Crazy
	You Choose the Tradeoff
	How StateCoder handles Predictive ASP.NET

	Reference
	State Classes
	The State Class
	State Object Properties
	State Object Methods

	The DynamicState Class
	DynamicState Object Properties
	DynamicState Object Methods

	State Machine Classes
	The StateMachineBase class
	StateMachineBase properties
	StateMachineBase methods
	StateMachineBase events
	IMessageSource Implementation

	The StateMachine Class
	StateMachine properties
	StateMachine methods
	StateMachine events

	The UnmanagedStateMachine Class
	UnmanagedStateMachine properties
	UnmanagedStateMachine methods
	UnmanagedStateMachine events

	The StateMachineFlags Enumeration
	StateMachineFlags enumeration values

	Exception Classes
	The StateException class
	Reset method is only valid for state machines in their end s
	Illegal Parameter Value
	Wrapped object is not valid
	Asynchronous operation is already in progress
	Duplicate State Name Found - State names must be unique with
	Duplicate or missing Initial State
	Duplicate or missing End state
	Initial and End states must be different
	Invalid state specified
	State Machine has already started
	Message source missing on start command
	Call to StartRead is invalid unless RequiresExplicitStart fl
	The specified process does not exist

	The StateAbortException class
	The StateTimeoutException class

	Message Sources
	The IMessageSource Interface
	The MessageSourceFlags Enumeration
	MessageSourceFlags Values

	The AlwaysSignaledWaitHandle Class
	The GenericMessageSourceBase Class
	GenericMessageSourceBase members

	The AsyncResultMessageSource Class
	AsyncResultMessageSource members

	The ManualMessageSource class
	The ManualMessageSource members

	The AlarmMessageSource class
	The AlarmMessageSource members

	The ProcessMessageSource class
	The ProcessMessageSource members

	The ParsingStreamReader class
	The ParsingStreamReader Members
	The IMessageParser interface

	The ParsingClass Class
	The ParsingClass Members

	The QueuedStream class
	The QueuedStream Members

	FrameWork control
	StateManager static methods

	Diagnostic Classes
	The SCTraceSwitch class
	TraceOptions Enumeration Values
	SCTraceSwitch Class Members

	The StateCoderTraceEvent class
	StateCoderTraceEvent Members

	The SCTraceListener class
	SCTraceListener Members

	State Machine Threading Issues
	State Machines and Exceptions
	Design Issues for Using StateCoder with Components
	State Machine Tracing and Diagnostics
	Traditional Tracing
	The Switch – Deciding what to report
	The SCTraceListener Object

	Licensing and Distribution
	More On Licensing
	Demo mode
	Design/Debug Mode
	Runtime Distribution with Applications
	Embedded Distribution with Components
	Switching between Computers

	Technical Support

