

Desaware Event Log Toolkit

TM

 Version 1.0
 for Visual Basic

 by

 Desaware, Inc.

Rev: 1.0.1 (06/2005)

Desaware Inc.
3510 Charter Park Drive, Suite 48
San Jose, CA 95136
(408) 404-4760

www.desaware.com

Copyright 2000-2005 by Desaware Inc. All Rights Reserved

http://www.desaware.com/

Information in this document is subject to change without notice and does not represent a commitment on
the part of Desaware, Inc. The software described in this document is furnished under a license
agreement. The software may be used or copied only in accordance with the terms of the agreement. It is
against the law to copy the software on any medium except as specifically allowed in the license.
No part of this manual may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying and recording, for any purpose without the
express written permission of Desaware, Inc.

License Agreement & Warranty

Desaware, Inc.
Software License

Please read this agreement. If you do not agree to the terms of this license, promptly return the product
and all accompanying items to the place from which you obtained them.

This software is protected by United States copyright laws and international treaty provisions.

This program will be licensed for use on a single computer. If you wish to transfer the license from one
computer to another, you must uninstall it from one computer before installing it on the next. You may
(and should) make archival copies of the software for backup purposes.

You may transfer this software and license as long as you include this license, the software and all other
materials and retain no copies, and the recipient agrees to the terms of this agreement.

You may not make copies of this software for other people. Companies or schools interested in multiple
copy licenses or site licenses should contact Desaware, Inc. directly at (408) 404-4760.

Should your intent be to purchase this product for use in developing a compiled Visual Basic program
that you will distribute as an executable (.exe or .dll) file, review the listing of which files (located
below and in the File Description section of the product manual) can be distributed and or modified. If
Desaware files are included in your executable program, you must include a valid copyright notice on all
copies of the program. This can be either your own copyright notice, or “Copyright © 2000-2005
Desaware, Inc. All rights reserved.”.

Files: You may distribute event source DLL files created using the Desaware event source utility. You
may not modify the files listed above in any way.

Source Files: Source code for portions of the Desaware EventLog Toolkit are included for educational
purposes only. You may use this source code in your own applications only if they provide primary and
significant functionality beyond that included in the toolkit package. You may not use this source code
to develop or distribute components and tools that provide functionality similar to all or part of the
functionality provided by any of the components or tools included in the Event Log Toolkit package.

Please consult the on-line Help file under the topic File Descriptions for additional information.

Microsoft is a registered trademark of Microsoft Corporation. Visual Basic, Windows, Windows 95 and Windows 98 are trademarks of
Microsoft Corporation.

Desaware NT Service Toolkit, Desaware Event Log Toolkit, SpyWorks, VersionStamper, StorageTools, ActiveX Gallimaufry, Custom
Control Factory, and SpyNotes #2, The Common Dialog Toolkit are trademarks of Desaware, Inc.

Limited Warranty
Desaware, Inc. warrants the physical diskettes or CDs and physical documentation enclosed
herein to be free of defects in materials and workmanship for a period of sixty days from the
date of purchase.

The entire and exclusive liability and remedy for breach of this Limited Warranty shall be
limited to replacement of defective diskette(s) or documentation and shall not include or
extend to any claim for or right to recover any other damages, including but not limited to,
loss of profit, data or use of the software, or special, incidental or consequential damages or
other similar claims, even if Desaware, Inc. has been specifically advised of the possibility of
such damages. In no event will Desaware, Inc.'s liability for any damages to you or any other
person ever exceed the suggested list price or actual price paid for the license to use the
software, regardless of any form of the claim.

DESAWARE, INC. SPECIFICALLY DISCLAIMS ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Specifically, Desaware, Inc. makes no representation or warranty that the software is fit for
any particular purpose and any implied warranty of merchantability is limited to the sixty-day
duration of the Limited Warranty covering the physical diskettes and documentation only (not
the software) and is otherwise expressly and specifically disclaimed.

This limited warranty gives you specific legal rights. You may have others, which vary from
state to state.

This License and Limited Warranty shall be construed, interpreted and governed by the laws
of the State of California, and any action hereunder shall be brought only in California. If any
provision is found void, invalid or unenforceable it will not affect the validity of the balance
of this License and Limited Warranty, which shall remain valid and enforceable according to
its terms.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject
to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of
Commercial Computer Software - Restricted Rights at 48 CFR 52.227-19, as applicable.
Contractor/Manufacturer is Desaware, Inc., 3510 Charter Park Drive, Suite 48, San Jose,
California 95136.

Table of Contents

LICENSE AGREEMENT & WARRANTY..3

INTRODUCTION ...7

THE WRONG WAY TO USE THE EVENT LOG WITH VISUAL BASIC ..7
WHAT ABOUT EVENT LOG API FUNCTIONS? ...10
THE CORRECT WAY TO USE THE EVENT LOG FROM VISUAL BASIC10

INSIDE THE WINDOWS NT/2000 EVENT LOG...12

INSIDE A MESSAGE ...13
The Event Source ...14
The Event Category..15
The Event Severity..15
The Event Identifier..16
The Logging User ..18
Language Independent Text ...18
Binary Data..19

USING THE DESAWARE EVENT SOURCE UTILITY ...20

Creating an Event Source File - Quick Start ...20
Event Source Primary Form (Event Source Generator) ...21
Registry Settings Form...21
Version Resources Form..22
Categories Form ..23
Facilities Form...24
Select Languages Form..25
Build Event Source Form...25
Event Source Project File ..26
Event Source Menu Commands ...26

THE DESAWARE EVENT LOG API CLASS...28

THE DWEVENTLOGTYPES ENUMERATION..28
REPORTEVENT..28
GETNUMBEROFEVENTLOGRECORDS...29
GETOLDESTEVENTLOGRECORD ..29
READEVENTLOG ..30

EventSource ...30
EventComputer ..30
EventID ..31
EventString...31

Page 5

EventCategory ...31
EventCategoryString..31
EventType ..31
EventBinary ...31
EventUser ..31
EventDomain ...31
EventGenerated ...31
EventWritten ..31
EventRecordNumber..31
InsertionStringCount ...31
InsertionString(ByVal stringindex As Long)..32
WasEventSourceFound..32

BACKUPEVENTLOG..32
CLEAREVENTLOG ..32
ISEVENTLOGFULL..33

USING THE DESAWARE EVENT VIEWER AND REPORTER UTILITY34

Event Viewer..35
Event Detail Form ...37
Log Menu...38
Report Event ..38

REDISTRIBUTABLE COMPONENTS ...40

TECHNICAL SUPPORT ...41

OTHER SOURCES OF INFORMATION..42

Dan Appleman's Visual Basic Programmer's Guide To The Win32 API.........................42
Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide
to the Perplexed ...42
Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers .43
The Desaware Visual Basic Bulletin ...43
PC Magazine's Visual Basic Programmer's Guide To The Windows API.......................43
Windows API Online Help...43
Microsoft's Developers Network CD Rom...44
Microsoft's Windows Software Development Kit and Win32 Software Development Kit44

INDEX ..45

Page 6

Introduction
The NT Event Log is the preferred way for services and server
components to log errors, warnings and other information. Typical
uses of the event log include:

• Reporting information in cases where it is not possible or
advisable to bring up a message to the current logged on user.

• Reporting information that does not require immediate response.

• Reporting information that you wish to archive for later
evaluation or for auditing purposes.

The event log allows you to classify events in several ways, by
severity of the error, by source of the error, and by categories that you
define. Event viewing tools can then sort or filter event information
based on these classifications. The event log system also makes it easy
to define events in a manner that is language independent – so events
show up correctly in the language of the local system.

The Wrong Way to Use the Event Log with
Visual Basic

When Visual Basic added the App.LogEvent method, VB
programmers were thrilled to have the ability to easily log events to
the event log. The App.LogEvent method could be called easily as
shown in this example called from a VB application called
“MyVBProject:

App.LogEvent "Here is an event logged by VB",
vbLogEventTypeError

Figure 1 depicts the event in the event log entry that results from this
call:

Page 7

Figure 1

Typical VB Event Resulting From a Call to the App.LogEvent Method

What’s wrong with this picture?

• The Source is VBRuntime – not MyVBProject. So it is impossible
to distinguish between events logged by your application and
those by any other VB application (See Figure 2).

• The event description is the same for all VB applications. You
have to read the description to find the application name and the
string used in the LogEvent method.

Page 8

• The string used in the LogEvent application is language
dependent – it will always appear in the event log in the language
in which it was written.

• There is no ability to define or report categories, making it
impossible to classify event.

In other words, it is impossible to use the event log correctly with the
App.LogEvent method.

Figure 2
Event Log Viewer

This image of the Event Log viewer shows that it is impossible to
distinguish between events logged by two different VB projects using
the App.LogEvent method. Note how VB projects that use event
sources (EventSmp) created with this Toolkit can be easily identified.

Page 9

What About Event Log API Functions?
The solution is to use either the event log API functions, or
components that wrap those functions. However, as you will soon see,
just calling the API functions is not enough. In order to create custom
events, you need the ability to create an event source – a special kind
of file that contains message and category definitions in the languages
that you wish to support. Creating event sources has always been
rather complicated and poorly documented. It has also been
historically difficult to distribute event sources, as they require
specialized registry entries in order to work correctly.

The Correct Way to Use the Event Log from
Visual Basic

The Desaware Event Log Toolkit is the first product that not only
makes it easy to log events from Visual Basic, it makes it easy to
create and distribute custom event sources. In fact, it’s so easy to
create event sources with our toolkit that even Visual C++
programmers will find it a superior approach to Microsoft’s tools.

The Desaware Event Log Toolkit supports the following features:

• Create custom event sources with an interactive Windows
application – no complex file formats to learn and edit.

• Event sources support unlimited languages.

• Define custom categories for your event sources.

• Messages are defined by combining identifiers, facilities, and
severity information as recommended by Microsoft (you’ll read
more about this later).

• Automatic generation of VB module and C++ header files with
constant definitions.

• Event sources are self-registering – all necessary registry entries
can be added automatically using regsvr32.

• Event sources have no component or DLL dependencies – just
ship and register.

• Event log class allows access to the event log API – all VB source
code included: just drop the class into your project and use it.

Page 10

• Event log class allows reporting events with all possible
parameters – including the difficult to implement ability to specify
user accounts with events.

In order to understand how to use the event log, your first step should
be to understand exactly what the event log is, and why it works the
way it does.

Page 11

Inside the Windows NT/2000 Event Log
To understand the rather convoluted architecture of the NT/2000 event
log, it is necessary to understand the purpose behind its design. First
and foremost, the event log was designed to log information produced
by system components such as drivers and services. That means that
much of the information would have one or more of the following
characteristics:

• It would be generated before a user logged on to the system –
meaning that notifying a user through a message box was not an
alternative.

• It would contain information that was not of immediate interest to
a user, but that could be useful to system administrators in
evaluating the performance of a system or diagnosing system
errors – including errors that did not prevent the system from
being used (for example: those that impacted only one
subsystem).

• It would contain information that needs to be localized. Since
Windows itself is localized to many different languages, and
many events are generated by Windows operating system
components, localization became an important design factor from
the beginning. What’s more – it was important to be able to add
new languages without modifying each of the system components
to support the new language, or having a different version of
system components for each language.

To address these issues, Microsoft adopted the event log architecture
shown in Figure 3.

Page 12

Figure 3
Event Log Architecture

The event log itself does not contain any text that needs to be
localized. Instead, it contains information identifying an event source,
an event identifier, and any language independent text or binary data
that it wishes to report. The event source contains the actual message
text for every language supported by the event source. Thus, if you
support English, French and Japanese, you would find message #1
available in the event source in all three languages.

When the event log is displayed, the event log viewer reads this
information from the event log. It opens the event source and looks up
the message identifier for the current language being used by the
system (the current locale), then displays the correct text. The event
log viewer can also merge language independent text in the event log
into the messages (you’ll read more about this next).

Inside a Message
Because the event log was designed to log events to be viewed at a
later time, it was also designed to make it easy to categorize and filter
events. And while it is easy for system managers to filter and search
for events with the event log viewer, the way those categories are
defined from a developer’s perspective are less clear (to put it kindly).

Page 13

When you log an event, the parameters to the ReportEvent method
include the following:

• The event source

• The event category

• The severity of the event (error, warning, information, auditing).

• The event identifier.

• The user that logged the event (optional)

• Other language independent text

• Binary data.

Let’s review these one at a time.

The Event Source
Each event source has a name and is registered in the system under the
registry key

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ _

Services/EventLog

There are three subkeys under this key: Application, Security and
System.

The name of the event source appears as a subkey under these three
keys, thus if you create an event source named MyEventSource, it
would appear in the registry under:

HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ _

Services/EventLog/Application/MyEventSource

An event will appear in the event log under the Application, Security
or System event logs depending on where the event source is
registered.

Page 14

The Desaware Event Log Toolkit always registers event sources under
the Application key, because the vast majority of people using the
toolkit will be creating event sources for applications, components and
services – all of whose events should appear in the Application event
log. The System event log is intended for system components and
drivers. The Security event log is intended for security audit
information.

The MyEventSource registry key contains multiple named values.

Required registry values:

EventMessageFile The full path to the event source file.

TypesSupported Severity types supported by this event source.

Optional registry values:

CategoryMessageFile The full path to the file containing message
categories.

CategoryCount The number of categories in the file.

The Desaware Event Log Toolkit automatically enters these values in
the registry, including the category entries if categories are defined.

The automatic registration built into event log sources created by this
Toolkit should suit the needs for virtually all situations. However, you
always have the option of doing your own event source registration.
Thus it is possible, for example, to manually register an event source
created with the Desaware Event Log Toolkit for use with the system
event log if you are creating a device driver.

The Event Category
An event source may define categories of events. These are always
specific to an event source. Categories are numbered from 1 through
the number of categories. Each one has a category name (which is also
language independent – so each category has a text string for each
supported language).

The Event Severity
Events fall into five possible types (or severities):

Page 15

Error Use to indicate a major failure in an application or
component.

Warning Use to indicate a condition that is not immediately
fatal, but that could cause problems if ignored.

Information Use to indicate significant events.
Success Audit Use to log successful operations that are being

audited by the security system.
Failure Audit Use to log operations that fail due to security

considerations.

Generally speaking, you will only use the first three event types, as
security audit information is logged by the operating system
depending on the security settings and system policies.

The Event Identifier
Here is where things begin to get tricky.

An event identifier is comprised of three different values that are
combined using the logical OR operator – the event code, the facility,
and the severity. These are laid out in the event identifier as shown
here:

// Values are 32 bit values laid out as follows:
//
// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
// +---+-+-+-----------------------+-------------------------------+
// |Sev|C|R| Facility | Code |
// +---+-+-+-----------------------+-------------------------------+
//

The severity value can be one of the following values

0 = Success
1 = Information
2 = Warning
3 = Error

The Facility values can be any values you wish to help you to
categorize messages. Most will use the default facility code of &HFFF
which corresponds to “Application”. Facility codes smaller than 256
are reserved by the system. The “C” and “R” bits are reserved and can
be left as zero.

Page 16

At this point you are probably very confused: If the severity is
determined when reporting the event (as described earlier), and the
event log (Application, System or Security) is determined by the
location of the event source in the registry, what is the relation
between the severity and log as reported, and the severity and facility
in the event identifier?

There is no relation.

The severity and facility values in the event identifier are intended to
help developers to manage events – especially when there are large
numbers of events. Consider the following events that one might
specify when creating a service.

ServiceStarted = 1
ServiceStopped = 2
ServiceTCPError = 3
ServiceDNSError = 4
ServiceDied = 5
TooManyClients = 6

Which of these are serious? Which of them relate to the service itself
and which to network connectivity?

Now imagine that the events were reported as follows:

ServiceStarted = SEVERITY_INFORMATION Or Application Or 1
ServiceStopped = SEVERITY_INFORMATION Or Application Or 2
ServiceTCPError = SEVERITY_ERROR Or Network Or 3
ServiceDNSError = SEVERITY_ERROR Or Network Or 4
ServiceDied = SEVERITY_ERROR Or Application Or 5
TooManyClients = SEVERITY_WARNING Or Application Or 6

A programmer reading this code can instantly determine which events
are severe, and whether events are associated with the service itself
(Application) or a network operation.

Obviously, it is in your interest to use the same severity values in the
event identifier as you do when reporting the event – doing otherwise
could lead to confusion.

Page 17

The Logging User
You can specify a user account when logging an event. The event
logging classes included with the Desaware Event Log Toolkit allow
you to do so. In most cases users information is not included in the
event log (especially services, which typically run under the local
system account).

Language Independent Text
The message text in the event source can contain parameters which
allow you to merge in additional text provided when reporting the
event. Text that you merge in using ReportEvent should be language
independent (file names, for example).

The parameter locations are identified by escape sequences that are
indicated by the % character. The following escape sequences are
supported:

Escape
Sequence

Definition

%0 Ends the text without a new line (crlf)
character.

%n Merges in string #n specified by the
ReportEvent function. Thus if you pass three
strings to ReportEvent, %2 will merge the
second of these strings into the message text
at the location of the %2.

%n!printformat! Like %n, except that the data is formatted
according to the print format characters.
These characters are the same as those used
by the printf command in the C language
(refer to your online documentation or
MSDN for a complete list of print format
specifiers).

%% Replaced by the ‘%’ character.

%n Add line break.

%r Adds return (without a new line character).

%space Adds a space character.

Page 18

%. Adds a period (without terminating the
message).

%! Adds an exclamation point.

Examples:

Message

String
Parameters

Result

Operation %1 Succeeds Operation Succeeds.
Operation %1 %n %2 %! Succeeds,

Reboot
Operation Succeeds
Reboot!

Function %1 %% Complete 90 Function 90 % complete.

Binary Data
You can attach any arbitrary binary data to an event when reporting
the event. The binary data will be displayed in hexadecimal format by
the event viewer.

Page 19

Using the Desaware Event Source Utility
The Desaware Event Source utility creates an event source file based
on the event source name, messages, severity, categories, facilities and
languages specified. The resulting event source file is compiled as a
self-registering DLL file that does not require any additional
dependency files.

Creating an Event Source File - Quick Start
To create an event source file, you need to specify the Application (or
Event Source) name, version information for the event source, and at
least one event message.

Select the Event Source Utility’s Edit – Version Resources menu and
enter the version resource strings for your compiled event source file.
At a minimum, you must enter the File Version Number and Company
Name. Select the Ok button when finished.

Select the Event Source utility’s Edit – Registry Settings menu and
enter the Application (event source) name. This will typically be the
name of the application using the event source, but can be any name
you wish. Select the Ok button when finished.

Select the Add button to add an event message. Select a Severity,
Facility, and Message ID number for your message. Enter the message
string, then select the Ok button when finished. Repeat this step until
you have finished adding all the event messages you need.

You can save your event source project file before building the event
source file by selecting the File – Save As menu command.

Select the File – Build Source menu to build the event source file.
Enter the destination path and file name for the event source or select
the Browse button to select the destination path and file name. Select
the Ok button when finished.

Page 20

Event Source Primary Form
(Event Source Generator)
The primary event source utility form displays the current Application
name for the event source, the currently selected Language for the
event messages, and the current event messages. Selecting the Add
button allows you to add a new event message for the selected
language. The Edit button allows you to edit the selected event
message for the selected Language. The Delete button deletes the
selected event message for the selected language.

Figure 4

Event Source Generator
(the Primary Event Source Form)

Registry Settings Form
The Registry Settings form holds the information to be written into the
registry when the event source file is registered. Enter the event source
name in the Application text box. Select from Application, System, or
Security as the Log type of your event source file (you should use the
Application log for all applications and services).

Page 21

Check the appropriate Events check boxes to select the types of
severity your event source will support. Select the Ok button to save
the changes, or the Cancel button to cancel the changes.

Figure 5

Registration Properties Form

Version Resources Form
The Version Resources form is used to hold the version resources that
are written to the event source file. The Company Name and File
Version Number fields are required. All of the other version fields are
optional but recommended. The File Version Number and Product
Version Number fields should be formatted as “#.#.#.#” (for example
1.2.3.4).

Select an entry from the Version Resource Type list box, then enter
the value for that field in the Version Resource Value text box. Select
the Ok button to save the changes, or the Cancel button to cancel the
changes.

Page 22

Figure 6

Version Resource Form

Categories Form
The Categories form allows you to specify custom categories for your
event source file. The list box displays the existing Categories. The
Categories are automatically assigned a Category number when they
are added. The Category numbers begin with 1 and increment by 1 for
each additional category. Select a Category in the list box and the Up
or Down arrow buttons to rearrange the Categories. Select the Add
button to add a new Category to the list. The Category name is limited
to 20 characters. Select the Edit button to change the name of the
selected Category. Select the Delete button to delete the selected
Category. Select the Ok button to save the changes, or the Cancel
button to cancel the changes.

Page 23

Figure 7

Categories Form

Facilities Form
The Facilities form allows you to specify custom facilities for your
event source file. The list box displays the existing Facilities and their
values. Select the Add button to add a new Facility to the list. Select
the Edit button to change the name or value of the selected Facility.
The Facility name is limited to 20 characters. The Facilities values
must be between 256 (&H101) and 4095 (&HFFF). The value 4095
(&HFFF) is normally used for the Application Facility.

Select the Delete button to delete the selected Facility. Select the Ok
button to save the changes, or the Cancel button to cancel the changes.

Page 24

Figure 8

Facilities Language Form

Select Languages Form
The Select Languages form allows you to add or remove support for
additional languages in your event source. Each language includes its
own list of Event Messages, Categories, and Facilities.

Select the Add button to add a new Language to the list. When you
add a new language, a copy of the existing Event Messages,
Categories, and Facilities for the current language is made and added
to the new language (you should then edit each of these entries,
translating them into the new language). Select the Delete button to
delete the selected language. When you delete a language, all of the
language’s Event Messages, Categories, and Facilities are deleted.
Select the Ok button to close the form.

Tip: If you will be adding multiple language support, you should
complete the Event Messages, Categories, and Facilities for one
language first. Then you can add another language which will be
created with a copy of the same Messages, Categories, and Facilities
numbers as the first language.

Build Event Source Form
The Build Event Source form allows you to compile your Event
Source file. It also includes options to export the defined Message,
Category, and Facility numbers to a Visual Basic Module file or a
Visual C++ header file.

Page 25

Specify a destination path and file name for your event source file or
use the Browse button to select a path and file name. Select the
Generate Visual Basic Module File or Generate Visual C++ Include
File check boxes to export the Message, Category, and Facility
numbers. Similarly, specify a destination path and file name for the
Visual Basic or Visual C++ output files or use the Browse button to
select a path and file name. Select the Ok button to build the event
source file and exported files. Select the Cancel button to cancel the
build.

Figure 9
Build Event Source File

Event Source Project File
The information you enter using the event source utility can be saved
into an event source project file. Event source project files can be
opened, saved, and created using the event source utility.

Event Source Menu Commands
File

New Creates a new event source project file.

Open Opens an event source project file.

Save Saves the current event source information
into the event source project file.

Page 26

Save As Saves the current event source information
into the specified event source project file.

Build Source Displays the build event source form.

Exit Closes the event source utility.

Edit
Version
Resource

 Displays the version resources form.

Registry
Settings

 Displays the registry settings form.

Categories Displays the categories form.

Facilities Displays the facilities form.

Languages Displays the languages form.

Language
Contains one or more languages for the current event source.
Select a language from this list to select the current working
language for the event source.

Help
Help Topics Displays the Desaware Event Log Toolkit

help file.
About Displays version information for the event

source utility.

Page 27

The Desaware Event Log API Class
The Event Log API functions can be tricky to call from Visual Basic.
Therefore the Desaware Event Log Toolkit includes the dwEventLog
class which provides wrappers for most of the event log API functions.
This class is provided as source code so you can simply add it to any
project.

To use the class, simply create a new object of type dwEventLog thus:

Dim el as New dwEventLog

The dwEventLogTypes Enumeration
The dwEventLogTypes public enumerated value is used to specify the
severity of an event.

Public Enum dwEventLogTypes
 EVENTLOG_ERROR_TYPE = &H1
 EVENTLOG_WARNING_TYPE = &H2
 EVENTLOG_INFORMATION_TYPE = &H4
 EVENTLOG_AUDIT_SUCCESS = &H8
 EVENTLOG_AUDIT_FAILURE = &H10
End Enum

ReportEvent
Use this method to log an event into the event log.

Public Sub ReportEvent(ByVal Source As _
String, ByVal SourceMachine As String, _
ByVal EventType As dwEventLogTypes, ByVal _
Category As Integer, ByVal EventID As _
Long, Optional MergeStringsArray As _
Variant, Optional BinaryDataArray As _
Variant, Optional UserName As String, _
Optional UserMachine As String)

The parameters are as follows:

Parameter Definition
NameSource The name of the event source.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

Page 28

EventType The severity of the event. Select from the
dwEventLogTypes enumerator.

Category The category number in the source, zero for
no category.

EventID The event identifier.
MergeStringsArray A zero based variant containing an array of

strings (strings are numbered from 1 to N –
leave array index zero empty).

BinaryDataArray A variant containing a byte array (from 0 to
N – position 0 in the array is valid).

UserName The name of the user to associate with the
event.

UserMachine The server on which the user is valid.

GetNumberOfEventLogRecords
Retrieve the number of records in the specified event log.

Public Function GetNumberOfEventLogRecords _
(ByVal Source As String, ByVal _
SourceMachine As String) As Long

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be read.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

GetOldestEventLogRecord
Retrieves the record number of the oldest record in the event log.

Public Function GetOldestEventLogRecord _
(ByVal Source As String, ByVal _
SourceMachine As String) As Long

Page 29

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be read.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

ReadEventLog
This method reads an entry in the event log into the dwEventLog
object.

Public Sub ReadEventLog(ByVal Source As _

String, ByVal SourceMachine As String, _
ByVal EventIndex As Long)

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be read.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

EventIndex The number of the event in the event log
(starting from zero).

Once an event has been loaded into the object using this method, you
can retrieve information about the event using the following methods:

EventSource
The event source for this event.

EventComputer
The computer containing the event source for this event.

Page 30

EventID
The event identifier for the event.

EventString
The formatted message for the event (with parameter strings merged,
as it would be displayed by the event log viewer).

EventCategory
The category number for this event.

EventCategoryString
The name of the category for this event.

EventType
The severity of the event.

EventBinary
Any binary data associated with this event.

EventUser
The user (if any) that recorded this event.

EventDomain
The domain for the user that recorded this event.

EventGenerated
The date and time at which the event occurred.

EventWritten
The date and time at which the event was recorded in the event log.

EventRecordNumber
The absolute record number of this event.

InsertionStringCount
The number of insertion strings found for this event.

Page 31

InsertionString(ByVal stringindex As Long)
The insertion string as specified by stringindex. Stringindex begins at
zero.

WasEventSourceFound
True if the Event Source file was found, False otherwise.

Note: The ReadEventLog function ReadEventLog uses the
EVENTLOG_SEQUENTIAL_READ flag to move to the specified
EventIndex to read. This is due to a Microsoft problem where large
event log files (Microsoft mentions 2MB but our testing showed that
this fails on smaller log files), the EVENTLOG_SEEK_READ
method fails.

We have found that the speed differences between the two methods
are insignificant. Also note that this function is not optimized for
reading all records in a log file since it opens and closes the log file for
each read operation.

BackupEventLog
Backs up an event log into a file.

Public Sub BackupEventLog(ByVal Source As _
String, ByVal SourceMachine As String, _
ByVal BackupFileName As String)

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be backed up.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

BackupFileName The full path and name of the file in which to
save the event log. This function will fail if
the file already exists.

ClearEventLog
Clears the specified event log.

Page 32

Public Sub ClearEventLog(ByVal Source As _
String, ByVal SourceMachine As String, _
ByVal BackupFileName As String)

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be cleared.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

BackupFileName The full path and name of the file in which to
save the event log before clearing it.

IsEventLogFull
Determines if the event log is full. This function is valid in Windows
2000 or later only. An error will be raised if this function is called
outside of Windows 2000.

Public Function IsEventLogFull(ByVal Source _
As String, ByVal SourceMachine As String) _
As Boolean

The parameters are as follows:

Parameter Definition
Source The name of the event source whose

corresponding event log is to be tested.
SourceMachine The name of the server containing the event

source. Use an empty string for the current
machine.

Page 33

Using the Desaware Event Viewer and Reporter
Utility

The Desaware Event Viewer project demonstrates how to use the
Desaware Event Log class. It displays a list of the Events in the Event
Viewer tab of the main form. You can double click on an entry to
retrieve additional detailed information for each event – such as the
event message and additional binary data. The Desaware Event
Viewer displays similar information as the Microsoft Event Viewer
included with Windows NT.

Note that displaying all the entries for a log file may take some time
depending on how large the log file is.

Page 34

Figure 10
Desaware Event Viewer

Event Viewer
The icons displayed in each event entry identifies the severity of the
events as follows:

 Information
 Error
 Warning
 Audit Failure
 Audit Success

The following columns in the listview control display the following
information:

Date The date and time that the events were generated.
Source The name of the Event Source for the events.
Category The name of the Category for the events.

Page 35

Event The event number for the events.
User The user name for the events, empty if no users were

specified with the particular event.
Computer The computer name for the events.

You can double click on a particular entry to view the message string
or binary data for that event. Doing so will display the Event Detail
form.

Page 36

Figure 11

Desaware Event Log Event Detail Form

Event Detail Form
The Event Detail form displays the same information as presented in
the listview control, with the addition of the message string and binary
data for the selected event.

Select the Next button to view the detail event information for the next
event record. Select the Previous button to view the detail event
information for the previous event record. The string and binary data
are presented as read-only. Select the Close button to exit this form.

Page 37

Log Menu
The Log menu allows you to specify which type of event to display.
You can choose among the Application, Security, or System events.
You may also select to view the events for another computer. The
Select Computer menu command displays a list of computers on your
network from which you may select. The Refresh menu command
causes the Event Viewer to read the event log file again and update the
information displayed.

Report Event
The Report Event tab allows you to report an event to the event log.
The code demonstrates how to use the Desaware Event Log object’s
ReportEvent function.

Name Information
Source Machine Specify the name of the server

containing the event source. Use an
empty string for the current machine.

Source Name Specify the name of the event source.
User Machine Specify the server on which the user is

valid.
User Name Specify the name of the user to

associate with the event.
Message Number Specify the message number in the

event source.
Category Specify the category number in the

event source, zero for no category.
Facility Specify the facility value in the event

source. To specify the facility in
hexadecimal, precede the number with
“&H”.

Event Type Select the severity of the event.
Severity Value Select the severity value.

Page 38

Insertion Strings List Specify insertion strings for the event
source. Insertion strings may be added
by entering a string in the Insertion
String text box, then selecting the Add
button. Insertion strings values must
begin with 1 and increment by 1 for
each additional insertion string. You
may delete an insertion string by
selecting it and then selecting the
Delete button.

The Facility, Message number, and Severity value are combined
together to form the Event ID for the ReportEvent function.

The Report Event button calls the ReportEvent function to log the
event.

Figure 12
Desaware Event Viewer Form – Report Event Tab

Page 39

Redistributable Components
Event sources that you create with this Toolkit are redistributable with
no royalty fees.

You may incorporate the event log class into your applications and
modify it as you wish, however you must include Desaware’s
copyright notice in the source code everywhere it appears. If you use
this source code in a component that you wish to distribute or sell, you
must add significant and primary functionality to the component (in
other words – under this license you cannot market your own
component whose primary task is reporting events into the event log
using this source code).

No other files or components of this toolkit may be redistributed.

Page 40

Technical Support
Desaware prides itself on providing excellent technical support at no
charge.

At the same time, while we are glad to address any problems with our
software, we know from experience that our software is often used in
ways that we never imagined. As enabling technologies (i.e.
technologies that allow VB programmers to do things that are beyond
the typical VB application), we cannot characterize any of our
components or tools for every possible application.

In other words, while we will do our best to address any bugs in our
products or issues that look like they have the potential of being bugs,
we cannot write your code for you, or debug your program for you.
Nor can we provide one on one consulting on particular applications.

When you contact us, we will assume that you are familiar with the
material in this manual. We ask that you reduce any problems to the
smallest set of code that duplicates the problem.

Page 41

Other Sources of Information
Here are several other resources that we recommend for advance
Windows development.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special
interest to VersionStamper customers will be the chapters on OLE and
COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Page 42

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

Dan Appleman's Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-01-1). Appleman's Win32 API Guide
covers 700 API functions. This book covers the other 7800. How? By
teaching you everything you need to know to read and understand the
Microsoft C documentation and create correct API declarations for use
in Visual Basic. Presented in an entertaining puzzle/solution format
that challenges you to solve real world API problems. In depth
tutorials take you behind the scenes to understand what really happens
when you call an API function from VB.

The Desaware Visual Basic Bulletin
and other related technical articles. At the Desaware website:
http://www.desaware.com.

PC Magazine's Visual Basic Programmer's Guide
To The Windows API
Written by Daniel Appleman (president of Desaware) this book is
intended to help Visual Basic programmers navigate the complexities
of Windows. It is the only text on Windows that is designed
specifically for Visual Basic programmers, and the only one that
covers the interactions between Visual Basic and Windows.

Available on CD Rom only from Desaware. Call (408) 404-4760 or
email support@desaware.com.

Windows API Online Help
The Professional Edition of Visual Basic includes Win31api.hlp
and/or win32api.hlp - an online help reference for all API functions.
These functions are declared in C and do not consider Visual Basic
compatibility issues, however the information in chapter 3 of the
Visual Basic Programmer's Guide to the Windows API (chapters 3 and
4 of the 32 bit book) will provide you with information on how to
translate these functions to Visual Basic.

Page 43

mailto:support@desaware.com

Microsoft's Developers Network CD Rom
This amazing CD-ROM contains a wealth of information and sample
code, plus the latest Visual Basic knowledge base.

Microsoft's Windows Software Development Kit
and Win32 Software Development Kit
The sample code is all in C, but by the time you've read the Visual
Basic Programmer's Guide to the Windows API or Win32 API, you'll
know enough to be able to translate the C code to Visual Basic.

Page 44

Index
 EventComputer, 30
% Character, 18 EventDomain, 31
 EventGenerated, 31
App.LogEvent, 7-9 EventID, 31
Application EventRecordNumber, 31

Event Log, 15 EventSource, 30
Facility, 24 EventString, 31
Key, 15 EventType, 31
Name, 21 EventUser, 31

 EventWritten, 31
BackupEventLog, 32 InsertionString, 32
Binary Data, 13, 19, 31, 34, 36, 37 InsertionStringCount, 31
 WasEventSourceFound, 32
Categories Form, 23 Desaware Event Viewer, 34
Category Desaware Reporter Utility, 34

Custom, 23 Distributable, 40
Name, 23 dwEventLog, 28, 30
Number, 23 Class, 28

ClearEventLog, 32, 33
Components Escape Sequences, 18

for Redistribution, 40 Event
Computer Category, 15

Select, 38 EventID, 29
Custom Facilities, 24 Identifier, 13, 14, 16, 17, 29, 31
 Severity, 15
Desaware Event Log API Class Event Category, 15

Enumeration Event ID, 39
dwEventLogTypes, 28 Event Log, 12

Event Log Functions Application, 15
BackupEventLog, 32 Localization, 12
ClearEventLog, 32 ReportEvent, 38
GetNumberOfEventLogRecords, 29 Security, 15
GetOldestEventLogRecord, 29 System, 15
IsEventLogFull, 33 Viewer, 9, 13, 31
ReadEventLog, 30, 32 Event Log API
ReportEvent, 28 VB Source Code, 10

Event Log API Class. See Desaware
Event Log API Class

Event Log Properties
EventBinary, 31

Event Log API functions. See Event Log
Functions

EventCategory, 31
EventCategoryString, 31

Page 45

Event Log Viewer, 9, 13 EVENTLOG_WARNING_TYPE, 28
Event Severity, 15 EventRecordNumber, 31
Event Source, 13, 14, 15, 17 EventSource, 30

Application Name, 20 EventString, 31
Build, 25 EventType, 31
Compile, 25 EventUser, 31
Create, 10 EventWritten, 31
Dependencies, 10
Event Message, 20 Facilities Form, 24
File, 21, 24 Facility
Language, 10 Application, 24
Localization, 13 Custom, 24
Name, 21 Number, 20
Project File, 26 Values, 16, 17, 24
Self-registration, 10 File
Utility, 20, 26, 27 Visual Basic Module, 25, 26
Version Information, 20 Visual C++ Header, 25

Event Source Utility, 20, 26 Visual C++ Include, 26
Event Viewer, 35 Flag

Binary Data, 36 EVENTLOG_ SEQUENTIAL_READ,
32 Category, 35

Computer, 36 EVENTLOG_SEEK_READ, 32
Date, 35 Function
Desaware, 34, 35 ReportEvent, 38, 39
Event, 36
Microsoft, 34 GetNumberOfEventLogRecords, 29
Severity, 35 GetOldestEventLogRecord, 29
Source, 35
User, 36 Information

EventBinary, 31 Other Sources, 42
EventCategory, 31 InsertionString, 32
EventCategoryString, 31 InsertionStringCount, 31
EventComputer, 30 IsEventLogFull, 33
EventDomain, 31
EventGenerated, 31 Language, 18, 27
EventID, 31 Multiple Language Support, 25
EVENTLOG_AUDIT_FAILURE, 28 Select, 21
EVENTLOG_AUDIT_SUCCESS, 28 Select Form, 25
EVENTLOG_ERROR_TYPE, 28 Log type, 21
EVENTLOG_INFORMATION_TYPE,

28
LogEvent, 7, 8, 9

EVENTLOG_SEEK_READ, 32 Message Number, 20

Page 46

Event Viewer, 35 Message String, 20, 36, 37
Failure Audit, 16 Message Text, 13, 18
Icons Method

Audit Failure, 35 App.LogEvent, 7
Audit Success, 35 LogEvent, 8
Error, 35 ReportEvent, 14
Information, 35 Microsoft Event Viewer, 34
Warning, 35

Information, 16 ReadEventLog, 30, 32
Number, 20 Redistributable, 40
of Event, 14 Registry Settings, 20, 21, 27
Success Audit, 16 Registry Values
Value, 16, 17, 38, 39 CategoryCount, 15

Error, 16 CategoryMessageFile, 15
Information, 16 EventMessageFile, 15
Success, 16 TypesSupported, 15
Warning, 16 Report Event

Values, 17 Category, 38
Warning, 16 Event Type, 38

Severity Number, 20 Facility, 38
Software License, 3 Insertion Strings List, 39
System Event Log, 15 Message Number, 38
 Severity, 38
Technical Support, 41 Source Machine, 38
 Source Name, 38
User, 18 User Machine, 38
 User Name, 38
Values ReportEvent, 14, 18, 28, 38, 39

Facility, 17 Reporting Events, 11
Severity, 17

Version Resources, 20, 22 Security Event Log, 15
 Select Computer, 38
WasEventSourceFound, 32 Severity, 10, 15, 17, 22, 28, 29, 31
Winsock, 49 Error, 16

Page 47

Other Sources of Information
Here are several other resources that we recommend for advanced
Windows development.

www.desaware.com
Desaware’s web site includes numerous technical articles on all
aspects of Windows development. Be sure to also check the FAQ and
support section for this product.

Dan Appleman's Visual Basic Programmer's
Guide To The Win32 API
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 0-672-31590-4) - this sequel to the original 16 bit
API Guide applies the same philosophy to teaching the Win32 API to
developers using Visual Basic and VBA based applications. With
more examples, more functions, more tutorial style explanations and a
full text searchable electronic edition on CD-ROM, this book should
prove a worthy successor to the 16 bit API book. Covers Visual Basic
version 4 through 6.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

An upgrade CD is available for owners of the “PC Magazine's Visual
Basic Programmer's Guide to the Win32 API” ISBN: 1-56276-287-7
for $24.99 + s&h directly from Desaware. Refer to our web site at
www.desaware.com for additional information.

Dan Appleman's Developing COM/ActiveX
Components with Visual Basic 6.0: A Guide to the
Perplexed
Written by Daniel Appleman (president of Desaware) and published
by McMillan, (ISBN 1-56276-576-0) - this book is designed for those
programmers interested in using Visual Basic's object oriented
technology to develop ActiveX components including EXE and DLL
servers, ActiveX controls and ActiveX documents. Unlike many books
that simply rehash the Visual Basic documentation, this one serves as
a commentary to clarify and extend the documentation. Of special
interest to VersionStamper customers will be the chapters on OLE and

Page 48

COM technology that will help them further understand the process of
registering components, and the chapters on versioning and licensing.

The VB6 version also includes two new chapters on IIS Application
development.

Available at most good bookstores, or directly from Desaware at a
20% discount - call (408) 404-4760 or email support@desaware.com.

Moving to VB.Net: Strategies, Concepts and Code
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-97-6).

VB.Net is not Visual Basic. COM+2.0 is not COM.

Porting is stupid. These are just a few of the things you’ll learn as Dan
takes you on a journey unlike any other into the world of VB.Net. He
tackles strategic issues to help you determine when and whether to
deploy VB.Net.

As always, Dan teaches the core concepts such as inheritance and
multithreading, where VB6 programming habits can lead to costly
design and development errors. And he covers the language changes
to help you adapt to, and understand, this new environment.

Dan Appleman's Win32 API Puzzle Book and
Tutorial for Visual Basic Programmers
Written by Daniel Appleman (president of Desaware) and published
by Apress (ISBN# 1-893115-01-1). Appleman's Win32 API Guide
covers 700 API functions. This book covers the other 7800. How? By
teaching you everything you need to know to read and understand the
Microsoft C documentation and create correct API declarations for use
in Visual Basic. Presented in an entertaining puzzle/solution format
that challenges you to solve real world API problems. In depth
tutorials take you behind the scenes to understand what really happens
when you call an API function from VB.

Windows API Online Help
The Professional Edition of Visual Basic includes Win31api.hlp
and/or win32api.hlp - an online help reference for all API functions.
These functions are declared in C and do not consider Visual Basic
compatibility issues, however the information in chapter 3 of the

Page 49

mailto:support@desaware.com

Visual Basic Programmer's Guide to the Windows API (chapters 3 and
4 of the 32 bit book) will provide you with information on how to
translate these functions to Visual Basic.

Microsoft's Developers Network CD Rom
This amazing CD-ROM and web site (http://msdn.microsoft.com)
contain a wealth of information and sample code, plus the latest Visual
Basic knowledge base.

Microsoft's Windows Software Development Kit
and Win32 Software Development Kit
The sample code is all in C, but by the time you've read the Visual
Basic Programmer's Guide to the Windows API or Win32 API, you'll
know enough to be able to translate the C code to Visual Basic.

Page 50

http://msdn.microsoft.com/

Index
Account, 37 CplExit, 141
AccountName, 116, 120 CplGetCount, 141
Application Object, 72, 73 CplInit, 141
Architecture, 21, 30 CplInquire, 141

NT Service Toolkit, 69 CplNewInquire, 142
AutoStart, 33 CplStartWParms, 143
Background Tasks, 18 CplStop, 143
Background Threads, 64, 94 CreateService, 114
BackgroundExecute, 96 CurrentState, 118, 119
BackgroundExecuteDelayed, 96 Dan Appleman’s Developing

COM/ActiveX Components with
Visual Basic 6.0, 23, 82

BackgroundObject, 97
BinaryPathName, 120
Business Objects, 19 Dan Appleman’s Visual Basic

Programmer’s Guide to the Win32 API,
64

ChangeServiceConfig, 117
CheckPoint, 119
ClearWaitOperation, 51, 66 Dan Appleman’s Win32 API Puzzle Book

and Tutorial for VB Programmers, 53 Client Object, 74-77, 81
Client Object Model, 77 database, 100
ClientExecuteBackground, 51, 80, 81 DCOM, 14, 18, 22, 25, 37, 51-53, 59, 69,

71, 83, 86, 87, 89, 100, 103, 109, 110,
148, 153

CLSID, 90
COM, 14, 18-24, 30, 51-53, 59, 69, 70,

71, 81, 83, 89, 92, 94, 100, 110, 143,
147, 153

DcomCnfg, 86, 108
Debugging, 106, 108

COM/DCOM, 85, 86, 151 DeleteService, 118
Command Line Options, 148 Dependencies, 38, 120, 132
Command Switches, 60 Description, 17
Component DisplayName, 113-118, 121

dwSCM, 111 dwAsyncSocket, 131
Components dwBackThread, 94-97, 100

Redistributable Components, 149 Rules, 97
Configuring, 32 dwFTPclient, 127, 132
Control Object, 65 dwHostEnt, 131, 134
Control Panel Applet, 136, 143 dwHTTP10, 127, 132, 134, 135

Installation, 145 dwNTServ.tlb, 3, 25, 31, 90, 147, 148,
150 Wizard, 136

ControlsAccepted, 25, 26, 32-35, 45, 46,
47, 50, 118, 125

dwProtEnt, 131
dwSCM

ControlsAcceptedFlags, 118, 125 Architecture, 111
ControlService, 116 dwSecurity, 85, 92
CplDblClk, 140 dwServEnt, 131

Page 51

dwServiceConfig, 111, 114-121 GetServiceObject, 73, 74
dwServiceObject, 111-117, 123, 125 GetUserInfo, 93

ControlService, 116 GetVersion, 36
StartService, 115 Global Variables, 81

DWSOCK HTTP, 100, 129-134
Architecture, 130 IdwEasyServConfig, 25, 26, 32-41, 48-50,

65 Error Values, 132
Examples, 133 IdwEasyServConfig_DefaultTimes, 48

dwSock.dll, 132 IdwEasyService, 27, 28, 40-50, 53, 66, 67,
72, 75, 80, 143 dwSocketInfo, 133

dwSockets, 127, 130-133 IdwEasyService2, 48
dwSocketUtil, 131, 133, 134 IdwService, 22
dwspyvb.dll, 132 IdwServiceClient, 74-81, 103
dwTCP, 131 IdwServiceConfig, 22
dwUDP, 131 IdwServiceCtl, 27, 28, 41-50, 65, 67, 69
EnumDependentServices, 117 IgnoreStartupErrors, 36
enumServiceControls, 25, 34 Impersonate, 92
EnumServicesStatus, 112 Impersonation, 83, 85, 92, 108, 147
EnumServiceStates, 125 Types, 84
ErrorControl, 117, 119 Anonymous, 84
Errors Delegate, 85

Service, 102 Identity, 84
Event Log Impersonate, 84

EventID, 54 Information
ReportEvent2, 54 Other Sources, 154

Examples, 99 initialization file, 106
Beeper, 99 InitializeSCManager, 112
ControlPanelApplet, 99 InstallParameters, 49
FileWatch, 100 InteractWithDesktop, 36
Launcher, 100 Interface
RemoteUser, 100 IdwServiceCtl, 37
ReportEvent2, 99 IP Address, 129
TinyWeb, 100 LaunchObject, 96
TinyWeb2, 100 LoadOrderGroup, 120
Tracing, 99 LockServiceDatabase, 114

ExecuteBackground, 80, 81, 94-98 Manager
FTP, 127-133 EnumServicesStatus, 112
GetAppObject, 71, 82 Method
GetDescription, 35 CreateService, 114
GetDisplayNameFromServiceName, 113 dwServiceObject, 115
GetInteractiveUser, 52 GetDisplayNameFromServiceName,

113 GetServiceNameFromDisplayName, 113

Page 52

GetInteractiveUser, 37 OnParamChange, 28, 45, 153
GetServiceNameFromDisplayName,

113
OnPause, 27, 42, 48
OnPowerRequest, 28, 47, 153

InitializeSCManager, 112 OnShutdown, 27, 43, 72, 73
LockServiceDatabase, 114 OnStart, 27, 42, 72, 75
OpenService, 113 OnStop, 27, 43, 48, 72, 73, 79, 80, 103
QueryLockStatus, 115 OnTimer, 28, 47, 48, 49, 110
UnlockLockServiceDatabase, 114 OnUserControlCode, 28, 45, 143

Microsoft Message Queue, 100 OpenService, 113
Monitors Password, 38, 120

System, 17 Program
Multi-threading, 94 Batch Mode, 60
NT Service Command Switches, 60

Architecture, 30 Property
Configuring, 32 dwServiceObject, 115
Features, 14 QueryLockStatus, 115
Framework, 30 QueryServiceConfig, 116

Objects QueryServiceStatus, 116
Application, 72 Redistributable Components, 149
Business, 19 Reference Counting, 72, 75
Client, 74 RegisterApplicationObject, 52, 69, 72
dwAsyncSocket, 131 RegisterClientObjectName, 52, 70, 75
dwFTPclient, 127, 132 RegisterDeviceNotification, 46, 53
dwHostEnt, 131 ReportEvent, 54
dwHTTP10, 127, 132, 135 ReportEvent2, 54, 99
dwProtEnt, 131 Resource Pool, 19
dwSecurity, 92 RetrieveMode, 135
dwServEnt, 131 RevertToSelf, 92
dwSock, 131 RunningService, 52, 70, 71, 77-80, 82,

103 dwSocketInfo, 133
dwSockets, 127, 130, 131, 133 Security, 83
dwSocketUtil, 131, 133, 134 Service Configuration Program, 56, 60
dwTCP, 131 Service Configuration Wizard, 60
dwUDP, 131 Service Control Manager, 111
RunningService, 70 Service Executable Launcher, 63
Synchronization, 64 SERVICE_AUTO_START, 33

OnConnect, 76, 78, 80, 81 SERVICE_CONTINUE_PENDING, 42
OnContinue, 42 SERVICE_DEMAND_START, 33
OnDeviceEvent, 28, 46, 53, 153 SERVICE_DISABLED, 33
OnDisconnect, 78, 80 SERVICE_PAUSE_PENDING, 42
OnHardwareProfileChange, 28, 46, 153 SERVICE_PAUSED, 42
OnLogout, 48 SERVICE_RUNNING, 42

Page 53

SERVICE_START_PENDING, 42 svcShutdown, 25, 34, 50
SERVICE_STOP_PENDING, 43 svcStop, 25, 34, 50
SERVICE_STOPPED, 43 Synchronization Objects, 64
ServiceAccessRights, 113, 114, 123 System Monitors, 17
ServiceConfiguration, 25, 26, 30, 32, 39,

41, 57, 65, 69, 99
TagId, 120
Tasks

ServiceControlConstants, 116, 124 Background, 18
ServiceControlRights, 112, 123 Technical Support, 151
ServiceErrorControlTypes, 122 Testing, 106, 108
ServiceHandle, 118 COM, 110
ServiceName, 113, 114, 118 DCOM, 110
ServiceProcessId, 26, 39 Thread Pool, 70
ServiceSpecificExitCode, 118 Threads
ServiceStartTypes, 119, 121 Background, 64, 94
ServiceStateConstants, 118, 125 Timeout, 47, 49, 51, 65, 66
ServiceType, 112, 117, 119 TimeOuts, 35
ServiceTypes, 121 Trace, 14, 15, 55, 106
SetWaitOperation, 51, 65-67, 109 TraceLevel, 55, 106
Simulator Mode, 107 Tracing, 106, See Trace
SocketData, 133 Tracing and Logging, 106
Software Agent, 18 Tutorial, 24
Software License, 3 Types, 17
SpyWorks Concepts UnlockLockServiceDatabase, 114

Winsock, 127 UnregisterDeviceNotifcation, 53
StartService, 115 UpdateTransitionTime, 41, 43, 50
StartType, 117, 119 UserControl, 45
StartupParameters, 49 Util, 133
States Variables

SERVICE_CONTINUE_PENDING,
42

Global, 81
VBR File, 25, 59, 86, 90, 104, 148, 150

SERVICE_PAUSE_PENDING, 42 WaitComplete, 28, 40, 48, 66, 67
SERVICE_PAUSED, 42 WaitHint, 119
SERVICE_RUNNING, 42 Win32ExitCode, 118
SERVICE_START_PENDING, 42 Winsock, 14, 94, 127-133, 150, 162
SERVICE_STOP_PENDING, 43 Internet/Intranet, 127
SERVICE_STOPPED, 43 Learning, 128
Transitions, 41 Package, 127

StopService, 51 Wizard
svcHardwareProfile, 34, 50 Batch Mode, 60
svcParamChange, 34, 50 Command Switches, 60
svcPauseAndContinue, 34, 50 WM_DEVICECHANGE, 46
svcPowerEvent, 34, 50 WM_POWERBROADCAST, 47

Page 54

Desaware Product Descriptions
Thank you for your purchase of this Desaware product. We have
additional quality software to enhance your programming efforts.
Please visit our web site at www.desaware.com for detailed
descriptions and product demos.

SPYWORKS Standard 6/Professional 7.0

SpyWorks in a nutshell? Impossible!

You're going to want to download the SpyWorks demo to even begin
to understand its capabilities. This product has been evolving for
several years, and it includes so many features it's hard to know where
to begin. SpyWorks is a VB power tool. When you need to override
VB's default behavior or to extend VB's functionality, you will want to
use SpyWorks.

Do That in Visual Basic??

Want to put VB to the test? Want to learn advanced programming
techniques? Want to keep the productivity of VB and have the
functionality of C++? SpyWorks contains the low level tools that you
need to take full advantage of Windows. Here are just a few of the
features of this multi-faceted software package. For instance, have you
ever wanted to detect keystrokes on a system-wide basis or detect
when an event occurs in another application or thread using
subclassing or hooks? SpyWorks can help you solve these problems
by letting you tap into the full power of the Windows API without
having to be an expert. SpyWorks lets you export functions from VB
DLL's so that you can create function libraries, control panel applets,
and NT Services. With its ActiveX extension technology, you can call
and implement interfaces that VB5 or 6 do not support. SpyWorks
includes the Desaware API Class Library, which assists programmers
in taking advantage of the hundreds of functions that are built into the
Windows API. SpyWorks is available in either the Professional (Pro)
or Standard edition.

The Professional Edition includes .NET support for keyboard hooks,
window hooks and subclassing (including cross-task subclassing) with
examples in both Visual Basic.NET and C#. Additionally, a WinSock
component with comprehensive VB source code that gives you
complete control for Internet/intranet programming.

Page 55

http://www.desaware.com/

Other features are the NT Service Toolkit Light Edition. This
application is a subset of the Desaware NT Service Toolkit product. It
allows a developer to create true NT services using Visual Basic. A
background thread component that allows you to easily create objects
that run in a separate background thread.

It also contains extensive sample code and three product updates.

• The Professional Edition includes the Winsock Library, NT
Service support and many other additional features & samples,
plus three free updates. SpyWorks 2.1 (VBX Edition) is included
in the Pro Edition.

• SpyWorks Standard is a subset of Professional. A feature
comparison is available on our web site.

• Supports VB 4, 5 & 6, Windows 95, 98, 2000, NT and ME
depending upon which version (or edition) of SpyWorks.

STATECODER 1.0
A .NET class framework that makes it easy to create and support
powerful state machines using VB .NET or C#. Dramatically
improves the reliability of applications, components and services that
make use of the multithreading and asynchronous features of .NET.

VERSIONSTAMPER 6.5

Distributing Component-Based Applications? Beware DLL
HELL!

You've distributed your application and it's working fine. But your
end user is still in charge of their system. What happens when they
install a program that overwrites a component that your software needs
to run? Can you verify that your users have the correct files required
by your application? Can you really afford to spend two hours on the
phone trying to figure out exactly what went wrong? Now you can
easily avoid component incompatibilities by adding VersionStamper
to your toolkit. It lets you check the versions of your program's
components on your end user’s system, and correct the problem.

Page 56

You are in control!

DLL Hell is a big problem, and with VersionStamper you can be in
control of how this problem is detected and corrected. You determine
dependency scanning (file size, date, version or other parameter), how
and when the dependency scanning is done (upon start up, at midnight,
at user's discretion), and how you want the problem resolved
(automatically, an email message to your help desk, from a
dependency list on your web site and more). This means you can
handle versioning problems as simply as using a message box to call
tech support, or even automatically updating the invalid components
over the internet or corporate network. Imagine your application
updating itself without user (or programmer) intervention! Imagine the
hours and money saved in tech support calls! You can even use
VersionStamper for incremental updates and bug fixes.

Is This For Real?

No, you don't have to pay a fortune in distribution fees - there are no
run-time licensing fees. VersionStamper comes with a great deal of
sample code. Don't distribute a component-based application without
it!

• Checks the versions of your dependent files and notifies you or the
user of potential problems.

• Internet extensions allow you to update versions across the
Internet/intranets.

• Cool and USEFUL sample programs show you how it works.

Includes VB source code for the VersionStamper components that you
can use in your applications.

Page 57

NT SERVICE TOOLKIT 2.0 COM Edition, .NET Edition

Create a fully featured service in minutes using Visual Basic – even
debug your service using the Visual Basic environment! Supports all
NT service options and controls. Adheres to all Visual Basic threading
rules. Background thread support allows easy waiting on system and
synchronization objects. Client requests supported on independent
threads for excellent scalability, with client impersonation available
allowing services to act on behalf of clients in their own security
context. Client requests and service control possible via
COM/COM+/DCOM.

Simulation mode for testing as an independent executable. Create
control panel applets for service control and other purposes.

DESAWARE EVENT LOG TOOLKIT 1.0

Visual Basic allows you to log events to the NT/2000 event log, but
does not allow you to create custom event sources - so every event
belongs to the application VB runtime, descriptions are limited, and
event categories unavailable. Even if you use the API to log events,
creating custom event sources for your application is not supported by
VB, and is difficult with C++.

Desaware's new Event Log Toolkit makes creation of event sources
easy, and provides all the tools needed to create and log custom
events. Now your applications and services can support event logs in a
professional manner, as recommended by Microsoft

Page 58

STORAGETOOLS ver 3.0

StorageTools is your key to the OLE 2.0 Structured Storage
Technology. Structured Storage allows you to create files that organize
complex data easily in a hierarchical system. It is like having an entire
file system in each file. OLE 2.0 takes care of allocating and freeing
space within a file, so just as you need not concern yourself with the
physical placement of files on disk, you can also disregard the actual
location of data in the file. Additionally, with its support for
transactioning you can easily implement undo operations and
incremental saves in your application. StorageTools allows you to
take advantage of the same file storage system used by Microsoft's
own applications. In fact, we include programs (with Visual Basic
source code) that let you examine the structure of any OLE 2.0 based
file so that you can see exactly how they do it!

StorageTools includes registration database controls for Windows NT,
Windows 2000/XP, Windows 95 & 98. Plus, a simple resource
compiler (with source) so that you can create your own .RES files for
use with Visual Basic and more. 16 & 32 bit COM/ActiveX and .NET.

New for version 3.0! StorageTools 3.0 includes .NET support for
accessing OLE Structure Storage from .NET assemblies.

Page 59

Page 60

DESAWARE ACTIVEX GALLIMAUFRY Ver. 2

What is it?

gal·li·mau·fry (gàl´e-mô¹frê) noun
plural gal·li·mau·fries
A jumble; a hodgepodge.

[French galimafrée, from Old French galimafree, sauce, ragout :
probably galer, to make merry. See GALLANT + mafrer, to gorge
oneself (from Middle Dutch moffelen, to open one's mouth wide, of
imitative origin).]
(From The American Heritage® Dictionary of the English Language,
Third Edition copyright © 1992 by Houghton Mifflin Company)

What does a Twain control, spiral art program, set of linked list
classes, a quick sort routine, a hex editor and a myriad of other custom
controls have in
common?

They are all part of Desaware's ActiveX Gallimaufry.

You'll find most of these controls useful, the rest entertaining – but we
guarantee that you'll find them all educational, because they come with
complete Visual Basic 6.0 source code.

Curious?

Want to learn some advanced API programming techniques? Visit our
web site for a full description and demo.

THE CUSTOM CONTROL FACTORY V 4.0
The Custom Control Factory is a powerful tool for creating your own
animated buttons, multiple state buttons, toolbars and enhanced button
style controls in Visual Basic and other OLE control clients, without
programming. With 256 & 24 bit color support, automatic 3D
backgrounds, image compression, over 50 sample controls and more.
Plus MList2 - an enhanced listbox control. 16 & 32 bit ActiveX
controls and 16 bit VBXs included.

	License Agreement & Warranty
	
	
	Table of Contents

	Introduction
	The Wrong Way to Use the Event Log with�Visual Basic
	What About Event Log API Functions?
	The Correct Way to Use the Event Log from�Visual Basic

	Inside the Windows NT/2000 Event Log
	Inside a Message
	The Event Source
	The Event Category
	The Event Severity
	The Event Identifier
	The Logging User
	Language Independent Text
	Binary Data

	Using the Desaware Event Source Utility
	
	Creating an Event Source File - Quick Start
	Event Source Primary Form �(Event Source Generator)
	Registry Settings Form
	Version Resources Form
	Categories Form
	Facilities Form
	Select Languages Form
	Build Event Source Form
	Event Source Project File
	Event Source Menu Commands
	File
	Edit
	Language
	Help

	The Desaware Event Log API Class
	The dwEventLogTypes Enumeration
	ReportEvent
	
	
	Definition

	GetNumberOfEventLogRecords
	GetOldestEventLogRecord
	ReadEventLog
	
	
	Definition

	EventSource
	EventComputer
	EventID
	EventString
	EventCategory
	EventCategoryString
	EventType
	EventBinary
	EventUser
	EventDomain
	EventGenerated
	EventWritten
	EventRecordNumber
	InsertionStringCount
	InsertionString(ByVal stringindex As Long)
	WasEventSourceFound

	BackupEventLog
	
	
	Definition

	ClearEventLog
	
	
	Definition

	IsEventLogFull

	Using the Desaware Event Viewer and Reporter Utility
	
	Event Viewer
	Event Detail Form
	Log Menu
	Report Event
	
	Information

	Redistributable Components
	Technical Support
	Other Sources of Information
	
	Dan Appleman's Visual Basic Programmer's Guide To The Win32 API
	Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to the Perplexed
	Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers
	The Desaware Visual Basic Bulletin
	PC Magazine's Visual Basic Programmer's Guide To The Windows API
	Windows API Online Help
	Microsoft's Developers Network CD Rom
	Microsoft's Windows Software Development Kit and Win32 Software Development Kit

	Index�% Character, 18App.LogEvent, 7-9ApplicationEvent Log, 15Facility, 24Key, 15Name, 21BackupEventLog, 32Binary Data, 13, 19, 31, 34, 36, 37Categories Form, 23CategoryCustom, 23Name, 23Number, 23ClearEventLog, 32, 33Componentsfor Redistribution, 40Comp
	
	www.desaware.com
	Dan Appleman's Visual Basic Programmer's Guide To The Win32 API
	Dan Appleman's Developing COM/ActiveX Components with Visual Basic 6.0: A Guide to the Perplexed
	Moving to VB.Net: Strategies, Concepts and Code
	Dan Appleman's Win32 API Puzzle Book and Tutorial for Visual Basic Programmers
	Windows API Online Help
	Microsoft's Developers Network CD Rom
	Microsoft's Windows Software Development Kit and Win32 Software Development Kit

	Index�Account, 37AccountName, 116, 120Application Object, 72, 73Architecture, 21, 30NT Service Toolkit, 69AutoStart, 33Background Tasks, 18Background Threads, 64, 94BackgroundExecute, 96BackgroundExecuteDelayed, 96BackgroundObject, 97BinaryPathName, 120B

